Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol. 2017;17:461–3.
Article
CAS
PubMed
Google Scholar
Lambrecht BN, Hammad H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol. 2017;18:1076–83.
Article
CAS
PubMed
Google Scholar
Simon KA, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282:20143085.
PubMed
PubMed Central
Google Scholar
Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 2015;36:684–96.
Article
CAS
PubMed
Google Scholar
Jenmalm MC. The mother-offspring dyad: microbial transmission, immune interactions and allergy development. J Intern Med. 2017;282:484–95.
Article
CAS
PubMed
Google Scholar
Macpherson AJ, de Agüero MG, Ganal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol. 2017;17:508–17.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhivaki D, Lo-Man R. Unique aspects of the perinatal immune system. Nat Rev Immunol. 2017;17:495–507.
Article
CAS
PubMed
Google Scholar
Julia V, Macia L, Dombrowicz D. The impact of diet on asthma and allergic diseases. Nat Rev Immunol. 2015;15:308–22.
Article
CAS
PubMed
Google Scholar
Dzidic M, Boix-Amorós A, Selma-Royo M, Mira A, Collado M. Gut microbiota and mucosal immunity in the neonate. Med Sci (Basel, Switzerland). 2018;6:56.
Google Scholar
Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol. 2020;21(3):177–91.
Article
PubMed
CAS
Google Scholar
Miles EA, Calder PC. Can early omega-3 fatty acid exposure reduce risk of childhood allergic disease? Nutrients. 2017;9:784.
Article
PubMed Central
CAS
Google Scholar
Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. 2011;93:950–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warstedt K, Duchén K. Increased linoleic acid/α-linolenic acid ratio in Swedish cord blood samples collected between 1985 and 2005. Eur J Nutr. 2012;52:659–65.
Article
PubMed
CAS
Google Scholar
Miyata J, Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol Int. 2015;64:27–34.
Article
CAS
PubMed
Google Scholar
Krauss-Etschmann S, Hartl D, Rzehak P, et al. Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-β levels after fish oil supplementation of pregnant women. J Allergy Clin Immunol. 2008;121:464–70.
Article
CAS
PubMed
Google Scholar
Bisgaard H, Stokholm J, Chawes BL, et al. Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. N Engl J Med. 2016;375:2530–9.
Article
CAS
PubMed
Google Scholar
Furuhjelm C, Warstedt K, Larsson J, et al. Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr. 2009;98:1461–7.
Article
PubMed
Google Scholar
Furuhjelm C, Warstedt K, Fagerås M, et al. Allergic disease in infants up to 2 years of age in relation to plasma omega-3 fatty acids and maternal fish oil supplementation in pregnancy and lactation. Pediatr Allergy Immunol. 2011;22:505–14.
Article
PubMed
Google Scholar
Stokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018;9:141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128:646–52.
Article
PubMed
Google Scholar
Sjögren YM, Jenmalm MC, Böttcher MF, Björkstén B, Sverremark-Ekström E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009;39:518–26.
Article
PubMed
Google Scholar
Chiu C-Y, Chan Y-L, Tsai M-H, Wang C-J, Chiang M-H, Chiu C-C. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Org J. 2019;12:100021.
Article
CAS
Google Scholar
Ling Z, Li Z, Liu X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80:2546–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129:434.
Article
PubMed
Google Scholar
Cuello-Garcia CA, Brozek JL, Fiocchi A, et al. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol; 136.
Wells JM. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact. 2011;10(Suppl 1):S17.
Article
PubMed
PubMed Central
Google Scholar
Abrahamsson TR, Sandberg Abelius M, Forsberg A, Björkstén B, Jenmalm MC. A Th1/Th2-associated chemokine imbalance during infancy in children developing eczema, wheeze and sensitization. Clin Exp Allergy. 2011;41:1729–39.
Article
CAS
PubMed
Google Scholar
Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol. 2020;20:48–55.
Article
CAS
Google Scholar
Baribault C, Ehrlich KC, Ponnaluri VKCKC, Pradhan S, Lacey M, Ehrlich M. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics. 2018;13:275–89.
Article
PubMed
PubMed Central
Google Scholar
Baubec T, Schübeler D. Genomic patterns and context specific interpretation of DNA methylation. Curr Opin Genet Dev. 2014;25:85–92.
Article
CAS
PubMed
Google Scholar
Schmidl C, Delacher M, Huehn J, Feuerer M. Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol. 2018;142:728–43.
Article
CAS
PubMed
Google Scholar
Zhang H, Kaushal A, Merid S, et al. DNA methylation and allergic sensitizations, a genome-scale longitudinal study during adolescence. Allergy. 2019;74:1166–75.
Article
CAS
PubMed
Google Scholar
Peng C, Meel ER, Cardenas A, et al. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics. 2019;14(5):445–66.
Article
PubMed
PubMed Central
Google Scholar
DeVries A, Wlasiuk G, Miller SJ, et al. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol. 2017;140:534–42.
Article
CAS
PubMed
Google Scholar
Lund RJ, Osmala M, Malonzo M, et al. Atopic asthma after rhinovirus-induced wheezing is associated with DNA methylation change in the SMAD3 gene promoter. Allergy. 2018;73:1735–40.
Article
CAS
PubMed
Google Scholar
Martino D, Dang T, Sexton-Oates A, et al. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol. 2015;135:1319–28.
Article
CAS
PubMed
Google Scholar
Martino D, Neeland M, Dang T, et al. Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nat Commun. 2018;9:3308.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harb H, Irvine J, Amarasekera M, et al. The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil. Biosci Rep. 2017;37.
Amarasekera M, Noakes P, Strickland D, Saffery R, Martino DJ, Prescott SL. Epigenome-wide analysis of neonatal CD4(+) T-cell DNA methylation sites potentially affected by maternal fish oil supplementation. Epigenetics. 2014;9:1570–6.
Article
PubMed
PubMed Central
Google Scholar
van Dijk SJ, Zhou J, Peters TJ, et al. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics. 2016;8:114.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vähämiko S, Laiho A, Lund R, Isolauri E, Salminen S, Laitinen K. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. Eur J Nutr. 2018:1–11.
Forsberg A, Huoman J, Söderholm S, et al. Pre- and postnatal Lactobacillus reuteri treatment alters DNA methylation of infant T helper cells. Pediatric Allergy Immunol. 2020;31(5):544–53.
Article
Google Scholar
de Weerd HA, Badam TVS, Martínez-Enguita D, et al. MODifieR: an ensemble R package for inference of disease modules from transcriptomics networks. Bioinformatics (Oxford, England). 2020;36:3918–9.
Article
CAS
Google Scholar
D’Aquila P, Carelli L, Rango F, Passarino G, Bellizzi D. Gut microbiota as important mediator between diet and DNA methylation and histone modifications in the host. Nutrients. 2020;12:597.
Article
PubMed Central
CAS
Google Scholar
Ceccarelli V, Ronchetti S, Marchetti M, et al. Molecular mechanisms underlying eicosapentaenoic acid inhibition of HDAC1 and DNMT expression and activity in carcinoma cells. Biochim Biophys Acta. 2020;1863:194481.
Article
CAS
Google Scholar
González-Becerra K, Ramos-Lopez O, Barrón-Cabrera E, et al. Fatty acids, epigenetic mechanisms and chronic diseases: a systematic review. Lipids Health Dis. 2019;18:178.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev. 2009;228:9–22.
Article
CAS
PubMed
Google Scholar
Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorgan Med Chem. 2020;28:115327.
Article
CAS
Google Scholar
Zhou X, Han X, Lyu S-C, et al. Targeted DNA methylation profiling reveals epigenetic signatures in peanut allergy. JCI Insight; 2021.
Baccarelli A, Rusconi F, Bollati V, et al. Nasal cell DNA methylation, inflammation, lung function and wheezing in children with asthma. Epigenomics. 2012;4:91–100.
Article
CAS
PubMed
Google Scholar
Bruyns E, Marie-Cardine A, Kirchgessner H, et al. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR–CD3–ζ complex, recruits intracellular signaling proteins to the plasma membrane. J Exp Med. 1998;188:561–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirchgessner H, Dietrich J, Scherer J, et al. The transmembrane adaptor protein trim regulates t cell receptor (Tcr) expression and Tcr-mediated signaling via an association with the Tcr ζ chain. J Exp Med. 2001;193:1269–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–8.
Article
CAS
PubMed
Google Scholar
Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual role of fas/fasl-mediated signal in peripheral immune tolerance. Front Immunol. 2017;8:403.
Article
PubMed
PubMed Central
CAS
Google Scholar
Demmelmair H, Koletzko B. Importance of fatty acids in the perinatal period. World Rev Nutr Diet. 2015;112:31–47.
Article
PubMed
Google Scholar
Navarro-Tapia E, Sebastiani G, Sailer S, et al. Probiotic supplementation during the perinatal and infant period: effects on gut dysbiosis and disease. Nutrients. 2020;12:2243.
Article
CAS
PubMed Central
Google Scholar
Davis EC, Dinsmoor AM, Wang M, Donovan SM. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. Dig Dis Sci. 2020;65:706–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy R, Morgan XC, Wang XY, et al. Eczema-protective probiotic alters infant gut microbiome functional capacity but not composition: sub-sample analysis from a RCT. Beneficial Microbes. 2019;10:5–17.
Article
CAS
PubMed
Google Scholar
Dotterud CK, Avershina E, Sekelja M, et al. Does maternal perinatal probiotic supplementation alter the intestinal microbiota of mother and child? J Pediatr Gastroenterol Nutr. 2015;61:200–7.
Article
CAS
PubMed
Google Scholar
Watson H, Mitra S, Croden FC, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2017;67:1974–83.
Article
PubMed
CAS
Google Scholar
Forsberg A, West CE, Prescott SL, Jenmalm MC. Pre- and probiotics for allergy prevention: time to revisit recommendations? Clin Exp Allergy. 2016;46:1506–21.
Article
CAS
PubMed
Google Scholar
Jenmalm MC, Duchén K. Timing of allergy-preventive and immunomodulatory dietary interventions - are prenatal, perinatal or postnatal strategies optimal? Clin Exp Allergy. 2013;43:273–8.
Article
CAS
PubMed
Google Scholar
Abrahamsson TR, Jakobsson T, Böttcher MF, et al. Probiotics in prevention of IgE-associated eczema: a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119:1174–80.
Article
CAS
PubMed
Google Scholar
Solomon O, MacIsaac J, Quach H, et al. Comparison of DNA methylation measured by Illumina 450K and EPIC BeadChips in blood of newborns and 14-year-old children. Epigenetics. 2018;13(6):655–64.
Article
PubMed
PubMed Central
Google Scholar
Martino D, Maksimovic J, Joo JH, Prescott SL, Saffery R. Genome-scale profiling reveals a subset of genes regulated by DNA methylation that program somatic T-cell phenotypes in humans. Genes immunity. 2012;13(5):388–98.
Article
CAS
PubMed
Google Scholar
Tian Y, Morris TJ, Webster AP, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics (Oxford, England). 2017;33:3982–4.
Article
CAS
Google Scholar
Teschendorff AE, Marabita F, Lechner M, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics (Oxford, England). 2013;29:189–96.
Article
CAS
Google Scholar
Morin AM, Gatev E, McEwen LM, et al. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs. Clin Epigenetics. 2017;9:75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86.
Article
Google Scholar
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England). 2007;8:118–27.
Article
Google Scholar
Leek JT, Johnson EW, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Iterson M, van Zwet EW, Consortium B, Heijmans BT. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol. 2017;18:19.
Article
PubMed
PubMed Central
Google Scholar
Nestor CE, Barrenas F, Wang H, et al. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014;10:e1004059.
Article
PubMed
PubMed Central
CAS
Google Scholar