Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. https://doi.org/10.3322/caac.21254.
Article
PubMed
Google Scholar
Portillo K, Perez-Rodas N, Garcia-Olive I, Guasch-Arriaga I, Centeno C, Serra P, et al. Lung cancer in patients with combined pulmonary fibrosis and emphysema and idiopathic pulmonary fibrosis. A descriptive study in a Spanish series. Arch Bronconeumol. 2016; https://doi.org/10.1016/j.arbres.2016.10.004.
Alvarez FV, Trueba IM, Sanchis JB, Lopez-Rodo LM, Rodriguez Suarez PM, de Cos Escuin JS, et al. Recommendations of the Spanish Society of Pneumology and Thoracic Surgery on the diagnosis and treatment of non-small-cell lung cancer. Arch Bronconeumol. 2016;52(Suppl 1):2–62. https://doi.org/10.1016/S0300-2896(16)30198-3.
PubMed
Google Scholar
Gonzalez J, de Torres JP. Lung cancer and emphysema. Arch Bronconeumol. 2016; https://doi.org/10.1016/j.arbres.2016.07.010.
Sanchez-Salcedo P, Berto J, de Torres JP, Campo A, Alcaide AB, Bastarrika G, et al. Lung cancer screening: fourteen year experience of the Pamplona early detection program (P-IELCAP). Arch Bronconeumol. 2015;51(4):169–76. https://doi.org/10.1016/j.arbres.2014.09.019.
Article
PubMed
Google Scholar
Sanchez-Salcedo P, Wilson DO, de Torres JP, Weissfeld JL, Berto J, Campo A, et al. Improving selection criteria for lung cancer screening. The potential role of emphysema. Am J Respir Crit Care Med. 2015;191(8):924–31. https://doi.org/10.1164/rccm.201410-1848OC.
Article
PubMed
PubMed Central
Google Scholar
de CJ S, Hernandez JH, Lopez MF, Sanchez SP, Gratacos AR, Porta RR. SEPAR guidelines for lung cancer staging. Arch Bronconeumol. 2011;47(9):454–65. https://doi.org/10.1016/j.arbres.2011.06.013.
Google Scholar
Barreiro E, Fermoselle C, Mateu-Jimenez M, Sanchez-Font A, Pijuan L, Gea J, et al. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic Biol Med. 2013;65:859–71. https://doi.org/10.1016/j.freeradbiomed.2013.08.006.
Article
CAS
PubMed
Google Scholar
Gupta A, Srivastava S, Prasad R, Natu SM, Mittal B, Negi MP, et al. Oxidative stress in non-small cell lung cancer patients after chemotherapy: association with treatment response. Respirology. 2010;15(2):349–56. https://doi.org/10.1111/j.1440-1843.2009.01703.x.
Article
PubMed
Google Scholar
Masri FA, Comhair SA, Koeck T, Xu W, Janocha A, Ghosh S, et al. Abnormalities in nitric oxide and its derivatives in lung cancer. Am J Respir Crit Care Med. 2005;172(5):597–605. https://doi.org/10.1164/rccm.200411-1523OC. Pubmed PMID: PMC2718532
Article
PubMed
PubMed Central
Google Scholar
Mateu-Jimenez M, Sanchez-Font A, Rodriguez-Fuster A, Aguilo R, Pijuan L, Fermoselle C, et al. Redox imbalance in lung cancer of patients with underlying chronic respiratory conditions. Mol Med. 2016; https://doi.org/10.2119/molmed.2015.00199. Pubmed PMID: PMC5004710
Cho WC, Kwan CK, Yau S, So PP, Poon PC, Au JS. The role of inflammation in the pathogenesis of lung cancer. Expert Opin Ther Targets. 2011 Sep;15(9):1127–37.
Article
CAS
PubMed
Google Scholar
O'Byrne KJ, Dalgleish AG. Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer. 2001 Aug 17;85(4):473–83.
Article
PubMed
PubMed Central
Google Scholar
Mateu-Jimenez M, Curull V, Pijuan L, Sanchez-Font A, Rivera-Ramos H, Rodriguez-Fuster A, et al. Systemic and tumor Th1 and Th2 inflammatory profile and macrophages in lung cancer: influence of underlying chronic respiratory disease. J Thorac Oncol. 2017;12(2):235–48. https://doi.org/10.1016/j.jtho.2016.09.137.
Article
PubMed
Google Scholar
Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet. 2011;88(4):450–7. https://doi.org/10.1016/j.ajhg.2011.03.003. Pubmed PMID: PMC3071918
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao X, Jia M, Zhang Y, Breitling LP, Brenner H. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics. 2015;7:113. https://doi.org/10.1186/s13148-015-0148-3. Pubmed PMID: PMC4609112
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Elgizouli M, Schottker B, Holleczek B, Nieters A, Brenner H. Smoking-associated DNA methylation markers predict lung cancer incidence. Clin Epigenetics. 2016;8:127. https://doi.org/10.1186/s13148-016-0292-4. Pubmed PMID: PMC5123284
Article
PubMed
PubMed Central
Google Scholar
Sundar IK, Mullapudi N, Yao H, Spivack SD, Rahman I. Lung cancer and its association with chronic obstructive pulmonary disease: update on nexus of epigenetics. Curr Opin Pulm Med. 2011;17(4):279–85. https://doi.org/10.1097/MCP.0b013e3283477533. Pubmed PMID: PMC3730439
Article
PubMed
PubMed Central
Google Scholar
Wang S, Wang Z. Epigenetic aberrant methylation of tumor suppressor genes in small cell lung cancer. J Thorac Dis. 2013;5(4):532–7. https://doi.org/10.3978/j.issn.2072-1439.2013.08.21. Pubmed PMID: PMC3755684
PubMed
PubMed Central
Google Scholar
Chen C, Hua H, Han C, Cheng Y, Cheng Y, Wang Z, et al. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis. Int J Clin Exp Pathol. 2015;8(9):11560–4. Pubmed PMID: PMC4637707
PubMed
PubMed Central
Google Scholar
Suzuki M, Wada H, Yoshino M, Tian L, Shigematsu H, Suzuki H, et al. Molecular characterization of chronic obstructive pulmonary disease-related non-small cell lung cancer through aberrant methylation and alterations of EGFR signaling. Ann Surg Oncol. 2010;17(3):878–88. https://doi.org/10.1245/s10434-009-0739-3.
Article
PubMed
Google Scholar
Wauters E, Janssens W, Vansteenkiste J, Decaluwe H, Heulens N, Thienpont B, et al. DNA methylation profiling of non-small cell lung cancer reveals a COPD-driven immune-related signature. Thorax. 2015;70(12):1113–22. https://doi.org/10.1136/thoraxjnl-2015-207288.
Article
PubMed
Google Scholar
Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45. https://doi.org/10.1038/nrc3477.
Article
CAS
PubMed
Google Scholar
Van Pottelberge GR, Mestdagh P, Bracke KR, Thas O, van Durme YM, Joos GF, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(7):898–906. https://doi.org/10.1164/rccm.201002-0304OC.
Article
PubMed
Google Scholar
Liloglou T, Bediaga NG, Brown BR, Field JK, Davies MP. Epigenetic biomarkers in lung cancer. Cancer Lett. 2014;342(2):200–12. https://doi.org/10.1016/j.canlet.2012.04.018.
Article
CAS
PubMed
Google Scholar
Miravitlles M, Soler-Cataluna JJ, Calle M, Molina J, Almagro P, Quintano JA, et al. Spanish guidelines for management of chronic obstructive pulmonary disease (GesEPOC) 2017. Pharmacological treatment of stable phase. Arch Bronconeumol. 2017;53(6):324–35. https://doi.org/10.1016/j.arbres.2017.03.018.
Article
PubMed
Google Scholar
Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Arch Bronconeumol. 2017;53(3):128–49. https://doi.org/10.1016/j.arbres.2017.02.001.
Article
PubMed
Google Scholar
Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, et al. Tumor suppressor microRNAs: a novel non-coding alliance against cancer. FEBS Lett. 2014;588(16):2639–52. https://doi.org/10.1016/j.febslet.2014.03.033.
Article
CAS
PubMed
Google Scholar
Miravitlles M. What was the impact of the Spanish COPD guidelines (GesEPOC) and how can they be improved? Arch Bronconeumol. 2016;52(1):1–2. https://doi.org/10.1016/j.arbres.2015.04.001.
Article
PubMed
Google Scholar
Puig-Vilanova E, Ausin P, Martinez-Llorens J, Gea J, Barreiro E. Do epigenetic events take place in the vastus lateralis of patients with mild chronic obstructive pulmonary disease? PLoS One. 2014;9(7):e102296. https://doi.org/10.1371/journal.pone.0102296.
Article
PubMed
PubMed Central
Google Scholar
Puig-Vilanova E, Rodriguez DA, Lloreta J, Ausin P, Pascual-Guardia S, Broquetas J, et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med. 2015;79:91–108. https://doi.org/10.1016/j.freeradbiomed.2014.11.006.
Article
CAS
PubMed
Google Scholar
Puig-Vilanova E, Martinez-Llorens J, Ausin P, Roca J, Gea J, Barreiro E. Quadriceps muscle weakness and atrophy are associated with a differential epigenetic profile in advanced COPD. Clin Sci (Lond). 2015;128(12):905–21. https://doi.org/10.1042/CS20140428.
Article
CAS
Google Scholar
Chacon-Cabrera A, Gea J, Barreiro E. Short- and long-term hindlimb immobilization and reloading: profile of epigenetic events in gastrocnemius. J Cell Physiol. 2016; https://doi.org/10.1002/jcp.25635.
Puig-Vilanova E, Aguilo R, Rodriguez-Fuster A, Martinez-Llorens J, Gea J, Barreiro E. Epigenetic mechanisms in respiratory muscle dysfunction of patients with chronic obstructive pulmonary disease. PLoS One. 2014;9(11):e111514. https://doi.org/10.1371/journal.pone.0111514. Pubmed PMID: PMC4219759
Article
PubMed
PubMed Central
Google Scholar
Mateu-Jimenez M, Fermoselle C, Rojo F, Mateu J, Pena R, Urtreger AJ, et al. Pharmacological approaches in an experimental model of non-small cell lung cancer: effects on tumor biology. Curr Pharm Des. 2016;22(34):5300–10.
Article
CAS
PubMed
Google Scholar
Fasanaro P, D'Alessandra Y, Di SV, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283(23):15878–83. https://doi.org/10.1074/jbc.M800731200. Pubmed PMID: PMC3259646
Article
CAS
PubMed
PubMed Central
Google Scholar
Schliekelman MJ, Gibbons DL, Faca VM, Creighton CJ, Rizvi ZH, Zhang Q, et al. Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res. 2011;71(24):7670–82. https://doi.org/10.1158/0008-5472.CAN-11-0964. Pubmed PMID: PMC3419137
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411(11–12):846–52. https://doi.org/10.1016/j.cca.2010.02.074.
Article
CAS
PubMed
Google Scholar
Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–36. https://doi.org/10.1074/jbc.M611393200.
Article
CAS
PubMed
Google Scholar
Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580–7. https://doi.org/10.1038/onc.2009.445. Pubmed PMID: PMC2841713
Article
CAS
PubMed
Google Scholar
Wang PY, Sun YX, Zhang S, Pang M, Zhang HH, Gao SY, et al. Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors. FEBS Lett. 2013;587(16):2675–81. https://doi.org/10.1016/j.febslet.2013.07.004.
Article
CAS
PubMed
Google Scholar
Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 2014;342(1):43–51. https://doi.org/10.1016/j.canlet.2013.08.030.
Article
CAS
PubMed
Google Scholar
Oh JS, Kim JJ, Byun JY, Kim IA. Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys. 2010;76(1):5–8. https://doi.org/10.1016/j.ijrobp.2009.08.028.
Article
CAS
PubMed
Google Scholar
Zhong M, Ma X, Sun C, Chen L. MicroRNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact. 2010;184(3):431–8. https://doi.org/10.1016/j.cbi.2010.01.025.
Article
CAS
PubMed
Google Scholar
Guzman L, Depix MS, Salinas AM, Roldan R, Aguayo F, Silva A, et al. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers. Diagn Pathol. 2012;7(87) https://doi.org/10.1186/1746-1596-7-87. Pubmed PMID: PMC3424112
Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol. 2017;42:52–9. https://doi.org/10.1016/j.semcancer.2016.11.001.
Article
CAS
PubMed
Google Scholar
Courtney JM, Spafford PL. The role of epithelial-mesenchymal transition in chronic obstructive pulmonary disease. Cells Tissues Organs. 2017;203(2):99–104. https://doi.org/10.1159/000450919.
Article
PubMed
Google Scholar
Saber A, van der Wekken AJ, Kerner GS, van den Berge M, Timens W, Schuuring E, et al. Chronic obstructive pulmonary disease is not associated with KRAS mutations in non-small cell lung cancer. PLoS One. 2016;11(3):e0152317. https://doi.org/10.1371/journal.pone.0152317. Pubmed PMID: PMC4805285
Article
PubMed
PubMed Central
Google Scholar
Tufman A, Tian F, Huber RM. Can microRNAs improve the management of lung cancer patients? A clinician’s perspective. Theranostics. 2013;3(12):953–63. https://doi.org/10.7150/thno.6615. Pubmed PMID: PMC3881097
Article
CAS
PubMed
PubMed Central
Google Scholar
Markou A, Zavridou M, Lianidou ES. miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer (Auckl ). 2016;7:19–27. https://doi.org/10.2147/LCTT.S60341. Pubmed PMID: PMC5310696
Google Scholar