Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
PubMed
Google Scholar
Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149(5):1204–1225.e1212.
Article
CAS
PubMed
Google Scholar
Liu G, Wang W, Hu S, Wang X, Zhang Y. Inherited DNA methylation primes the establishment of accessible chromatin during genome activation. Genome Res. 2018;28(7):998–1007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene. 2018;37(5):566–77.
Article
CAS
PubMed
Google Scholar
Blueprint Consortium. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34(7):726–37.
Article
Google Scholar
Tse JWT, Jenkins LJ, Chionh F, Mariadason JM. Aberrant DNA methylation in colorectal cancer: what should we target? Trends Cancer. 2017;3(10):698–712.
Article
CAS
PubMed
Google Scholar
Grandin M, Meier M, Delcros JG, Nikodemus D, Reuten R, Patel TR, Goldschneider D, Orriss G, Krahn N, Boussouar A, et al. Structural decoding of the netrin-1/UNC5 interaction and its therapeutical implications in cancers. Cancer Cell. 2016;29(2):173–85.
Article
CAS
PubMed
Google Scholar
Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: a controllable double-edged sword. Cancer Lett. 2021;516:28–35.
Article
CAS
PubMed
Google Scholar
Mehlen P, Llambi F. Role of netrin-1 and netrin-1 dependence receptors in colorectal cancers. Br J Cancer. 2005;93(1):1–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arakawa H. Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer. 2004;4(12):978–87.
Article
CAS
PubMed
Google Scholar
Lv D, Zhao W, Dong D, Qian XP, Zhang Y, Tian XJ, Zhang J. Genetic and epigenetic control of UNC5C expression in human renal cell carcinoma. Eur J Cancer (Oxford, England: 1990). 2011;47(13):2068–76.
Article
CAS
Google Scholar
Lu D, Dong D, Zhou Y, Lu M, Pang XW, Li Y, Tian XJ, Zhang Y, Zhang J. The tumor-suppressive function of UNC5D and its repressed expression in renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(11):2883–92.
Article
CAS
Google Scholar
Dong D, Zhang L, Bai C, Ma N, Ji W, Jia L, Zhang A, Zhang P, Ren L, Zhou Y. UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer. Cancer Sci. 2019;110(4):1244–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin SK, Nagasaka T, Jung BH, Matsubara N, Kim WH, Carethers JM, Boland CR, Goel A. Epigenetic and genetic alterations in netrin-1 receptors UNC5C and DCC in human colon cancer. Gastroenterology. 2007;133(6):1849–57.
Article
CAS
PubMed
Google Scholar
Bernet A, Mazelin L, Coissieux MM, Gadot N, Ackerman SL, Scoazec JY, Mehlen P. Inactivation of the UNC5C netrin-1 receptor is associated with tumor progression in colorectal malignancies. Gastroenterology. 2007;133(6):1840–8.
Article
CAS
PubMed
Google Scholar
Coissieux MM, Tomsic J, Castets M, Hampel H, Tuupanen S, Andrieu N, Comeras I, Drouet Y, Lasset C, Liyanarachchi S, et al. Variants in the netrin-1 receptor UNC5C prevent apoptosis and increase risk of familial colorectal cancer. Gastroenterology. 2011;141(6):2039–46.
Article
CAS
PubMed
Google Scholar
Guroo SA, Malik AA, Afroze D, Ali S, Pandith AA, Yusuf A. Significant pattern of promoter hypermethylation of UNC5C gene in colorectal cancer and its implication in late stage disease. Asian Pac J Cancer Prev APJCP. 2018;19(5):1185–8.
CAS
PubMed
Google Scholar
Laan L, Klar J, Sobol M, Hoeber J, Shahsavani M, Kele M, Fatima A, Zakaria M, Annerén G, Falk A, et al. DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors. Clin Epigenet. 2020;12(1):9.
Article
CAS
Google Scholar
Fan J, Zhang Y, Mu J, He X, Shao B, Zhou D, Peng W, Tang J, Jiang Y, Ren G, et al. TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clin Epigenet. 2018;10(1):103.
Article
Google Scholar
Savio AJ, Mrkonjic M, Lemire M, Gallinger S, Knight JA, Bapat B. The dynamic DNA methylation landscape of the mutL homolog 1 shore is altered by MLH1-93G>A polymorphism in normal tissues and colorectal cancer. Clin Epigenet. 2017;9:26.
Article
Google Scholar
Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford, England). 2002;18(11):1427–31.
Article
CAS
Google Scholar
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznan, Poland). 2015;19(1A):A68-77.
Google Scholar
Mallona I, Díez-Villanueva A, Peinado MA. Methylation plotter: a web tool for dynamic visualization of DNA methylation data. Source Code Biol Med. 2014;9:11.
Article
PubMed
PubMed Central
Google Scholar
Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los SR, Goldmann E, Galea S. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A. 2010;107(20):9470–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torabi Moghadam B, Dabrowski M, Kaminska B, Grabherr MG, Komorowski J. Combinatorial identification of DNA methylation patterns over age in the human brain. BMC Bioinform. 2016;17(1):393.
Article
Google Scholar
Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, Song X, Lesche R, Liebenberg V, Ebert M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–23.
Article
CAS
PubMed
Google Scholar
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.
Article
Google Scholar
Cirulli V, Yebra M. Netrins: beyond the brain. Nat Rev Mol Cell Biol. 2007;8(4):296–306.
Article
CAS
PubMed
Google Scholar
Okazaki S, Ishikawa T, Iida S, Ishiguro M, Kobayashi H, Higuchi T, Enomoto M, Mogushi K, Mizushima H, Tanaka H, et al. Clinical significance of UNC5B expression in colorectal cancer. Int J Oncol. 2012;40(1):209–16.
CAS
PubMed
Google Scholar
Wu Y, Wan X, Jia G, Xu Z, Tao Y, Song Z, Du T. Aberrantly methylated and expressed genes as prognostic epigenetic biomarkers for colon cancer. DNA Cell Biol. 2020;39(11):1961–9.
Article
CAS
PubMed
Google Scholar
Xing H, Wang P, Liu S, Jing S, Lin J, Yang J, Zhu Y, Yu M. A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomed Pharmacother Biomed Pharmacother. 2021;138:111355.
Article
CAS
PubMed
Google Scholar
Engelkamp D. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation. Mech Dev. 2002;118(1–2):191–7.
Article
CAS
PubMed
Google Scholar
Wang H, Wu Q, Li S, Zhang B, Chi Z, Hao L. Unc5D regulates p53-dependent apoptosis in neuroblastoma cells. Mol Med Rep. 2014;9(6):2411–6.
Article
CAS
PubMed
Google Scholar
Zhu Y, Li Y, Haraguchi S, Yu M, Ohira M, Ozaki T, Nakagawa A, Ushijima T, Isogai E, Koseki H. Dependence receptor UNC5D mediates nerve growth factor depletion-induced neuroblastoma regression. J Clin Investig. 2013;123(7):2935–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Yu M, Chen Y, Wang Y, Wang J, Yang C, Bi J. Down-regulation of UNC5D in bladder cancer: UNC5D as a possible mediator of cisplatin induced apoptosis in bladder cancer cells. J Urol. 2014;192(2):575–82.
Article
CAS
PubMed
Google Scholar
Uhan S, Zidar N, Tomažič A, Hauptman N. Hypermethylated promoters of genes UNC5D and KCNA1 as potential novel diagnostic biomarkers in colorectal cancer. Epigenomics. 2020;12(19):1677–88.
Article
CAS
PubMed
Google Scholar
Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28(8):E32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salameh Y, Bejaoui Y, El Hajj N. DNA methylation biomarkers in aging and age-related diseases. Front Genet. 2020;11:171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Potter NT, Hurban P, White MN, Whitlock KD, Lofton-Day CE, Tetzner R, Koenig T, Quigley NB, Weiss G. Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin Chem. 2014;60(9):1183–91.
Article
CAS
PubMed
Google Scholar
deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK, et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem. 2009;55(7):1337–46.
Article
CAS
PubMed
Google Scholar
Tham C, Chew M, Soong R, Lim J, Ang M, Tang C, Zhao Y, Ong SY, Liu Y. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer. 2014;120(20):3131–41.
Article
CAS
PubMed
Google Scholar