Silverstein MD, Heit JA, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ 3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158(6):585–93 Epub 1998/04/01. PubMed PMID: 9521222.
Article
CAS
PubMed
Google Scholar
Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrom J. Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost. 2007;5(4):692–9. https://doi.org/10.1111/j.1538-7836.2007.02450.x PubMed PMID: 17367492. Epub 2007/03/21.
Article
CAS
PubMed
Google Scholar
Goldhaber SZ, Bounameaux H. Pulmonary embolism and deep vein thrombosis. Lancet. 2012;379(9828):1835–46. https://doi.org/10.1016/s0140-6736(11)61904-1 PubMed PMID: 22494827. Epub 2012/04/13.
Article
PubMed
Google Scholar
Shiraev TP, Omari A, Rushworth RL. Trends in pulmonary embolism morbidity and mortality in Australia. Thromb Res. 2013;132(1):19–25. https://doi.org/10.1016/j.thromres.2013.04.032 PubMed PMID: 23725850. Epub 2013/06/04.
Article
CAS
PubMed
Google Scholar
Prandoni P, Noventa F, Ghirarduzzi A, Pengo V, Bernardi E, Pesavento R, et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica. 2007;92(2):199–205 Epub 2007/02/14. PubMed PMID: 17296569.
Article
PubMed
Google Scholar
Carrier M, Le Gal G, Wells PS, Rodger MA. Systematic review: case-fatality rates of recurrent venous thromboembolism and major bleeding events among patients treated for venous thromboembolism. Ann Intern Med. 2010;152(9):578–89. https://doi.org/10.7326/0003-4819-152-9-201005040-00008 PubMed PMID: 20439576. Epub 2010/05/05.
Article
PubMed
Google Scholar
Fahrni J, Husmann M, Gretener SB, Keo HH. Assessing the risk of recurrent venous thromboembolism—a practical approach. Vasc Health Risk Manage. 2015;11:451–9. https://doi.org/10.2147/vhrm.s83718 PubMed PMID: 26316770; PubMed Central PMCID: PMCPMC4544622. Epub 2015/09/01.
Article
Google Scholar
Nieto JA, Solano R, Ruiz-Ribo MD, Ruiz-Gimenez N, Prandoni P, Kearon C, et al. Fatal bleeding in patients receiving anticoagulant therapy for venous thromboembolism: findings from the RIETE registry. J Thromb Haemost. 2010;8(6):1216–22. https://doi.org/10.1111/j.1538-7836.2010.03852.x PubMed PMID: 20345727. Epub 2010/03/30.
Article
CAS
PubMed
Google Scholar
Rodger MA, Kahn SR, Wells PS, Anderson DA, Chagnon I, Le Gal G, et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ. 2008;179(5):417–26. https://doi.org/10.1503/cmaj.080493 PubMed PMID: 18725614; PubMed Central PMCID: PMCPMC2518177. Epub 2008/08/30.
Article
PubMed
PubMed Central
Google Scholar
Tosetto A, Iorio A, Marcucci M, Baglin T, Cushman M, Eichinger S, et al. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH). J Thromb Haemost. 2012;10(6):1019–25. https://doi.org/10.1111/j.1538-7836.2012.04735.x PubMed PMID: 22489957. Epub 2012/04/12.
Article
CAS
PubMed
Google Scholar
Eichinger S, Heinze G, Jandeck LM, Kyrle PA. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model. Circulation. 2010;121(14):1630–6. https://doi.org/10.1161/circulationaha.109.925214 PubMed PMID: 20351233. Epub 2010/03/31.
Article
PubMed
Google Scholar
Tritschler T, Mean M, Limacher A, Rodondi N, Aujesky D. Predicting recurrence after unprovoked venous thromboembolism: prospective validation of the updated Vienna prediction model. Blood. 2015;126(16):1949–51. https://doi.org/10.1182/blood-2015-04-641225 PubMed PMID: 26341256. Epub 2015/09/06.
Article
CAS
PubMed
Google Scholar
Sundquist K, Sundquist J, Svensson PJ, Zoller B, Memon AA. Role of family history of venous thromboembolism and thrombophilia as predictors of recurrence: a prospective follow-up study. J Thromb Haemost. 2015;13(12):2180–6. https://doi.org/10.1111/jth.13154 PubMed PMID: 26407905. Epub 2015/09/27.
Article
CAS
PubMed
Google Scholar
Schulman S. Update on the treatment of venous thromboembolism. Semin Thromb Hemost. 2016;42(8):891–8. https://doi.org/10.1055/s-0036-1592305 PubMed PMID: 27764881. Epub 2016/10/21.
Article
PubMed
Google Scholar
Prandoni P, Barbar S, Milan M, Vedovetto V, Pesavento R. The risk of recurrent thromboembolic disorders in patients with unprovoked venous thromboembolism: new scenarios and opportunities. Eur J Intern Med. 2014;25(1):25–30. https://doi.org/10.1016/j.ejim.2013.09.005 PubMed PMID: 24120221. Epub 2013/10/15.
Article
PubMed
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. https://doi.org/10.1038/nature02871 PubMed PMID: 15372042. Epub 2004/09/17.
Article
CAS
PubMed
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17. https://doi.org/10.1016/j.cell.2006.07.031 PubMed PMID: 16990141. Epub 2006/09/23.
Article
CAS
PubMed
Google Scholar
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. https://doi.org/10.1373/clinchem.2010.147405 PubMed PMID: 20847327; PubMed Central PMCID: PMCPMC4846276. Epub 2010/09/18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8. https://doi.org/10.1073/pnas.1019055108 PubMed PMID: 21383194; PubMed Central PMCID: PMCPMC3064324. Epub 2011/03/09.
Article
PubMed
PubMed Central
Google Scholar
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33. https://doi.org/10.1038/ncb2210 PubMed PMID: 21423178; PubMed Central PMCID: PMCPmc3074610. Epub 2011/03/23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–7. https://doi.org/10.1161/circresaha.110.226357 PubMed PMID: 20651284. Epub 2010/07/24.
Article
CAS
PubMed
Google Scholar
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. https://doi.org/10.1073/pnas.0804549105 PubMed PMID: 18663219; PubMed Central PMCID: PMCPmc2492472. Epub 2008/07/30.
Article
PubMed
PubMed Central
Google Scholar
Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106(6):1035–9. https://doi.org/10.1161/circresaha.110.218297 PubMed PMID: 20185794. Epub 2010/02/27.
Article
CAS
PubMed
Google Scholar
Wang X, Sundquist K, Hedelius A, Palmer K, Memon AA, Sundquist J. Circulating microRNA-144-5p is associated with depressive disorders. Clin Epigenetics. 2015;7(1):69. https://doi.org/10.1186/s13148-015-0099-8 PubMed PMID: 26199675; PubMed Central PMCID: PMCPmc4509564. Epub 2015/07/23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Sundquist K, Elf JL, Strandberg K, Svensson PJ, Hedelius A, et al. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thromb Haemost. 2016;116(2):328–36. https://doi.org/10.1160/th16-01-0071 PubMed PMID: 27197074. Epub 2016/05/20.
Article
PubMed
Google Scholar
Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D, et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis. 2015;39(2):215–21. https://doi.org/10.1007/s11239-014-1131-0 PubMed PMID: 25244974. Epub 2014/09/24.
Article
CAS
PubMed
Google Scholar
Xiao J, Jing ZC, Ellinor PT, Liang D, Zhang H, Liu Y, et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med. 2011;9:159. https://doi.org/10.1186/1479-5876-9-159 PubMed PMID: 21943159; PubMed Central PMCID: PMCPmc3189884. Epub 2011/09/29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Starikova I, Jamaly S, Sorrentino A, Blondal T, Latysheva N, Sovershaev M, et al. Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals. Thromb Res. 2015;136(3):566–72. https://doi.org/10.1016/j.thromres.2015.07.005 PubMed PMID: 26235746. Epub 2015/08/04.
Article
CAS
PubMed
Google Scholar
Jiang Z, Ma J, Wang Q, Wu F, Ping J, Ming L. Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients. Med Sci Monit. 2018;24:2031–7 Epub 2018/04/07. PubMed PMID: 29622762; PubMed Central PMCID: PMCPMC5903311.
Article
PubMed
PubMed Central
Google Scholar
Isma N, Svensson PJ, Gottsater A, Lindblad B. Prospective analysis of risk factors and distribution of venous thromboembolism in the population-based Malmo thrombophilia study (MATS). Thromb Res. 2009;124(6):663–6. https://doi.org/10.1016/j.thromres.2009.04.022 PubMed PMID: 19497611. Epub 2009/06/06.
Article
CAS
PubMed
Google Scholar
Memon AA, Sundquist K, Wang X, Svensson PJ, Sundquist J, Zoller B. Transforming growth factor (TGF)-beta levels and unprovoked recurrent venous thromboembolism. J Thromb Thrombolysis. 2014;38(3):348–54. https://doi.org/10.1007/s11239-013-1047-0 PubMed PMID: 24402195. Epub 2014/01/10.
Article
CAS
PubMed
Google Scholar
Marino MJ. How often should we expect to be wrong? P values, and the expected prevalence of false discoveries. Biochemical pharmacology: Statistical power; 2017. https://doi.org/10.1016/j.bcp.2017.12.011. PubMed PMID: 29248599. Epub 2017/12/19
Book
Google Scholar
Eichinger S, Hron G, Kollars M, Kyrle PA. Prediction of recurrent venous thromboembolism by endogenous thrombin potential and D-dimer. Clin Chem. 2008;54(12):2042–8. https://doi.org/10.1373/clinchem.2008.112243 PubMed PMID: 18948369. Epub 2008/10/25.
Article
CAS
PubMed
Google Scholar
Kyrle PA, Hron G, Eichinger S, Wagner O. Circulating P-selectin and the risk of recurrent venous thromboembolism. Thromb Haemost. 2007;97(6):880–3 Epub 2007/06/06. PubMed PMID: 17549288.
Article
CAS
PubMed
Google Scholar
Zabczyk M, Plens K, Wojtowicz W, Undas A. Prothrombotic fibrin clot phenotype is associated with recurrent pulmonary embolism after discontinuation of anticoagulant therapy. Arterioscler Thromb Vasc Biol. 2017;37(2):365–73. https://doi.org/10.1161/atvbaha.116.308253 PubMed PMID: 28062504. Epub 2017/01/08.
Article
CAS
PubMed
Google Scholar
Cieslik J, Mrozinska S, Broniatowska E, Undas A. Altered plasma clot properties increase the risk of recurrent deep vein thrombosis: a cohort study. Blood. 2017. https://doi.org/10.1182/blood-2017-07-798306 PubMed PMID: 29242187. Epub 2017/12/16.
Tritschler T, Limacher A, Mean M, Rodondi N, Aujesky D. Usefulness of D-dimer testing in predicting recurrence in elderly patients with unprovoked venous thromboembolism. Am J Med. 2017;130(10):1221–4. https://doi.org/10.1016/j.amjmed.2017.04.018 PubMed PMID: 28522384. Epub 2017/05/20.
Article
CAS
PubMed
Google Scholar
Shetty S, Kulkarni B, Pai N, Mukundan P, Kasatkar P, Ghosh K. JAK2 mutations across a spectrum of venous thrombosis cases. Am J Clin Pathol. 2010;134(1):82–5. https://doi.org/10.1309/ajcp7vo4haizyatp PubMed PMID: 20551270. Epub 2010/06/17.
Article
CAS
PubMed
Google Scholar
Stefanini L, Bergmeier W. RAP1-GTPase signaling and platelet function. J Mol Med (Berlin, Germany). 2016;94(1):13–9. https://doi.org/10.1007/s00109-015-1346-3 PubMed PMID: 26423530; PubMed Central PMCID: PMCPMC4707086. Epub 2015/10/02.
Article
CAS
Google Scholar
Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul. 2015;59:36–52. https://doi.org/10.1016/j.jbior.2015.06.001 PubMed PMID: 26159296. Epub 2015/07/15.
Article
CAS
PubMed
Google Scholar
Severin S, Ghevaert C, Mazharian A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost. 2010;8(1):17–26. https://doi.org/10.1111/j.1538-7836.2009.03658.x PubMed PMID: 19874462. Epub 2009/10/31.
Article
CAS
PubMed
Google Scholar
Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg. 2013;58(1):219–30. https://doi.org/10.1016/j.jvs.2013.02.240 PubMed PMID: 23643279. Epub 2013/05/07.
Article
PubMed
Google Scholar
Lorthongpanich C, Jiamvoraphong N, Supraditaporn K, Klaihmon P, UP Y, Issaragrisil S. The hippo pathway regulates human megakaryocytic differentiation. Thromb Haemost. 2017;117(1):116–26. https://doi.org/10.1160/th16-07-0564 PubMed PMID: 27786336. Epub 2016/10/28.
Article
PubMed
Google Scholar
Tijsen AJ, van der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, de Groot NE, et al. The microRNA-15 family inhibits the TGFbeta-pathway in the heart. Cardiovasc Res. 2014;104(1):61–71. https://doi.org/10.1093/cvr/cvu184 PubMed PMID: 25103110. Epub 2014/08/12.
Article
CAS
PubMed
Google Scholar
Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell research. 2012;22(3):516–27. https://doi.org/10.1038/cr.2011.132 PubMed PMID: 21844895; PubMed Central PMCID: PMCPMC3292295. Epub 2011/08/17.
Article
CAS
PubMed
Google Scholar
Bayoumi AS, Teoh JP, Aonuma T, Yuan Z, Ruan X, Tang Y, et al. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res. 2017;113(13):1603–14. https://doi.org/10.1093/cvr/cvx132 PubMed PMID: 29016706; PubMed Central PMCID: PMCPMC5852516. Epub 2017/10/11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordstrom BL, Evans MA, Murphy BR, Nutescu EA, Schein JR, Bookhart BK. Risk of recurrent venous thromboembolism among deep vein thrombosis and pulmonary embolism patients treated with warfarin. Curr Med Res Opin. 2015;31(3):439–47. https://doi.org/10.1185/03007995.2014.998814 PubMed PMID: 25495136. Epub 2014/12/17.
Article
CAS
PubMed
Google Scholar
Cannegieter SC, van Hylckama Vlieg A. Venous thrombosis: understanding the paradoxes of recurrence. J Thromb Haemost. 2013;11(Suppl 1):161–9. https://doi.org/10.1111/jth.12263 PubMed PMID: 23809120. Epub 2013/07/17.
Article
PubMed
Google Scholar
Franchini M, Mannucci PM. Venous and arterial thrombosis: different sides of the same coin? Eur J Intern Med. 2008;19(7):476–81. https://doi.org/10.1016/j.ejim.2007.10.019 PubMed PMID: 19013373. Epub 2008/11/18.
Article
PubMed
Google Scholar
Prandoni P. Venous and arterial thrombosis: two aspects of the same disease? Clin Epidemiol. 2009;1:1–6 Epub 2009/01/01. PubMed PMID: 20865079; PubMed Central PMCID: PMCPMC2943163.
Article
PubMed
PubMed Central
Google Scholar
Lowe GD. Common risk factors for both arterial and venous thrombosis. Br J Haematol. 2008;140(5):488–95. https://doi.org/10.1111/j.1365-2141.2007.06973.x PubMed PMID: 18275426. Epub 2008/02/16.
Article
PubMed
Google Scholar
Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PloS one. 2014;9(9):e105734. https://doi.org/10.1371/journal.pone.0105734 PubMed PMID: 25184815; PubMed Central PMCID: PMCPMC4153586. Epub 2014/09/04.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding S, Huang H, Xu Y, Zhu H, Zhong C. MiR-222 in Cardiovascular Diseases: Physiology and Pathology. BioMed Res Int. 2017;2017:4962426. https://doi.org/10.1155/2017/4962426 PubMed PMID: 28127557; PubMed Central PMCID: PMCPMC5239839. Epub 2017/01/28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ovchinnikova ES, Schmitter D, Vegter EL, Ter Maaten JM, Valente MA, Liu LC, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016;18(4):414–23. https://doi.org/10.1002/ejhf.332 PubMed PMID: 26345695. Epub 2015/09/09.
Article
CAS
PubMed
Google Scholar
Watson CJ, Gupta SK, O'Connell E, Thum S, Glezeva N, Fendrich J, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015;17(4):405–15. https://doi.org/10.1002/ejhf.244 PubMed PMID: 25739750; PubMed Central PMCID: PMCPMC4418397. Epub 2015/03/06.
Article
CAS
PubMed
Google Scholar
Bye A, Rosjo H, Nauman J, Silva GJ, Follestad T, Omland T, et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals - the HUNT study. J Mol Cell Cardiol. 2016;97:162–8. https://doi.org/10.1016/j.yjmcc.2016.05.009 PubMed PMID: 27192016. Epub 2016/05/19.
Article
CAS
PubMed
Google Scholar
Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, et al. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012;60(4):290–9. https://doi.org/10.1016/j.jacc.2012.03.056 PubMed PMID: 22813605. Epub 2012/07/21.
Article
CAS
PubMed
Google Scholar
Vegter EL, Ovchinnikova ES, van Veldhuisen DJ, Jaarsma T, Berezikov E, van der Meer P, et al. Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin Res Cardiol. 2017;106(8):598–609. https://doi.org/10.1007/s00392-017-1096-z PubMed PMID: 28293796; PubMed Central PMCID: PMCPMC5529487. Epub 2017/03/16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilbrow AP, Cordeddu L, Cameron VA, Frampton CM, Troughton RW, Doughty RN, et al. Circulating miR-323-3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes. Int J Cardiol. 2014;176(2):375–85. https://doi.org/10.1016/j.ijcard.2014.07.068 PubMed PMID: 25124998. Epub 2014/08/16.
Article
PubMed
Google Scholar
Ellis KL, Cameron VA, Troughton RW, Frampton CM, Ellmers LJ, Richards AM. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail. 2013;15(10):1138–47. https://doi.org/10.1093/eurjhf/hft078 PubMed PMID: 23696613. Epub 2013/05/23.
Article
CAS
PubMed
Google Scholar
Chen C, Shenglan Y, Feng W, Guangwen L, Xu Y, Fuqiong C, et al. e0613 Plasma microRNA-361-5p as a biomarker of chronic heart failure. Heart. 2010;96(Suppl 3):A189-A. https://doi.org/10.1136/hrt.2010.208967.613.
Article
Google Scholar
Wang X, Sundquist J, Zoller B, Memon AA, Palmer K, Sundquist K, et al. Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PloS one. 2014;9(1):e86792. https://doi.org/10.1371/journal.pone.0086792 PubMed PMID: 24497980; PubMed Central PMCID: PMCPmc3907562. Epub 2014/02/06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods (San Diego, Calif). 2013;59(1):S1–6. https://doi.org/10.1016/j.ymeth.2012.09.015 PubMed PMID: 23036329. Epub 2012/10/06.
Article
CAS
Google Scholar
Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome biology. 2009;10(6):R64. https://doi.org/10.1186/gb-2009-10-6-r64 PubMed PMID: 19531210; PubMed Central PMCID: PMCPmc2718498. Epub 2009/06/18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012. https://doi.org/10.1007/s11103-012-9885-2 PubMed PMID: 22290409. Epub 2012/02/01.
Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 2012;7(8):e42390. https://doi.org/10.1371/journal.pone.0042390 PubMed PMID: 22870325; PubMed Central PMCID: PMCPmc3411648. Epub 2012/08/08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X. Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-Ligation studies. Bioinformatics. 2016. https://doi.org/10.1093/bioinformatics/btw002 PubMed PMID: 26743510. Epub 2016/01/09.
Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–d302. https://doi.org/10.1093/nar/gkx1067 PubMed PMID: 29126174; PubMed Central PMCID: PMCPMC5753222. Epub 2017/11/11.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–d61. https://doi.org/10.1093/nar/gkw1092 PubMed PMID: 27899662; PubMed Central PMCID: PMCPMC5210567. Epub 2016/12/03.
Article
CAS
PubMed
Google Scholar
Christiansen SC, Naess IA, Cannegieter SC, Hammerstrom J, Rosendaal FR, Reitsma PH. Inflammatory cytokines as risk factors for a first venous thrombosis: a prospective population-based study. PLoS Med. 2006;3(8):e334. https://doi.org/10.1371/journal.pmed.0030334 PubMed PMID: 16933968; PubMed Central PMCID: PMCPMC1551920. Epub 2006/08/29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romer LH, Birukov KG, Garcia JG. Focal adhesions: paradigm for a signaling nexus. Circ Res. 2006;98(5):606–16. https://doi.org/10.1161/01.RES.0000207408.31270.db PubMed PMID: 16543511. Epub 2006/03/18.
Article
CAS
PubMed
Google Scholar