Berberich AJ, Hegele RA. A modern approach to dyslipidemia. Endocr Rev. 2022;43(4):611-53.
Article
PubMed
Google Scholar
Crea F. Dyslipidaemias in stroke, chronic kidney disease, and aortic stenosis: the new frontiers for cholesterol lowering. Eur Heart J. 2021;42(22):2137–40.
Article
PubMed
CAS
Google Scholar
GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1223–49.
Article
Google Scholar
Gomez-Delgado F, Katsiki N, Lopez-Miranda J, Perez-Martinez P. Dietary habits, lipoprotein metabolism and cardiovascular disease: from individual foods to dietary patterns. Crit Rev Food Sci Nutr. 2021;61(10):1651–69.
Article
PubMed
Google Scholar
Lin WY. A large-scale observational study linking various kinds of physical exercise to lipoprotein-lipid profile. J Int Soc Sports Nutr. 2021;18(1):35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruiz-Ramie JJ, Barber JL, Sarzynski MA. Effects of exercise on HDL functionality. Curr Opin Lipidol. 2019;30(1):16–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aho S, Vuoristo MS, Raitanen J, Mansikkamäki K, Alanko J, Vähä-Ypyä H, Luoto R, Kellokumpu-Lehtinen PL, Vasankari T. Higher number of steps and breaks during sedentary behaviour are associated with better lipid profiles. BMC Public Health. 2021;21(1):629.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oh SS, Jang JE, Lee DW, Park EC, Jang SI. Cigarette type or smoking history: which has a greater impact on the metabolic syndrome and its components? Sci Rep. 2020;10(1):10467.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso GM, et al. Genetics of blood lipids among ~ 300,000 multi-ethnic participants of the million veteran program. Nat Genet. 2018;50(11):1514–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777–86.
Article
PubMed
CAS
Google Scholar
Braun KVE, Dhana K, de Vries PS, Voortman T, van Meurs JBJ, Uitterlinden AG, Hofman A, Hu FB, Franco OH, Dehghan A. Epigenome-wide association study (EWAS) on lipids: the Rotterdam study. Clin Epigenetics. 2017;9:15.
Article
PubMed
PubMed Central
Google Scholar
Hedman ÅK, Mendelson MM, Marioni RE, Gustafsson S, Joehanes R, Irvin MR, Zhi D, Sandling JK, Yao C, Liu C, et al. Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circ Cardiovasc Genet. 2017;10(1): e001487.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, Slagboom PE, van Zwet EW, Lumey LH, Heijmans BT. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv. 2018;4(1):eaao4364.
Article
PubMed
PubMed Central
Google Scholar
Xie T, Gorenjak V, Stathopoulou MG, Dadé S, Marouli E, Masson C, Murray H, Lamont J, Fitzgerald P, Deloukas P, et al. Epigenome-wide association study (EWAS) of blood lipids in healthy population from STANISLAS family study (SFS). Int J Mol Sci. 2019;20(5):1014.
Article
PubMed Central
CAS
Google Scholar
Sayols-Baixeras S, Subirana I, Lluis-Ganella C, Civeira F, Roquer J, Do AN, Absher D, Cenarro A, Muñoz D, Soriano-Tárraga C, et al. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach the REGICOR study. Hum Mol Genet. 2016;25(20):4556–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6.
Article
PubMed
Google Scholar
Dekkers KF, van Iterson M, Slieker RC, Moed MH, Bonder MJ, van Galen M, Mei H, Zhernakova DV, van den Berg LH, Deelen J, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17(1):138.
Article
PubMed
PubMed Central
Google Scholar
Sayols-Baixeras S, Tiwari HK, Aslibekyan SW. Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach. BMC Proc. 2018;12(Suppl 9):23.
Article
PubMed
PubMed Central
Google Scholar
Jiang L, Zhao K, Klein K, Canty AJ, Oualkacha K, Greenwood CMT. Investigating potential causal relationships between SNPs, DNA methylation and HDL. BMC Proc. 2018;12(Suppl 9):20.
Article
PubMed
PubMed Central
Google Scholar
Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6.
Article
PubMed
CAS
Google Scholar
Sun D, Zhang T, Su S, Hao G, Chen T, Li QZ, Bazzano L, He J, Wang X, Li S, et al. Body mass index drives changes in DNA methylation: a longitudinal study. Circ Res. 2019;125(9):824–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Kassam I, Lau SH, Kooner JS, Wilson R, Peters A, Winkelmann J, Chambers JC, Chow VT, Khor CC, et al. Impact of BMI and waist circumference on epigenome-wide DNA methylation and identification of epigenetic biomarkers in blood: an EWAS in multi-ethnic Asian individuals. Clin Epigenet. 2021;13(1):195.
Article
CAS
Google Scholar
Reed ZE, Suderman MJ, Relton CL, Davis OSP, Hemani G. The association of DNA methylation with body mass index: distinguishing between predictors and biomarkers. Clin Epigenet. 2020;12(1):50.
Article
CAS
Google Scholar
Jhun MA, Mendelson M, Wilson R, Gondalia R, Joehanes R, Salfati E, Zhao X, Braun KVE, Do AN, Hedman ÅK, et al. A multi-ethnic epigenome-wide association study of leukocyte DNA methylation and blood lipids. Nat Commun. 2021;12(1):3987.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cronjé HT, Elliott HR, Nienaber-Rousseau C, Pieters M. Replication and expansion of epigenome-wide association literature in a black South African population. Clin Epigenet. 2020;12(1):6.
Article
Google Scholar
Jiang X, Fulte S, Deng F, Chen S, Xie Y, Chao X, He XC, Zhang Y, Li T, Li F, et al. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes nonalcoholic steatohepatitis. J Hepatol. 2022;77(3):619-31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hama Y, Morishita H, Mizushima N. Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B. EMBO Rep. 2022;23(2): e53894.
Article
PubMed
CAS
Google Scholar
Chu AY, Guilianini F, Grallert H, Dupuis J, Ballantyne CM, Barratt BJ, Nyberg F, Chasman DI, Ridker PM. Genome-wide association study evaluating lipoprotein-associated phospholipase A2 mass and activity at baseline and after rosuvastatin therapy. Circ Cardiovasc Genet. 2012;5(6):676–85.
Article
PubMed
CAS
Google Scholar
Thompson A, Gao P, Orfei L, Watson S, Di Angelantonio E, Kaptoge S, Ballantyne C, Cannon CP, Criqui M, Cushman M, et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375(9725):1536–44.
Article
PubMed
CAS
Google Scholar
Wilensky RL, Shi Y, Mohler ER 3rd, Hamamdzic D, Burgert ME, Li J, Postle A, Fenning RS, Bollinger JG, Hoffman BE, et al. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nat Med. 2008;14(10):1059–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackisch L, Kumsaiyai W, Moore JD, Al-Daghri N, Kyrou I, Barber TM, Randeva H, Kumar S, Tripathi G, McTernan PG. Differential expression of Lp-PLA2 in obesity and type 2 diabetes and the influence of lipids. Diabetologia. 2018;61(5):1155–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dhana K, Braun KVE, Nano J, Voortman T, Demerath EW, Guan W, Fornage M, van Meurs JBJ, Uitterlinden AG, Hofman A, et al. An epigenome-wide association study of obesity-related traits. Am J Epidemiol. 2018;187(8):1662–9.
Article
PubMed
PubMed Central
Google Scholar
Yu C, Wong EM, Joo JE, Hodge AM, Makalic E, Schmidt D, Buchanan DD, Severi G, Hopper JL, English DR, et al. Epigenetic drift association with cancer risk and survival, and modification by sex. Cancers (Basel). 2021;13(8):1881.
Article
CAS
Google Scholar
Smith AK, Conneely KN, Pace TW, Mister D, Felger JC, Kilaru V, Akel MJ, Vertino PM, Miller AH, Torres MA. Epigenetic changes associated with inflammation in breast cancer patients treated with chemotherapy. Brain Behav Immun. 2014;38:227–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun Q, Yong X, Sun X, Yang F, Dai Z, Gong Y, Zhou L, Zhang X, Niu D, Dai L, et al. Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE. Signal Transduct Target Ther. 2017;2:17030.
Article
PubMed
PubMed Central
Google Scholar
Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Q, Huang T, Jiang Z, Ge C, Chen X, Zhang L, Zhao F, Zhu M, Chen T, Cui Y, et al. Upregulation of SNX5 predicts poor prognosis and promotes hepatocellular carcinoma progression by modulating the EGFR-ERK1/2 signaling pathway. Oncogene. 2020;39(10):2140–55.
Article
PubMed
CAS
Google Scholar
Jitsukawa S, Kamekura R, Kawata K, Ito F, Sato A, Matsumiya H, Nagaya T, Yamashita K, Kubo T, Kikuchi T, et al. Loss of sorting nexin 5 stabilizes internalized growth factor receptors to promote thyroid cancer progression. J Pathol. 2017;243(3):342–53.
Article
PubMed
CAS
Google Scholar
Li F, Yang J, Villar VAM, Asico LD, Ma X, Armando I, Sanada H, Yoneda M, Felder RA, Jose PA, et al. Loss of renal SNX5 results in impaired IDE activity and insulin resistance in mice. Diabetologia. 2018;61(3):727–37.
Article
PubMed
CAS
Google Scholar
Liang J, Li G, Liao J, Huang Z, Wen J, Wang Y, Chen Z, Cai G, Xu W, Ding Z, et al. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Differ. 2022;29(5):988–1003.
Article
PubMed
CAS
Google Scholar
Cho O, Kim DW, Cheong JY. Screening plasma exosomal RNAs as diagnostic markers for cervical cancer: an analysis of patients who underwent primary chemoradiotherapy. Biomolecules. 2021;11(11):1691.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang L, Liang XZ, Deng Y, Liang YB, Zhu X, Liang XY, Luo DZ, Chen G, Fang YY, Lan HH, et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol Res Pract. 2020;216(6): 152937.
Article
PubMed
CAS
Google Scholar
Do WL, Gohar J, McCullough LE, Galaviz KI, Conneely KN, Narayan KMV. Examining the association between adiposity and DNA methylation: a systematic review and meta-analysis. Obes Rev. 2021;22(10): e13319.
Article
PubMed
CAS
Google Scholar
Pavethynath S, Imai C, Jin X, Hichiwa N, Takimoto H, Okamitsu M, Tarui I, Aoyama T, Yago S, Fudono A, et al. Metabolic and immunological shifts during mid-to-late gestation influence maternal blood methylation of CPT1A and SREBF1. Int J Mol Sci. 2019;20(5):1066.
Article
PubMed Central
CAS
Google Scholar
Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, Carnero-Montoro E, Lawson DJ, Burrows K, Suderman M, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021;53(9):1311–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, Holdt LM, Kretschmer A, Schramm K, Adamski J, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015;8(2):334–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Frambach S, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev. 2020;72(1):152–90.
Article
PubMed
CAS
Google Scholar
Xu D, Li Y, Yang F, Sun CR, Pan J, Wang L, Chen ZP, Fang SC, Yao X, Hou WT, et al. Structure and transport mechanism of the human cholesterol transporter ABCG1. Cell Rep. 2022;38(4): 110298.
Article
PubMed
CAS
Google Scholar
Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124(10):1505–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoekstra M, Van Berkel TJ. Functionality of high-density lipoprotein as antiatherosclerotic therapeutic target. Arterioscler Thromb Vasc Biol. 2016;36(11):e87–94.
Article
PubMed
CAS
Google Scholar
Qi B, He L, Zhao Y, Zhang L, He Y, Li J, Li C, Zhang B, Huang Q, Xing J, et al. Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis. Diabetologia. 2020;63(5):1072–87.
Article
PubMed
CAS
Google Scholar
Schiattarella GG, Cattaneo F, Carrizzo A, Paolillo R, Boccella N, Ambrosio M, Damato A, Pironti G, Franzone A, Russo G, et al. Akap1 regulates vascular function and endothelial cells behavior. Hypertension. 2018;71(3):507–17.
Article
PubMed
CAS
Google Scholar
Perrino C, Feliciello A, Schiattarella GG, Esposito G, Guerriero R, Zaccaro L, Del Gatto A, Saviano M, Garbi C, Carangi R, et al. AKAP121 downregulation impairs protective cAMP signals, promotes mitochondrial dysfunction, and increases oxidative stress. Cardiovasc Res. 2010;88(1):101–10.
Article
PubMed
CAS
Google Scholar
Ji L, Zhao Y, He L, Zhao J, Gao T, Liu F, Qi B, Kang F, Wang G, Zhao Y, et al. AKAP1 deficiency attenuates diet-induced obesity and insulin resistance by promoting fatty acid oxidation and thermogenesis in brown adipocytes. Adv Sci (Weinh). 2021;8(6):2002794.
Article
CAS
Google Scholar
Braun KV, Voortman T, Dhana K, Troup J, Bramer WM, Troup J, Chowdhury R, Dehghan A, Muka T, Franco OH. The role of DNA methylation in dyslipidaemia: a systematic review. Prog Lipid Res. 2016;64:178–91.
Article
PubMed
CAS
Google Scholar
Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, Diaz-Ruiz A, Araldi E, Baldán Á, Camporez JP, et al. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep. 2018;22(8):2133–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishino T, Horie T, Baba O, Sowa N, Hanada R, Kuwabara Y, Nakao T, Nishiga M, Nishi H, Nakashima Y, et al. SREBF1/MicroRNA-33b axis exhibits potent effect on unstable atherosclerotic plaque formation in vivo. Arterioscler Thromb Vasc Biol. 2018;38(10):2460–73.
Article
PubMed
CAS
Google Scholar
Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ding J, Reynolds LM, Zeller T, Müller C, Lohman K, Nicklas BJ, Kritchevsky SB, Huang Z, de la Fuente A, Soranzo N, et al. Alterations of a cellular cholesterol metabolism network are a molecular feature of obesity-related type 2 diabetes and cardiovascular disease. Diabetes. 2015;64(10):3464–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johansson LE, Danielsson AP, Parikh H, Klintenberg M, Norström F, Groop L, Ridderstråle M. Differential gene expression in adipose tissue from obese human subjects during weight loss and weight maintenance. Am J Clin Nutr. 2012;96(1):196–207.
Article
PubMed
CAS
Google Scholar
Choromanska B, Mysliwiec P, Hady HR, Dadan J, Mysliwiec H, Bonda T, Chabowski A, Miklosz A. The implication of adipocyte ATP-binding cassette A1 and G1 transporters in metabolic complications of obesity. J Physiol Pharmacol. 2019;70(1):143-52.
CAS
Google Scholar
McGue M, Osler M, Christensen K. Causal inference and observational research: the utility of twins. Perspect Psychol Sci. 2010;5(5):546–56.
Article
PubMed
PubMed Central
Google Scholar
Gao W, Cao W, Lv J, Yu C, Wu T, Wang S, Meng L, Wang D, Wang Z, Pang Z, et al. The Chinese national twin registry: a “gold mine” for scientific research. J Intern Med. 2019;286(3):299–308.
Article
PubMed
CAS
Google Scholar
Chen Z, Lee L, Chen J, Collins R, Wu F, Guo Y, Linksted P, Peto R. Cohort profile: the Kadoorie study of chronic disease in China (KSCDC). Int J Epidemiol. 2005;34(6):1243–9.
Article
PubMed
Google Scholar
Chen Z, Chen J, Collins R, Guo Y, Peto R, Wu F, Li L. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol. 2011;40(6):1652–66.
Article
PubMed
PubMed Central
Google Scholar
Si J, Yang S, Sun D, Yu C, Guo Y, Lin Y, Millwood IY, Walters RG, Yang L, Chen Y, et al. Epigenome-wide analysis of DNA methylation and coronary heart disease: a nested case-control study. Elife. 2021;10:e68671.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Gao W, Yu C, Cao W, Lv J, Wang S, Pang Z, Cong L, Wang H, Wu X, et al. Determination of zygosity in adult Chinese twins using the 450 K methylation array versus questionnaire data. PLoS ONE. 2015;10(4): e0123992.
Article
PubMed
PubMed Central
Google Scholar
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Touleimat N, Tost J. Complete pipeline for Infinium® human methylation 450 K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.
Article
PubMed
CAS
Google Scholar
Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf. 2012;13:86.
Article
Google Scholar
Chen J, Behnam E, Huang J, Moffatt MF, Schaid DJ, Liang L, Lin X. Fast and robust adjustment of cell mixtures in epigenome-wide association studies with SmartSVA. BMC Genomics. 2017;18(1):413.
Article
PubMed
PubMed Central
Google Scholar
Ren X, Kuan PF. methylGSA: a bioconductor package and shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics. 2019;35(11):1958–9.
Article
PubMed
CAS
Google Scholar
Lt Hu. Bentler PM: cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model. 1999;6(1):1–55.
Article
Google Scholar