Watson JD, Crick FH. The structure of DNA. In: Cold spring harbor symposia on quantitative biology, vol 18. Cold Spring Harbor Laboratory Press; 1953. p. 123–31 https://doi.org/10.1101/SQB.1953.018.01.020.
Dahm R. Friedrich Miescher and the discovery of DNA. Dev Biol. 2005;278:274–88. https://doi.org/10.1016/j.ydbio.2004.11.028.
Article
CAS
PubMed
Google Scholar
Klug A. Rosalind Franklin and the discovery of the structure of DNA. Nature. 1968;219:808–10. https://doi.org/10.1038/219808a0.
Article
CAS
PubMed
Google Scholar
Men AE, Wilson P, Siemering K, Forrest S. Sanger DNA sequencing. In: Next-generation genome sequencing: towards personalized medicine; 2008. p. 1–11. https://doi.org/10.1002/9783527625130.
Baudhuin LM, Lagerstedt SA, Klee EW, Fadra N, Oglesbee D, Ferber MJ. Confirming variants in next-generation sequencing panel testing by Sanger sequencing. J Mol Diagn. 2015;17:456–61. https://doi.org/10.1016/j.jmoldx.2015.03.004.
Article
CAS
PubMed
Google Scholar
França LT, Carrilho E, Kist TB. A review of DNA sequencing techniques. Q Rev Biophys. 2002;35:169–200. https://doi.org/10.1017/S0033583502003797.
Article
CAS
PubMed
Google Scholar
Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977;74:560–4. https://doi.org/10.1073/pnas.74.2.560.
Article
CAS
PubMed
Google Scholar
Tipu HN, Shabbir A. Evolution of DNA sequencing. J Coll Physicians Surg Pak. 2015;25:210–5.
PubMed
Google Scholar
Sakamoto F, Suzuki E, Fujii Y. Novel approach for the effective determination of DNA scission site using the Sanger method. J Biochem Biophys Methods. 2002;52:97–109. https://doi.org/10.1016/S0165-022X(02)00053-2.
Article
CAS
PubMed
Google Scholar
Verma M, Kulshrestha S, Puri A. Genome sequencing. Bioinformatics. 2016. https://doi.org/10.1007/978-1-4939-6622-6_1.
Article
PubMed
Google Scholar
Collins FS, McKusick VA. Implications of the human genome project for medical science. JAMA. 2001;285:540–4. https://doi.org/10.1001/jama.285.5.540.
Article
CAS
PubMed
Google Scholar
Lunshof JE, Bobe J, Aach J, Angrist M, Thakuria JV, Vorhaus DB, Hoehe MR, Church GM. Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin Neurosci. 2010;12:47. https://doi.org/10.31887/DCNS.2010.12.1/jlunshof.
Article
PubMed
Google Scholar
Powledge TM. Human genome project completed. Genome Biol. 2003;4:1–3. https://doi.org/10.1186/gb-spotlight-20030415-01.
Article
Google Scholar
Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300:286–90. https://doi.org/10.1126/science.1084564.
Article
CAS
PubMed
Google Scholar
Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: an overview. Hum Immunol. 2021. https://doi.org/10.1016/j.humimm.2021.02.012.
Article
PubMed
Google Scholar
Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, Brooks S, Howe E, Porubsky D, Logsdon GA, Schneider VA. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84. https://doi.org/10.1038/s41586-020-2547-7.
Article
CAS
PubMed
Google Scholar
Feng Y, Zhang Y, Ying C, Wang D, Du C. Nanopore-based fourth-generation DNA sequencing technology. Genom Proteom Bioinform. 2015;13:4–16. https://doi.org/10.1016/j.gpb.2015.01.009.
Article
CAS
Google Scholar
Göpfrich K, Judge K. Decoding DNA with a pocket-sized sequencer. Biol Health. 2018;43:17–20.
Google Scholar
Hoenen T, Groseth A, Rosenke K, Fischer RJ, Hoenen A, Judson SD, Martellaro C, Falzarano D, Marzi A, Squires RB, Wollenberg KR. Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerg Infect Dis. 2016;22:331. https://doi.org/10.3201/eid2202.151796.
Article
CAS
PubMed
Google Scholar
Hall CL, Zascavage RR, Sedlazeck FJ, Planz JV. Potential applications of nanopore sequencing for forensic analysis. Forensic Science Review. 2020;32:23–54.
CAS
PubMed
Google Scholar
Yan Y, Wu K, Chen J, Liu H, Huang Y, Zhang Y, Xiong J, Quan W, Wu X, Liang Y, He K. Rapid acquisition of high-quality SARS-CoV-2 genome via amplicon-Oxford nanopore sequencing. Virol Sin. 2021. https://doi.org/10.1007/s12250-021-00378-8.
Article
PubMed
Google Scholar
Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, Gu J, Xiang B, Liu J, Jiang W, Shen G. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small. 2020;16:2002169. https://doi.org/10.1002/smll.202002169.
Article
CAS
Google Scholar
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res. 2019;7:1–19. https://doi.org/10.1186/s40364-019-0174-y.
Article
Google Scholar
Hoey T. Drug resistance, epigenetics, and tumor cell heterogeneity. Sci Transl Med. 2010;2:19–28. https://doi.org/10.1126/scitranslmed.3001056.
Article
Google Scholar
Schatz MC. Nanopore sequencing meets epigenetics. Nat Methods. 2017;14:347–8. https://doi.org/10.1038/nmeth.4240.
Article
CAS
PubMed
Google Scholar
Brero A, Easwaran HP, Nowak D, Grunewald I, Cremer T, Leonhardt H, Cardoso MC. Methyl CpG–binding proteins induce large-scale chromatin reorganization during terminal differentiation. J Cell Biol. 2005;169:733–74. https://doi.org/10.1083/jcb.200502062.
Article
CAS
PubMed
Google Scholar
Ferguson LR, Tatham AL, Lin Z, Denny WA. Epigenetic regulation of gene expression as an anticancer drug target. Curr Cancer Drug Targets. 2011;11:199–212.
Article
CAS
Google Scholar
Beckmann ND, Karri S, Fang G, Bashir A. Detecting epigenetic motifs in low coverage and metagenomics settings. BMC Bioinform. 2014;15:1–12. https://doi.org/10.1186/1471-2105-15-S9-S16.
Article
Google Scholar
Krishna BM, Khan MA, Khan ST. Next-generation sequencing (NGS) platforms: an exciting era of genome sequence analysis. Microb Genom Sustain Agroecosyst. 2019. https://doi.org/10.1007/978-981-32-9860-6_6.
Article
Google Scholar
Gupta AK, Gupta UD. Next-generation sequencing, and its applications. Anim Biotechnol. 2020. https://doi.org/10.1016/B978-0-12-811710-1.00018-5.
Article
PubMed
Google Scholar
Lin B, Hui J, Mao H. Nanopore technology and its applications in gene sequencing. Biosensors. 2021;11:214. https://doi.org/10.3390/bios11070214.
Article
CAS
PubMed
Google Scholar
Hutchison CA III. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 2007;35:6227–37. https://doi.org/10.1093/nar/gkm688.
Article
CAS
PubMed
Google Scholar
Watson JD. The human genome project: past, present, and future. Science. 1990;248:44–9. https://doi.org/10.1126/science.2181665.
Article
CAS
PubMed
Google Scholar
Hilgartner S. Constituting large-scale biology: building a regime of governance in the early years of the human genome project. BioSocieties. 2013;8:397–416. https://doi.org/10.1057/biosoc.2013.31.
Article
Google Scholar
Herlihy W. The human genome project. Anal Chem. 1991;63:416A-423A. https://doi.org/10.1021/ac00007a740.
Article
CAS
PubMed
Google Scholar
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51. https://doi.org/10.1038/nrg.2016.49.
Article
CAS
PubMed
Google Scholar
Schloss JA, Gibbs RA, Makhijani VB, Marziali A. Cultivating DNA sequencing technology after the human genome project. Annu Rev Genom Hum Genet. 2020;21:117–38. https://doi.org/10.1146/annurev-genom-111919-082433.
Article
CAS
Google Scholar
Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, et al. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell. 2017;30:149–61. https://doi.org/10.1007/s13577-017-0168-8.
Article
CAS
PubMed
Google Scholar
Shokralla S, Spall JL, Gibson JF, Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol Ecol. 2012;21:1794–805. https://doi.org/10.1111/j.1365-294X.2012.05538.x.
Article
CAS
PubMed
Google Scholar
Balzer S, Malde K, Lanzén A, Sharma A, Jonassen I. Characteristics of 454 pyrosequencing data—enabling realistic simulation with flowsim. Bioinformatics. 2010;26:i420–5. https://doi.org/10.1093/bioinformatics/btr384.
Article
CAS
PubMed
Google Scholar
Kchouk M, Gibrat JF, Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med. 2017. https://doi.org/10.4172/0974-8369.1000395.
Article
Google Scholar
Shuikan A, Alharbi SA, Alkhalifah DHM, Hozzein WN. High-throughput sequencing and metagenomic data analysis. In: Metagenomics-basics, methods, and applications. IntechOpen; 2019. https://doi.org/10.5772/intechopen.78746.
Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res. 2010;20:1165–73. https://doi.org/10.1101/gr.101360.109.
Article
CAS
PubMed
Google Scholar
Schadt EE, Turner S, Kasarskis A. R2, a window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–40. https://doi.org/10.1093/hmg/ddq481.
Article
CAS
PubMed
Google Scholar
Xiao T, Zhou W. The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr. 2020;9:163. https://doi.org/10.21037/tp.2020.03.06.
Article
PubMed
Google Scholar
Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. The landscape of next-generation sequencing technologies. Anal Chem. 2011;83:4327–41. https://doi.org/10.1021/ac2010857.
Article
CAS
PubMed
Google Scholar
McCarthy A. Third generation DNA sequencing: pacific biosciences’ single-molecule real-time technology. Chem Biol. 2010;17:675–6. https://doi.org/10.1016/j.chembiol.2010.07.004.
Article
CAS
PubMed
Google Scholar
Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present, and future. Nature. 2017;550:345–53. https://doi.org/10.1038/nature24286.
Article
CAS
PubMed
Google Scholar
Pereira R, Oliveira J, Sousa M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med. 2020;9:132. https://doi.org/10.3390/jcm9010132.
Article
CAS
Google Scholar
Gonzalez-Garay ML. Introduction to isoform sequencing using pacific biosciences technology (Iso-Seq). In: Transcriptomics and gene regulation. Springer; 2016. p. 141–60. https://doi.org/10.1007/978-94-017-7450-5_6.
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30:693–700. https://doi.org/10.1038/nbt.2280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ. 2016;4:1869. https://doi.org/10.7717/peerj.1869.
Article
CAS
Google Scholar
Ari Ş, Arikan M. Next-generation sequencing: advantages, disadvantages, and future. In: Plant omics: trends and applications. Cham: Springer; 2016. p. 109–35. https://doi.org/10.1007/978-3-319-31703-8_5.
Rhoads A, Au KF. PacBio sequencing, and its applications. Genom Proteom Bioinform. 2015;13:278–89. https://doi.org/10.1016/j.gpb.2015.08.002.
Article
Google Scholar
Raley C, Munroe D, Jones K, Tsai YC, Guo Y, Tran B, Gowda S, Troyer JL, Soppet DR, Stewart C, Stephens R. Preparation of next-generation DNA sequencing libraries from ultra-low amounts of input DNA: Application to single-molecule, real-time (SMRT) sequencing on the Pacific biosciences RS II. bioRxiv. 2014. https://doi.org/10.1101/003566.
Article
Google Scholar
Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single-molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res. 2018;46:2159–68. https://doi.org/10.1093/nar/gky066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8. https://doi.org/10.1126/science.1162986.
Article
CAS
PubMed
Google Scholar
Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Landscape of next-generation sequencing technologies. Anal Chem. 2011;83:4327–41. https://doi.org/10.1021/ac2010857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y. Modern epigenetics methods in biological research. Methods. 2021;187:104–13. https://doi.org/10.1016/j.ymeth.2020.06.022.
Article
CAS
PubMed
Google Scholar
Ludwig CH, Bintu L. Mapping chromatin modifications at the single-cell level. Development. 2019;146: 170217. https://doi.org/10.1242/dev.170217.
Article
CAS
Google Scholar
Hagan JT, Sheetz BS, Bandara YND, Karawdeniya BI, Morris MA, Chevalier RB, Dwyer JR. Chemically tailoring nanopores for single-molecule sensing and glycomics. Anal Bioanal Chem. 2020;412:6639–54. https://doi.org/10.1007/s00216-020-02717-2.
Article
CAS
PubMed
Google Scholar
Desai TA, Hansford DJ, Kulinsky L, Nashat AH, Rasi G, Tu J, Wang Y, Zhang M, Ferrari M. Nanopore technology for biomedical applications. Biomed Microdevice. 1999;2:11–40. https://doi.org/10.1023/A:1009903215959.
Article
CAS
Google Scholar
Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genom Proteom Bioinform. 2016;14:265–79. https://doi.org/10.1016/j.gpb.2016.05.004.
Article
Google Scholar
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:1–11. https://doi.org/10.1186/s13059-016-1103-0.
Article
CAS
Google Scholar
Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ. Assessing the performance of the Oxford nanopore technologies minion. Biomol Detect Quantif. 2015;3:1–8. https://doi.org/10.1016/j.bdq.2015.02.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowden R, Davies RW, Heger A, Pagnamenta AT, de Cesare M, Oikkonen LE, Parkes D, Freeman C, Dhalla F, Patel SY, Popitsch N. Sequencing of human genomes with nanopore technology. Nat Commun. 2019;10:1–9. https://doi.org/10.1038/s41467-019-09637-5.
Article
CAS
Google Scholar
Maitra RD, Kim J, Dunbar WB. Recent advances in nanopore sequencing. Electrophoresis. 2012;33:3418–28. https://doi.org/10.1002/elps.201200272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev. 2013;27:2397–408. https://doi.org/10.1101/gad.226837.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nehra A, Ahlawat S, Singh KP. A biosensing expedition of nanopore: a review. Sens Actuators B Chem. 2019;284:595–622. https://doi.org/10.1016/j.snb.2018.12.143.
Article
CAS
Google Scholar
Karawdeniya BI, Bandara YND, Nichols JW, Chevalier RB, Hagan JT, Dwyer JR. Challenging nanopores with analyte scope and environment. J Anal Test. 2019;3:61–79. https://doi.org/10.1007/s41664-019-00092-1.
Article
Google Scholar
Kowalczyk SW, Blosser TR, Dekker C. Biomimetic nanopores: learning from and about nature. Trends Biotechnol. 2011;29:607–14. https://doi.org/10.1016/j.tibtech.2011.07.006.
Article
CAS
PubMed
Google Scholar
Watson MA, Cockroft SL. Man-made molecular machines: membrane-bound. Chem Soc Rev. 2016;45:6118–29. https://doi.org/10.1039/C5CS00874C.
Article
CAS
PubMed
Google Scholar
Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W. Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther. 2016;17:246–53. https://doi.org/10.1080/15384047.2016.1139236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko J, Bhagwat N, Black T, Yee SS, Na YJ, Fisher S, Kim J, Carpenter EL, Stanger BZ, Issadore D. miRNA profiling of magnetic nanopore–isolated extracellular vesicles for the diagnosis of pancreatic cancer. Can Res. 2018;78:3688–97. https://doi.org/10.1158/0008-5472.CAN-17-3703.
Article
CAS
Google Scholar
Euskirchen P, Bielle F, Labreche K, Kloosterman WP, Rosenberg S, Daniau M, Schmitt C, Masliah-Planchon J, Bourdeaut F, Dehais C, Marie Y. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 2017;134:691–703. https://doi.org/10.1007/s00401-017-1743-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, Xie SJ, Xiao ZD, Zhang H. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol. 2020;13:1–16. https://doi.org/10.1186/s13045-020-01005-x.
Article
Google Scholar
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla S. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45. https://doi.org/10.1038/nbt.4060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schweiger MR, Kerick M, Timmermann B, Isau M. The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev. 2011;30:199–210. https://doi.org/10.1007/s10555-011-9278-z.
Article
CAS
PubMed
Google Scholar
Ku CS, Roukos DH. From next-generation sequencing to nanopore sequencing technology: paving the way to personalized genomic medicine. Expert Rev Med Devices. 2013;10:1–6. https://doi.org/10.1586/erd.12.63.
Article
CAS
PubMed
Google Scholar
Brown CG, Clarke J. Nanopore development at oxford nanopore. Nat Biotechnol. 2016;34:810–1. https://doi.org/10.1038/nbt.3622.
Article
CAS
PubMed
Google Scholar
Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature. 1976;260:799–802. https://doi.org/10.1038/nbt.3622.
Article
CAS
PubMed
Google Scholar
Wanunu M. Nanopores: a journey towards DNA sequencing. Phys Life Rev. 2012;9:125–58. https://doi.org/10.1016/j.plrev.2012.05.010.
Article
PubMed
PubMed Central
Google Scholar
Deamer DW, Nichols JW. Proton flux mechanisms in model and biological membranes. J Membr. 1989;107:91–103. https://doi.org/10.1007/BF01871715.
Article
CAS
Google Scholar
Bayley H. Nanopore sequencing: from imagination to reality. Clin Chem. 2015;61:25–31. https://doi.org/10.1373/clinchem.2014.223016.
Article
CAS
PubMed
Google Scholar
Branton D, Deamer DW. Nanopore sequencing: an introduction. World Scientific. 2019.
Ma L, Cockroft SL. Biological nanopores for single-molecule biophysics. ChemBioChem. 2010;11:25–34. https://doi.org/10.1002/cbic.200900526.
Article
CAS
PubMed
Google Scholar
Agah S, Zheng M, Pasquali M, Kolomeisky AB. DNA sequencing by nanopores: advances and challenges. J Phys D Appl Phys. 2016;49:413001. https://doi.org/10.1088/0022-3727/49/41/413001.
Article
CAS
Google Scholar
Schneider GF, Dekker C. DNA sequencing with nanopores. Nat Biotechnol. 2012;30:326–8. https://doi.org/10.1038/nbt.2181.
Article
CAS
PubMed
Google Scholar
Steinbock LJ, Radenovic A. The emergence of nanopores in next-generation sequencing. Nanotechnology. 2015;26:074003. https://doi.org/10.1088/0957-4484/26/7/074003.
Article
CAS
PubMed
Google Scholar
Rusk N. Nanopores read long genomic DNA. Nat Methods. 2014;11:887–887. https://doi.org/10.1038/nmeth.3085.
Article
CAS
PubMed
Google Scholar
Galdiero S, Gouaux E. High-resolution crystallographic studies of α-hemolysin–phospholipid complexes define heptamer–lipid head group interactions: Implication for understanding protein-lipid interactions. Protein Sci. 2004;13:1503–11. https://doi.org/10.1110/ps.03561104.
Article
CAS
PubMed
PubMed Central
Google Scholar
He M, Chi X, Ren J. Applications of Oxford nanopore sequencing in Schizosaccharomyces pombe. In: Yeast protocols; 2021. p. 97–116. https://doi.org/10.1007/978-1-0716-0868-5_9.
Celaya G, Perales-Calvo J, Muga A, Moro F, Rodriguez-Larrea D. Label-free, multiplexed, single-molecule analysis of protein–DNA complexes with nanopores. ACS Nano. 2017;11:5815–25. https://doi.org/10.1021/acsnano.7b01434.
Article
CAS
PubMed
Google Scholar
Mikheyev AS, Tin MM. A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour. 2014;14:1097–102. https://doi.org/10.1111/1755-0998.12324.
Article
CAS
PubMed
Google Scholar
Xie S, Leung AWS, Zheng Z, Zhang D, Xiao C, Luo R, Luo M, Zhang S. The applications and potentials of nanopore sequencing in the (epi) genome and (epi) transcriptome era. The Innovation. 2021. https://doi.org/10.1016/j.xinn.2021.100153.
Article
PubMed
PubMed Central
Google Scholar
Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther. 2012;22:271–4. https://doi.org/10.1089/nat.2012.0367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Zhang H, Kohnen MV, Prasad KV, Gu L, Reddy AS. Analysis of transcriptome and epitranscriptome in plants using PacBio Iso-Seq and nanopore-based direct RNA sequencing. Front Genet. 2019;10:253. https://doi.org/10.3389/fgene.2019.00253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018;15:201–6. https://doi.org/10.1038/nmeth.4577.
Article
CAS
PubMed
Google Scholar
Kang X, Alibakhshi MA, Wanunu M. Improved bilayer membrane stability for nanopore sensing applications. Biophys J. 2019;116:148a. https://doi.org/10.1016/j.bpj.2018.11.821.
Article
Google Scholar
Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot. 2017;68:5419–29. https://doi.org/10.1093/jxb/erx289.
Article
CAS
PubMed
Google Scholar
Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet. 2020;21:597–614. https://doi.org/10.1038/s41576-020-0236-x.
Article
CAS
PubMed
Google Scholar
Loit K, Adamson K, Bahram M, Puusepp R, Anslan S, Kiiker R, Drenkhan R, Tedersoo L. Relative performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens. Appl Environ Microbiol. 2019;85:e01368-e1419. https://doi.org/10.1128/AEM.01368-19.
Article
CAS
PubMed
Google Scholar
Check Hayden E. Nanopore genome sequencer makes its debut. Nature News. 2012. https://doi.org/10.1038/nature.2012.10051.
Article
Google Scholar
Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16:1–9. https://doi.org/10.1038/s41596-020-00409-w.
Article
CAS
PubMed
Google Scholar
Park PJ. ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80. https://doi.org/10.1038/nrg2641.
Article
CAS
PubMed
Google Scholar
Rauluseviciute I, Drabløs F, Rye MB. DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin Epigenet. 2019;11:1–13. https://doi.org/10.1186/s13148-019-0795-x.
Article
CAS
Google Scholar
Carson S, Wanunu M. Challenges in DNA motion control and sequence readout using nanopore devices. Nanotechnology. 2015;26:074004. https://doi.org/10.1088/0957-4484/26/7/074004.
Article
CAS
PubMed
Google Scholar
Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB. The potential and challenges of nanopore sequencing. Nanosci Technol Collect Rev Nat J. 2010. https://doi.org/10.1142/9789814287005_0027.
Article
Google Scholar
Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, Parekh HS, Saá P, Stassinopoulos A, Broom MF. High-resolution single-particle zeta potential characterization of biological nanoparticles using tunable resistive pulse sensing. Sci Rep. 2017;7:1–13. https://doi.org/10.1038/s41598-017-14981-x.
Article
CAS
Google Scholar
Stanley S. Biological nanoparticles and their influence on organisms. Curr Opin Biotechnol. 2014;28:69–74. https://doi.org/10.1016/j.copbio.2013.11.014.
Article
CAS
PubMed
Google Scholar
Stark WJ. Nanoparticles in biological systems. Angew Chem Int Ed. 2011;50:1242–58. https://doi.org/10.1002/anie.200906684.
Article
CAS
Google Scholar
Schmidt J. Membrane platforms for biological nanopore sensing and sequencing. Curr Opin Biotechnol. 2016;39:17–27. https://doi.org/10.1016/j.copbio.2015.12.015.
Article
CAS
PubMed
Google Scholar
May M, Wang HM, Akid R. Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol-gel epoxy system. Int J Adhes Adhes. 2010;30:505–12. https://doi.org/10.1016/j.ijadhadh.2010.05.002.
Article
CAS
Google Scholar
Cumbal L, Greenleaf J, Leun D, SenGupta AK. Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym. 2003;54:167–80. https://doi.org/10.1016/S1381-5148(02)00192-X.
Article
CAS
Google Scholar
Lee MH, Kumar A, Park KB, Cho SY, Kim HM, Lim MC, Kim YR, Kim KB. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci Rep. 2014;4:1–7. https://doi.org/10.1038/srep07448.
Article
CAS
Google Scholar
Haque F, Li J, Wu HC, Liang XJ, Guo P. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today. 2013;8:56–74. https://doi.org/10.1016/j.nantod.2012.12.008.
Article
CAS
PubMed
Google Scholar
Iqbal SM, Akin D, Bashir R. Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol. 2007;2:243–8. https://doi.org/10.1038/nnano.2007.78.
Article
CAS
PubMed
Google Scholar
Chen Q, Liu Z. Fabrication and applications of solid-state nanopores. Sensors. 2019;19:1886. https://doi.org/10.3390/s19081886.
Article
CAS
Google Scholar
Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB. Single-molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev. 2013;42:15–28. https://doi.org/10.1039/C2CS35286A.
Article
CAS
PubMed
Google Scholar
Di Fiori N, Squires A, Bar D, Gilboa T, Moustakas TD, Meller A. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores. Nat Nanotechnol. 2013;8:946–51. https://doi.org/10.1038/nnano.2013.221.
Article
CAS
PubMed
Google Scholar
Rollings R, Graef E, Walsh N, Nandivada S, Benamara M, Li J. The effects of geometry and stability of solid-state nanopores on detecting single DNA molecules. Nanotechnology. 2015;26:044001. https://doi.org/10.1088/0957-4484/26/4/044001.
Article
CAS
PubMed
Google Scholar
Larkin J, Henley R, Bell DC, Cohen-Karni T, Rosenstein JK, Wanunu M. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano. 2013;7:10121–8. https://doi.org/10.1021/nn404326f.
Article
CAS
PubMed
Google Scholar
Li J, Yu D, Zhao Q. Solid-state nanopore-based DNA single-molecule detection and sequencing. Microchim Acta. 2016;183:941–53. https://doi.org/10.1007/s00604-015-1542-4.
Article
CAS
Google Scholar
Chen W, Liu GC, Ouyang J, Gao MJ, Liu B, Zhao YD. Graphene nanopores toward DNA sequencing: a review of experimental aspects. Sci China Chem. 2017;60:721–9. https://doi.org/10.1007/s11426-016-9016-5.
Article
CAS
Google Scholar
Kudr J, Skalickova S, Nejdl L, Moulick A, Ruttkay-Nedecky B, Adam V, Kizek R. Fabrication of solid-state nanopores and its perspectives. Electrophoresis. 2015;36:2367–79. https://doi.org/10.1002/elps.201400612.
Article
CAS
PubMed
Google Scholar
Liu K, Feng J, Kis A, Radenovic A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano. 2014;8:2504–11. https://doi.org/10.1021/nn406102h.
Article
CAS
PubMed
Google Scholar
Xiong M, Graf M, Athreya N, Radenovic A, Leburton JP. Microscopic detection analysis of single molecules in MoS2 membrane nanopores. ACS Nano. 2020;11(14):16131–9. https://doi.org/10.1021/acsnano.0c08382.
Article
CAS
Google Scholar
Boutilier MS, Jang D, Idrobo JC, Kidambi PR, Hadjiconstantinou NG, Karnik R. Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano. 2017;11:5726–36. https://doi.org/10.1021/acsnano.7b01231.
Article
CAS
PubMed
Google Scholar
Yuan Z, Liu Y, Dai M, Yi X, Wang C. Controlling DNA translocation through solid-state nanopores. Nanoscale Res Lett. 2020;15:1–9. https://doi.org/10.1186/s11671-020-03308-x.
Article
CAS
Google Scholar
Thakur M, Macha M, Chernev A, Graf M, Lihter M, Deen J, Tripathi M, Kis A, Radenovic A. Wafer-scale fabrication of nanopore devices for single-molecule DNA biosensing using MoS2. Small Methods. 2020;4:2000072. https://doi.org/10.1002/smtd.202000072.
Article
CAS
Google Scholar
Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LM, Dekker C. DNA translocation through graphene nanopores. Nano Lett. 2010;10:3163–7. https://doi.org/10.1021/nl102069z.
Article
CAS
PubMed
Google Scholar
Kowalczyk SW, Hall AR, Dekker C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 2010;10:324–8. https://doi.org/10.1021/nl903631m.
Article
CAS
PubMed
Google Scholar
Wasfi A, Awwad F, Ayesh AI. Graphene-based nanopore approaches for DNA sequencing: a literature review. Biosens Bioelectron. 2018;119:191–203. https://doi.org/10.1016/j.bios.2018.07.072.
Article
CAS
PubMed
Google Scholar
Cao J, Jia W, Zhang J, Xu X, Yan S, Wang Y, Zhang P, Chen HY, Huang S. Giant single-molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore. Nat Commun. 2019;10:1–11. https://doi.org/10.1038/s41467-019-13677-2.
Article
CAS
Google Scholar
Manrao EA, Derrington IM, Pavlenok M, Niederweis M, Gundlach JH. Nucleotide discrimination with DNA immobilized in the MspA nanopore. PLoS ONE. 2011;6:25723. https://doi.org/10.1371/journal.pone.0025723.
Article
CAS
Google Scholar
Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y. Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci. 2014;50:E5439–44. https://doi.org/10.1073/pnas.1411942111.
Article
CAS
Google Scholar
Carter JM, Hussain S. Robust long-read native DNA sequencing using the ONT CsgG nanopore system. Wellcome Open Res. 2017. https://doi.org/10.12688/wellcomeopenres.11246.1.
Article
PubMed
Google Scholar
Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature. 2014;516:250–3. https://doi.org/10.1038/nature13768.
Article
CAS
PubMed
Google Scholar
Stoddart D, Maglia G, Mikhailova E, Heron AJ, Bayley H. Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew Chem. 2010;122:566–9. https://doi.org/10.1002/ange.200905483.
Article
Google Scholar
Van der Verren SE, Van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, Remaut H. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nat Biotechnol. 2020;38:1415–20. https://doi.org/10.1038/s41587-020-0570-8.
Article
CAS
PubMed
Google Scholar
Crnković A, Senko M, Anderluh G. Biological nanopores. Engineering on demand. Life. 2021;11:27. https://doi.org/10.3390/life11010027.
Article
CAS
PubMed
Google Scholar
Ying YL, Cao C, Long YT. Single-molecule analysis by biological nanopore sensors. Analyst. 2014;139:3826–35. https://doi.org/10.1039/C4AN00706A.
Article
CAS
PubMed
Google Scholar
Yoo H, Jo H, Oh SS. Detection and beyond: challenges and advances in aptamer-based biosensors. Mater Adv. 2020;1:2663–87. https://doi.org/10.1039/D0MA00639D.
Article
CAS
Google Scholar
Howorka S. Building membrane nanopores. Nat Nanotechnol. 2017;12:619–30. https://doi.org/10.1038/nnano.2017.99.
Article
CAS
PubMed
Google Scholar
Fyta M. Threading DNA through nanopores for biosensing applications. J Phys Condens Matter. 2015;27:273101. https://doi.org/10.1088/0953-8984/27/27/273101.
Article
CAS
PubMed
Google Scholar
Lu B, Albertorio F, Hoogerheide DP, Golovchenko JA. Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys J. 2011;101:70–9. https://doi.org/10.1016/j.bpj.2011.05.034.
Article
CAS
PubMed
Google Scholar
Tan CS. Detection of DNA base modifications by biological nanopores. Salt Lake City: The University of Utah; 2018.
Google Scholar
Kulkarni SK, Kulkarni SK. Nanotechnology: principles and practices. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-09171-6.
Book
Google Scholar
Healy K. Nanopore-based single-molecule DNA analysis. Future Med. 2007. https://doi.org/10.2217/17435889.2.4.459.
Article
Google Scholar
Fyta M, Melchionna S, Succi S. Translocation of biomolecules through solid-state nanopores: theory meets experiments. J Polym Sci Part B Polym Phys. 2011;49:985–1011. https://doi.org/10.1002/polb.22284.
Article
CAS
Google Scholar
Luan B, Stolovitzky G, Martyna G. Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale. 2012;4:1068–77. https://doi.org/10.1039/C1NR11201E.
Article
CAS
PubMed
Google Scholar
Wang J, Yang J, Ying YL, Long YT. Nanopore-based confined spaces for single-molecular analysis. Chem Asian J. 2019;14:389–97. https://doi.org/10.1002/asia.201801648.
Article
CAS
PubMed
Google Scholar
Reiner JE, Balijepalli A, Robertson JW, Drown BS, Burden DL, Kasianowicz JJ. The effects of diffusion on an exonuclease/nanopore-based DNA sequencing engine. J Chem Phys. 2012;137:214903. https://doi.org/10.1063/1.4766363.
Article
CAS
PubMed
Google Scholar
Dillingham MS, Kowalczykowski SC. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev. 2008;72:642–71. https://doi.org/10.1128/MMBR.00020-08.
Article
CAS
PubMed
Google Scholar
Gyarfas B, Olasagasti F, Benner S, Garalde D, Lieberman KR, Akeson M. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 Å resolution. ACS Nano. 2009;3:1457–66. https://doi.org/10.1021/nn900303g.
Article
CAS
PubMed
Google Scholar
Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat Biotechnol. 2012;30:344–8. https://doi.org/10.1038/nbt.2147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lieberman KR, Cherf GM, Doody MJ, Olasagasti F, Kolodji Y, Akeson M. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J Am Chem Soc. 2010;132:17961–72. https://doi.org/10.1021/ja1087612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho MW, Richards OC, Dmitrieva TM, Agol V, Ehrenfeld E. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J Virol. 1993;67:3010–8. https://doi.org/10.1128/jvi.67.6.3010-3018.1993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caldwell CC, Spies M. Helicase SPRNTing through the nanopore. Proc Natl Acad Sci. 2017;114:11809–11. https://doi.org/10.1073/pnas.1716866114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Craig JM, Laszlo AH, Nova IC, Brinkerhoff H, Noakes MT, Baker KS, Bowman JL, Higinbotham HR, Mount JW, Gundlach JH. Determining the effects of DNA sequence on Hel308 helicase translocation along single-stranded DNA using nanopore tweezers. Nucleic Acids Res. 2019;47:2506–13. https://doi.org/10.1093/nar/gkz004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goto Y, Yanagi I, Matsui K, Yokoi T, Takeda KI. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration, and noise reduction. Sci Rep. 2016;6:1–8. https://doi.org/10.1038/srep31324.
Article
CAS
Google Scholar
Aksimentiev A, Heng JB, Timp G, Schulten K. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys J. 2004;87:2086–97. https://doi.org/10.1529/biophysj.104.042960.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avdoshenko SM, Nozaki D, Gomes da Rocha C, González JW, Lee MH, Gutierrez R, Cuniberti G. Dynamic and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett. 2013;13:1969–76. https://doi.org/10.1529/biophysj.104.042960.
Article
CAS
PubMed
Google Scholar
Kawano R, Schibel AE, Cauley C, White HS. Controlling the translocation of single-stranded DNA through α-hemolysin ion channels using viscosity. Langmuir. 2009;25:1233–7. https://doi.org/10.1021/la803556p.
Article
CAS
PubMed
Google Scholar
Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc. 2010;132:8338–48. https://doi.org/10.1021/ja101014y.
Article
CAS
PubMed
Google Scholar
Akahori R, Haga T, Hatano T, Yanagi I, Ohura T, Hamamura H, Iwasaki T, Yokoi T, Anazawa T. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Nanotechnology. 2014;25:2. https://doi.org/10.1088/0957-4484/25/27/275501.
Article
CAS
Google Scholar
Tu B, Bai S, Lu B, Fang Q. Conic shapes have higher sensitivity than cylindrical ones in nanopore DNA sequencing. Sci Rep. 2018;8:1–11. https://doi.org/10.1038/s41598-018-27517-8.
Article
CAS
Google Scholar
Goto Y, Akahori R, Yanagi I, Takeda KI. Solid-state nanopores towards single-molecule DNA sequencing. J Hum Genet. 2020;65:69–77. https://doi.org/10.1038/s10038-019-0655-8.
Article
CAS
PubMed
Google Scholar
Goto Y, Matsui K, Yanagi I, Takeda KI. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides. Nanoscale. 2019;11:14426–33. https://doi.org/10.1039/C9NR03563J.
Article
CAS
PubMed
Google Scholar
Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 2012;12:1038–44. https://doi.org/10.1021/nl204273h.
Article
CAS
PubMed
Google Scholar
Yan H, Zhou D, Shi B, Zhang Z, Tian H, Yu L, Wang Y, Guan X, Wang Z, Wang D. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh. Eur Biophys J. 2019;48:261–6. https://doi.org/10.1007/s00249-019-01350-x.
Article
CAS
PubMed
Google Scholar
Vu T, Borgesi J, Soyring J, D’Alia M, Davidson SL, Shim J. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. Nanoscale. 2019;11:10536–45. https://doi.org/10.1039/C9NR00502A.
Article
CAS
PubMed
Google Scholar
Uplinger J, Thomas B, Rollings R, Fologea D, McNabb D, Li J. K+, N a+, and M g2+ on DNA translocation in silicon nitride nanopores. Electrophoresis. 2012;33:3448–57. https://doi.org/10.1002/elps.201200165.
Article
CAS
PubMed
Google Scholar
Fragasso A, Schmid S, Dekker C. Comparing current noise in biological and solid-state nanopores. ACS Nano. 2020;14:1338–49. https://doi.org/10.1021/acsnano.9b09353.
Article
CAS
PubMed
Google Scholar
Liang S, Xiang F, Tang Z, Nouri R, He X, Dong M, Guan W. Noise in nanopore sensors: sources, models, reduction, and benchmarking. Nanotechnol Precis Eng. 2020;3:9–17. https://doi.org/10.1016/j.npe.2019.12.008.
Article
CAS
Google Scholar
Gilboa T, Meller A. Optical sensing and analyte manipulation in solid-state nanopores. Analyst. 2015;140:4733–47. https://doi.org/10.1039/C4AN02388A.
Article
CAS
PubMed
Google Scholar
Hartel AJ, Shekar S, Ong P, Schroeder I, Thiel G, Shepard KL. High bandwidth approaches in nanopore and ion channel recordings-a tutorial review. Anal Chim Acta. 2019;1061:13–27. https://doi.org/10.1016/j.aca.2019.01.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent progress in solid-state nanopores. Adv Mater. 2018;30:1704680. https://doi.org/10.1002/adma.201704680.
Article
CAS
Google Scholar
Rodríguez-Manzo JA, Puster M, Nicolaï A, Meunier V, Drndic M. DNA translocation in nanometer-thick silicon nanopores. ACS Nano. 2015;9:6555–64. https://doi.org/10.1021/acsnano.5b02531.
Article
CAS
PubMed
Google Scholar
Danda G, Drndić M. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Curr Opin Biotechnol. 2019;55:124–33. https://doi.org/10.1016/j.copbio.2018.09.002.
Article
CAS
PubMed
Google Scholar
Beamish E, Kwok H, Tabard-Cossa V, Godin M. Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology. 2012;23: 405301. https://doi.org/10.1088/0957-4484/23/40/405301.
Article
CAS
PubMed
Google Scholar
Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19:1–11. https://doi.org/10.1186/s13059-018-1462-9.
Article
CAS
Google Scholar
Kawano R. Nanopore decoding of oligonucleotides in DNA computing. Biotechnol J. 2018;13:1800091. https://doi.org/10.1002/biot.201800091.
Article
CAS
Google Scholar
Senol Cali D, Kim JS, Ghose S, Alkan C, Mutlu O. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks, and future directions. Brief Bioinform. 2019;20:1542–59. https://doi.org/10.1093/bib/bby017.
Article
CAS
PubMed
Google Scholar
Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30:349–53. https://doi.org/10.1038/nbt.2171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat Biotechnol. 2016;34:518–24. https://doi.org/10.1038/nbt.3423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prall TM, Neumann EK, Karl JA, Shortreed CG, Baker DA, Bussan HE, Wiseman RW, O’Connor DH. Consistent ultra-long DNA sequencing with automated slow pipetting. BMC Genom. 2021;22:1–12. https://doi.org/10.1186/s12864-021-07500-w.
Article
CAS
Google Scholar
McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D, Petrov DA, Fiston-Lavier AS. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex highly-repetitive transposable elements. PLoS ONE. 2014;9:e106689. https://doi.org/10.1371/journal.pone.0106689.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mason CE, Afshinnekoo E, Tighe S, Wu S, Levy S. International standards for genomes, transcriptomes, and metagenomes. J Biomol Tech JBT. 2017;28:8. https://doi.org/10.7171/jbt.17-2801-006.
Article
PubMed
Google Scholar
Gong L, Wong CH, Idol J, Ngan CY, Wei CL. Ultra-long read sequencing for whole genomic DNA analysis. JoVE J Vis Exp. 2019;145:58954. https://doi.org/10.3791/58954.
Article
CAS
Google Scholar
Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang XJ, Buck D, Au KF. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research. 2017. https://doi.org/10.12688/f1000research.10571.2.
Article
PubMed
PubMed Central
Google Scholar
Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, Aganezov S. The complete sequence of a human genome. bioRxiv. 2021. https://doi.org/10.1101/2021.05.26.445798.
Article
Google Scholar
Levy-Sakin M, Pastor S, Mostovoy Y, Li L, Leung AK, McCaffrey J, Young E, Lam ET, Hastie AR, Wong KH, Chung CY. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat Commun. 2019;10:1–14. https://doi.org/10.1038/s41467-019-08992-7.
Article
CAS
Google Scholar
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat. 2011;32:1075–99. https://doi.org/10.1002/humu.21557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magi A, Semeraro R, Mingrino A, Giusti B, D’Aurizio R. Nanopore sequencing data analysis: state of the art, applications, and challenges. Brief Bioinform. 2018;19:1256–72. https://doi.org/10.1093/bib/bbx062.
Article
CAS
PubMed
Google Scholar
Silvestre-Ryan J, Holmes I. Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing. Genome Biol. 2021;22:1–6. https://doi.org/10.1186/s13059-020-02255-1.
Article
Google Scholar
Rosenstein JK, Lemay SG, Shepard KL. Single-molecule bioelectronics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:475–93. https://doi.org/10.1002/wnan.1323.
Article
CAS
PubMed
Google Scholar
Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov AP, Edel JB. Solid-state nanopore sensors. Nat Rev Mater. 2020;5:931–51. https://doi.org/10.1038/s41578-020-0229-6.
Article
CAS
Google Scholar
Ma T, Janot JM, Balme S. Track-etched nanopore/membrane: from fundamental to applications. Small Methods. 2020;4:2000366. https://doi.org/10.1002/smtd.202000366.
Article
CAS
Google Scholar
Balme S, Lepoitevin M, Bechelany M, Janot JM. Hybrid biological/artificial nanopore. In: Physics, chemistry, and applications of nanostructures: proceedings of international conference nanomeeting; 2015. p. 454–6. https://doi.org/10.1142/9789814696524_0112.
Bechelany M, Balme S, Miele P. Atomic layer deposition of biobased nanostructured interfaces for energy, environmental and health applications. Pure Appl Chem. 2015;87:751–8. https://doi.org/10.1515/pac-2015-0102.
Article
CAS
Google Scholar
Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S. Functionalization of single solid-state nanopores to mimic biological ion channels: a review. Adv Coll Interface Sci. 2017;250:195–213. https://doi.org/10.1016/j.cis.2017.09.001.
Article
CAS
Google Scholar
Plesivkova D, Richards R, Harbison S. A review of the potential of the MinION™ single-molecule sequencing system for forensic applications. Wiley Interdiscip Rev Forensic Science. 2019;1:e1323. https://doi.org/10.1002/wfs2.1323.
Article
Google Scholar
Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics. Dev Growth Differ. 2019;61:316–26. https://doi.org/10.1111/dgd.12608.
Article
PubMed
Google Scholar
Chaisson MJ, Tesler G. Mapping single-molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 2012;13:1–18. https://doi.org/10.1186/1471-2105-13-238.
Article
CAS
Google Scholar
Mardis ER. DNA sequencing technologies: 2006–2016. Nat Protoc. 2017;12:213–8. https://doi.org/10.1038/nprot.2016.182.
Article
CAS
PubMed
Google Scholar
Petersen LM, Martin IW, Moschetti WE, Kershaw CM, Tsongalis GJ. Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. J Clin Microbiol. 2019;58:e01315-e1319. https://doi.org/10.1128/JCM.01315-19.
Article
PubMed
Google Scholar
Raza K, Qazi S. Nanopore sequencing technology and Internet of living things: a big hope for U-healthcare. In: Sensors for health monitoring. Academic Press; 2019. p. 95–116. https://doi.org/10.1016/B978-0-12-819361-7.00005-1.
Xu L, Seki M. Recent advances in the detection of base modifications using the Nanopore sequencer. J Hum Genet. 2020;65:25–33. https://doi.org/10.1038/s10038-019-0679-0.
Article
CAS
PubMed
Google Scholar
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, Schatz MC. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15:461–8. https://doi.org/10.1038/s41592-018-0001-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thayer A. Illumina sues Oxford Nano. Chem Eng News. 2016;94(9):16–16.
Google Scholar
Oxford Nanopore bests PacBio. Nat Biotechnol. 2019;37:333–9.
Sutton JM, Millwood JD, Fierst JL. Optimizing experimental design for genome sequencing and assembly with Oxford Nanopore Technologies. bioRxiv, p. 2020–05. 2021. https://doi.org/10.46471/gigabyte.27.
Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58. https://doi.org/10.1373/clinchem.2008.112789.
Article
CAS
PubMed
Google Scholar
Lopez R, Chen YJ, Ang SD, Yekhanin S, Makarychev K, Racz MZ, Seelig G, Strauss K, Ceze L. DNA assembly for nanopore data storage readout. Nat Commun. 2019;10:1–9. https://doi.org/10.1038/s41467-019-10978-4.
Article
CAS
Google Scholar
Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput Struct Biotechnol J. 2021. https://doi.org/10.1016/j.csbj.2021.02.020.
Article
PubMed
Google Scholar
Lebrigand K, Magnone V, Barbry P, Waldmann R. High throughput error-corrected Nanopore single-cell transcriptome sequencing. Nat Commun. 2020;11:1–8. https://doi.org/10.1038/s41467-020-17800-6.
Article
CAS
Google Scholar
Li R, Xie M, Dong N, Lin D, Yang X, Wong MHY, Chan EWC, Chen S. Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data. Gigascience. 2018;7:132. https://doi.org/10.1093/gigascience/gix132.
Article
CAS
Google Scholar
Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L. Epigenetic drugs against cancer: an evolving landscape. Arch Toxicol. 2014;88:1651–68. https://doi.org/10.1007/s00204-014-1315-6.
Article
CAS
PubMed
Google Scholar
Cossío FP, Esteller M, Berdasco M. Towards a more precise therapy in cancer: exploring epigenetic complexity. Curr Opin Chem Biol. 2020;57:41–9. https://doi.org/10.1016/j.cbpa.2020.04.008.
Article
CAS
PubMed