Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamm CA, Costa FF. Epigenomes as therapeutic targets. Pharmacol Ther. 2015;151:72–86.
Article
CAS
PubMed
Google Scholar
Waddington C. Organizers and genes cambridge. Cambridge: Cambridge University Press; 1940.
Google Scholar
Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–70.
Article
CAS
PubMed
Google Scholar
Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41.
Article
CAS
PubMed
Google Scholar
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.
Article
CAS
PubMed
Google Scholar
Law C, Barker D, Osmond C, Fall C, Simmonds S. Early growth and abdominal fatness in adult life. J Epidemiol Community Health. 1992;46(3):184–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanson M, Gluckman P. Developmental origins of health and disease–global public health implications. Best Pract Res Clin Obstet Gynaecol. 2015;29(1):24–31.
Article
CAS
PubMed
Google Scholar
Hanson MA, Gluckman PD. Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol. 2008;102(2):90–3.
Article
CAS
PubMed
Google Scholar
Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18.
Article
CAS
PubMed
Google Scholar
Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci. 2007;104(32):13056–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28(8):812–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ze H, Feil R, Constancia M, Fraga M, Junien C, Carel J-C, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2010;32(2):159–224.
Google Scholar
Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161(6):1437–52.
Article
CAS
PubMed
Google Scholar
Vaiserman A. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin Epigenetics. 2015;7(1):96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 1997;17(3):275.
Article
CAS
PubMed
Google Scholar
Shibata H, Yoda Y, Kato R, Ueda T, Kamiya M, Hiraiwa N, et al. A methylation imprint mark in the mouse imprinted GeneGrf1/Cdc25MmLocus shares a common feature with theU2afbp-rsGene: an association with a short tandem repeat and a hypermethylated region. Genomics. 1998;49(1):30–7.
Article
CAS
PubMed
Google Scholar
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.
Article
CAS
PubMed
Google Scholar
Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001;104(6):829–38.
Article
CAS
PubMed
Google Scholar
Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50(1):12.
Article
CAS
PubMed
Google Scholar
Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606.
Article
CAS
PubMed
Google Scholar
Davis TL, Yang GJ, McCarrey JR, Bartolomei MS. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet. 2000;9(19):2885–94.
Article
CAS
PubMed
Google Scholar
Kobayashi H, Sakurai T, Miura F, Imai M, Mochiduki K, Yanagisawa E, et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 2013;23(4):616–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48(6):849–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engler P, Haasch D, Pinkert CA, Doglio L, Glymour M, Brinster R, et al. A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell. 1991;65(6):939–47.
Article
CAS
PubMed
Google Scholar
Allen ND, Norris ML, Surani MA. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell. 1990;61(5):853–61.
Article
CAS
PubMed
Google Scholar
Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287(5782):560.
Article
CAS
PubMed
Google Scholar
Lessing DMC, Lee JT. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet. 2013;14:85–110.
Article
CAS
PubMed
Google Scholar
Silva SS, Rowntree RK, Mekhoubad S, Lee JT. X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci. 2008;105(12):4820–5.
Article
PubMed
PubMed Central
Google Scholar
Park J-H, Kim S-H, Lee MS, Kim M-S. Epigenetic modification by dietary factors: implications in metabolic syndrome. Mol Asp Med. 2017;54:58–70.
Article
CAS
Google Scholar
Jacobsen S, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9.
Article
CAS
PubMed
Google Scholar
Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA. Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr. 2009;139(6):1054–60.
Article
CAS
PubMed
Google Scholar
Ly A, Lee H, Chen J, Sie KK, Renlund R, Medline A, et al. Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res. 2011;71(3):988–97.
Article
CAS
PubMed
Google Scholar
Waterland RA, Lin J-R, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet. 2006;15(5):705–16.
Article
CAS
PubMed
Google Scholar
Lillycrop K, Burdge G. Maternal diet as a modifier of offspring epigenetics. J Dev Orig Health Dis. 2015;6(2):88–95.
Article
CAS
PubMed
Google Scholar
Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.
Article
CAS
PubMed
Google Scholar
Fournier A, Sasai N, Nakao M, Defossez P-A. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics. 2011;11(3):251–64.
Article
CAS
PubMed
Google Scholar
Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics. 2016;15(6):443–53.
CAS
PubMed
Google Scholar
Li S, Zhu Y, Zhi L, Han X, Shen J, Liu Y, et al. DNA methylation variation trends during the embryonic development of chicken. PLoS One. 2016;11(7):e0159230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature. 2013;495(7441):370.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic research in neuropsychiatric disorders: the “tissue issue”. Curr Behav Neurosci Rep. 2016;3(3):264–74.
Article
PubMed
PubMed Central
Google Scholar
Novakovic B, Ryan J, Pereira N, Boughton B, Craig JM, Saffery R. Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics. 2014;9(3):377–86.
Article
CAS
PubMed
Google Scholar
Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):e1000602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemberger M, Pedersen R. Epigenome disruptors. Science. 2010;330(6004):598–9.
Article
CAS
PubMed
Google Scholar
Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23(8):413–8.
Article
CAS
PubMed
Google Scholar
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2007;1775(1):138–62.
Article
CAS
Google Scholar
Reichetzeder C, Putra SD, Pfab T, Slowinski T, Neuber C, Kleuser B, et al. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics. 2016;8(1):82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DP, et al. Global DNA hypermethylation in Down syndrome placenta. PLoS Genet. 2013;9(6):e1003515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417(6892):945.
Article
CAS
PubMed
Google Scholar
Bourque D, Avila L, Penaherrera M, Von Dadelszen P, Robinson W. Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta. 2010;31(3):197–202.
Article
CAS
PubMed
Google Scholar
Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci. 2007;104(31):12796–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007;19(1):1–19.
Article
PubMed
Google Scholar
Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res. 2004;56(3):311.
Article
PubMed
Google Scholar
Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, et al. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatr Res. 2007;61(5, Part 1):625.
Article
PubMed
Google Scholar
Barker DJ. The developmental origins of adult disease. Eur J Epidemiol. 2003;18(8):733–6.
Article
CAS
PubMed
Google Scholar
Bateson P, Barker D, Clutton-Brock T, Deb D, D’udine B, Foley RA, et al. Developmental plasticity and human health. Nature. 2004;430(6998):419.
Article
CAS
PubMed
Google Scholar
Li Y, Buckhaults P, Li S, Tollefsbol TO. Temporal efficacy of a sulforaphane-based broccoli sprout diet in prevention of breast cancer through modulation of epigenetic mechanisms. Cancer Prev Res. 2018;11(8):451–64 canprevres. 0423.2017.
Article
CAS
Google Scholar
Tammen SA, Friso S, Choi S-W. Epigenetics: the link between nature and nurture. Mol Asp Med. 2013;34(4):753–64.
Article
CAS
Google Scholar
Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96(4):1509–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97.
Article
CAS
PubMed
Google Scholar
Ho S-M, Tang W-Y, De Frausto JB, Prins GS. Developmental exposure to estradiol and bisphenol a increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66(11):5624–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Hursting SD, Davis BJ, McLACHLAN JA, Barrett JC. Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbesterol-induced cancers. Ann N Y Acad Sci. 2003;983(1):161–9.
Article
CAS
PubMed
Google Scholar
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int. 2018;118:334–47.
Article
CAS
PubMed
Google Scholar
Pedersen M, Stayner L, Slama R, Sørensen M, Figueras F, Nieuwenhuijsen MJ, et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension. 2014;114:03545 HYPERTENSIONAHA.
Google Scholar
Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course–a systematic literature review. Environ Res. 2016;147:383–98.
Article
CAS
PubMed
Google Scholar
Chiu Y-HM, Hsu H-HL, Coull BA, Bellinger DC, Kloog I, Schwartz J, et al. Prenatal particulate air pollution and neurodevelopment in urban children: examining sensitive windows and sex-specific associations. Environ Int. 2016;87:56–65.
Article
CAS
PubMed
Google Scholar
Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11.
Article
CAS
PubMed
Google Scholar
Valentino SA, Tarrade A, Aioun J, Mourier E, Richard C, Dahirel M, et al. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part Fibre Toxicol. 2015;13(1):39.
Article
CAS
Google Scholar
Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, et al. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2009;118(3):432–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Karlsson O, Wang G, Li J, Guo Y, Lin X, et al. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci. 2017;114(13):3503–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen BG, Godderis L, Pieters N, Poels K, Kiciński M, Cuypers A, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10(1):22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maghbooli Z, Hossein-nezhad A, Adabi E, Asadollah-pour E, Sadeghi M, Mohammad-nabi S, et al. Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 2018;13(7):e0199772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 2017;607:1103–8.
Article
CAS
PubMed
Google Scholar
Janssen BG, Munters E, Pieters N, Smeets K, Cox B, Cuypers A, et al. Placental mitochondrial DNA content and particulate air pollution during in utero life. Environ Health Perspect. 2012;120(9):1346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen BG, Byun H-M, Gyselaers W, Lefebvre W, Baccarelli AA, Nawrot TS. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: an ENVIR ON AGE birth cohort study. Epigenetics. 2015;10(6):536–44.
Article
PubMed
PubMed Central
Google Scholar
Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, et al. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIR ON AGE cohort. Environ Health Perspect. 2016;125(2):262–8.
Article
PubMed
PubMed Central
Google Scholar
Alvarado-Cruz I, Sánchez-Guerra M, Hernández-Cadena L, De Vizcaya-Ruiz A, Mugica V, Pelallo-Martínez NA, et al. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment. Mutat Res/Genetic Toxicology and Environmental Mutagenesis. 2017;813:27–36.
Article
CAS
PubMed
Google Scholar
Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics. 2018;13(2):135–46.
Article
PubMed
PubMed Central
Google Scholar
Alshaarawy O, Anthony JC. Month-wise estimates of tobacco smoking during pregnancy for the United States, 2002–2009. Matern Child Health J. 2015;19(5):1010–5.
Article
PubMed
PubMed Central
Google Scholar
Suter M, Ma J, Harris AS, Patterson L, Brown KA, Shope C, et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics. 2011;6(11):1284–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect. 2011;120(2):296–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rotroff DM, Joubert BR, Marvel SW, Håberg SE, Wu MC, Nilsen RM, et al. Maternal smoking impacts key biological pathways in newborns through epigenetic modification in utero. BMC Genomics. 2016;17(1):976.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ladd-Acosta C, Shu C, Lee BK, Gidaya N, Singer A, Schieve LA, et al. Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood. Environ Res. 2016;144:139–48.
Article
CAS
PubMed
Google Scholar
Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, Carey V, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One. 2014;9(6):e99716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2014;123(2):193–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Windham GC, Hopkins B, Fenster L, Swan SH. Prenatal active or passive tobacco smoke exposure and the risk of preterm delivery or low birth weight. Epidemiology. 2000;11:427–33.
Article
CAS
PubMed
Google Scholar
Cox B, Martens E, Nemery B, Vangronsveld J, Nawrot TS. Impact of a stepwise introduction of smoke-free legislation on the rate of preterm births: analysis of routinely collected birth data. BMJ. 2013;346:f441.
Article
PubMed
PubMed Central
Google Scholar
Fantuzzi G, Aggazzotti G, Righi E, Facchinetti F, Bertucci E, Kanitz S, et al. Preterm delivery and exposure to active and passive smoking during pregnancy: a case–control study from Italy. Paediatr Perinat Epidemiol. 2007;21(3):194–200.
Article
PubMed
Google Scholar
Somm E, Schwitzgebel VM, Vauthay DM, Aubert ML, Hüppi PS. Prenatal nicotine exposure and the programming of metabolic and cardiovascular disorders. Mol Cell Endocrinol. 2009;304(1–2):69–77.
Article
CAS
PubMed
Google Scholar
Maritz GS, Harding R. Life-long programming implications of exposure to tobacco smoking and nicotine before and soon after birth: evidence for altered lung development. Int J Environ Res Public Health. 2011;8(3):875–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doherty S, Grabowski J, Hoffman C, Ng S, Zelikoff J. Early life insult from cigarette smoke may be predictive of chronic diseases later in life. Biomarkers. 2009;14(sup1):97–101.
Article
CAS
PubMed
Google Scholar
Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, LeBron C, Witter FR, et al. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics. 2010;5(6):539–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flom JD, Ferris JS, Liao Y, Tehranifar P, Richards CB, Cho YH, et al. Prenatal smoke exposure and genomic DNA methylation in a multiethnic birth cohort. Cancer Epidemiol Biomarkers Prev. 2011;20(12):2518–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen BG, Gyselaers W, Byun H-M, Roels HA, Cuypers A, Baccarelli AA, et al. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight. J Transl Med. 2017;15(1):5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breton CV, Byun H-M, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180(5):462–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivorra C, Fraga MF, Bayón GF, Fernández AF, Garcia-Vicent C, Chaves FJ, et al. DNA methylation patterns in newborns exposed to tobacco in utero. J Transl Med. 2015;13(1):25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2014;24(8):2201–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maccani JZ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics. 2013;5(6):619–30.
Article
CAS
PubMed
Google Scholar
Suter M, Abramovici A, Showalter L, Hu M, Do Shope C, Varner M, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism-Clinical and Experimental. 2010;59(10):1481–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, et al. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene. 2012;494(1):36–43.
Article
CAS
PubMed
Google Scholar
Wang IJ, Chen SL, Lu TP, Chuang E, Chen PC. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43(5):535–43.
Article
CAS
PubMed
Google Scholar
Rzehak P, Saffery R, Reischl E, Covic M, Wahl S, Grote V, et al. Maternal smoking during pregnancy and DNA-methylation in children at age 5.5 years: epigenome-wide-analysis in the European Childhood Obesity Project (CHOP)-study. PLoS One. 2016;11(5):e0155554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toledo-Rodriguez M, Lotfipour S, Leonard G, Perron M, Richer L, Veillette S, et al. Maternal smoking during pregnancy is associated with epigenetic modifications of the brain-derived neurotrophic factor-6 exon in adolescent offspring. Am J Med Genet B Neuropsychiatr Genet. 2010;153(7):1350–4.
Article
CAS
Google Scholar
Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5(7):583–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Hong X, Ji H, Tang WY, Kimmel M, Ji Y, et al. Maternal smoking during pregnancy and cord blood DNA methylation: new insight on sex differences and effect modification by maternal folate levels. Epigenetics. 2018;13(5):505–18.
Article
PubMed
PubMed Central
Google Scholar
Bouwland-Both MI, van Mil NH, Tolhoek CP, Stolk L, Eilers PH, Verbiest MM, et al. Prenatal parental tobacco smoking, gene specific DNA methylation, and newborns size: the Generation R study. Clin Epigenetics. 2015;7(1):83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169(1–3):1–15.
Article
CAS
PubMed
Google Scholar
Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110(Suppl 3):451.
Article
PubMed
PubMed Central
Google Scholar
Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.
Article
PubMed
Google Scholar
Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect. 2006;114(8):1287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi H, Jedrychowski W, Spengler J, Camann DE, Whyatt RM, Rauh V, et al. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth. Environ Health Perspect. 2006;114(11):1744.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perera FP, Rauh V, Tsai W-Y, Kinney P, Camann D, Barr D, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003;111(2):201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herbstman JB, Tang D, Zhu D, Qu L, Sjödin A, Li Z, et al. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo [a] pyrene–DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect. 2012;120(5):733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Kalia V, Perera F, Herbstman J, Li T, Nie J, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ Int. 2017;99:315–20.
Article
CAS
PubMed
Google Scholar
Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, et al. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4(2):e4488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingsley SL, Eliot MN, Whitsel EA, Huang Y-T, Kelsey KT, Marsit CJ, et al. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int. 2016;92:43–9.
Article
CAS
PubMed
Google Scholar
Gruzieva O, Xu C-J, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect. 2016;125(1):104–10.
Article
PubMed
PubMed Central
Google Scholar
Clifford RL, Jones MJ, MacIsaac JL, McEwen LM, Goodman SJ, Mostafavi S, et al. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J Allergy Clin Immunol. 2017;139(1):112–21.
Article
CAS
PubMed
Google Scholar
Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, et al. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol. 2012;34(4):694–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fudvoye J, Bourguignon J-P, Parent A-S. Endocrine-disrupting chemicals and human growth and maturation: a focus on early critical windows of exposure. In: Vitam Horm, vol. 94. Cambridge: Academic Press; 2014. p. 1–25.
Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int. 2015;76:78–97.
Article
CAS
PubMed
Google Scholar
Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis. 2014;5(6):419.
PubMed
PubMed Central
Google Scholar
Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun. 2011;25(6):1084–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res Part A: Clin Mol Teratol. 2010;88(10):938–44.
Article
CAS
Google Scholar
Markey CM, Coombs MA, Sonnenschein C, Soto AM. Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev. 2003;5(1):67–75.
Article
CAS
PubMed
Google Scholar
Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.
Article
CAS
PubMed
Google Scholar
Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun. 2008;376(3):563–7.
Article
CAS
PubMed
Google Scholar
Tang W-Y, Newbold R, Mardilovich K, Jefferson W, Cheng RY, Medvedovic M, et al. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp 1) correlates with overexpression of Nsbp 1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology. 2008;149(12):5922–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, et al. Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response. 2015;13(3):1559325815598308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2004;113(4):391–5.
Article
CAS
PubMed Central
Google Scholar
Takahashi O, Oishi S. Disposition of orally administered 2, 2-Bis (4-hydroxyphenyl) propane (bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect. 2000;108(10):931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konieczna A, Rutkowska A, Rachon D. Health risk of exposure to Bisphenol A (BPA). Rocz Państw Zakł Hig. 2015;66(1):5–11.
CAS
PubMed
Google Scholar
Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-a (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 2010;1(3):146–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. Bisphenol-a exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. 2010;24(7):2273–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Y, Xia W, Wang D, Wan Y, Xu B, Chen X, et al. Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood. Diabetologia. 2013;56(9):2059–67.
Article
CAS
PubMed
Google Scholar
Faulk C, Kim JH, Anderson OS, Nahar MS, Jones TR, Sartor MA, et al. Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol a. Epigenetics. 2016;11(7):489–500.
Article
PubMed
PubMed Central
Google Scholar
Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V. Developmental programming: gestational bisphenol-a treatment alters trajectory of fetal ovarian gene expression. Endocrinology. 2013;154(5):1873–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere. 2015;124:54–60.
Article
CAS
PubMed
Google Scholar
Faulk C, Kim JH, Jones TR, McEachin RC, Nahar MS, Dolinoy DC, et al. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environ Epigenet. 2015;1(1):dvv006.
Nahar MS, Kim JH, Sartor MA, Dolinoy DC. Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environ Mol Mutagen. 2014;55(3):184–95.
Article
CAS
PubMed
Google Scholar
Salian S, Doshi T, Vanage G. Perinatal exposure of rats to bisphenol A affects the fertility of male offspring. Life Sci. 2009;85(21–22):742–52.
Article
CAS
PubMed
Google Scholar
Salian S, Doshi T, Vanage G. Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to bisphenol A. Life Sci. 2009;85(1–2):11–8.
Article
CAS
PubMed
Google Scholar
Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One. 2012;7(2):e31901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelce WR, Monosson E, Gamcsik MP, Laws SC, Gray LE. Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol. 1994;126(2):276–85.
Article
CAS
PubMed
Google Scholar
Anway MD, Leathers C, Skinner MK. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology. 2006;147(12):5515–23.
Article
CAS
PubMed
Google Scholar
Stouder C, Paoloni-Giacobino A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction. 2010;139(2):373–9.
Article
CAS
PubMed
Google Scholar
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One. 2010;5(9):e13100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anway MD, Memon MA, Uzumcu M, Skinner MK. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl. 2006;27(6):868–79.
Article
CAS
PubMed
Google Scholar
Uzumcu M, Suzuki H, Skinner MK. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reprod Toxicol. 2004;18(6):765–74.
Article
CAS
PubMed
Google Scholar
Wolf CJ, LeBlanc GA, Ostby JS, Gray LE Jr. Characterization of the period of sensitivity of fetal male sexual development to vinclozolin. Toxicol Sci. 2000;55(1):152–61.
Article
CAS
PubMed
Google Scholar
Chang H-S, Anway MD, Rekow SS, Skinner MK. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology. 2006;147(12):5524–41.
Article
CAS
PubMed
Google Scholar
Organization WH. Persistent organic pollutants: impact on child health. 2010.
Google Scholar
Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect. 2010;118(5):712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogan WJ, Ragan NB. Evidence of effects of environmental chemicals on the endocrine system in children. Pediatrics. 2003;112(Supplement 1):247–52.
PubMed
Google Scholar
Jacobson JL, Jacobson SW, Schwartz PM, Fein GG, Dowler JK. Prenatal exposure to environmental toxin: a test of the multiple effects model. Dev Psychol. 1984;20(4):523.
Article
Google Scholar
Collins WT Jr, Capen CC. Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by the milk to polychlorinated biphenyls. Am J Pathol. 1980;99(1):125.
CAS
PubMed
PubMed Central
Google Scholar
Darvill T, Lonky E, Reihman J, Stewart P, Pagano J. Prenatal exposure to PCBs and infant performance on the Fagan test of infant intelligence. Neurotoxicology. 2000;21(6):1029–38.
CAS
PubMed
Google Scholar
Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB, et al. In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics. 2006;118(1):233–41.
Article
PubMed
Google Scholar
Mocarelli P, Gerthoux PM, Ferrari E, Patterson DG Jr, Kieszak SM, Brambilla P, et al. Paternal concentrations of dioxin and sex ratio of offspring. Lancet. 2000;355(9218):1858–63.
Article
CAS
PubMed
Google Scholar
Guo YL, Hsu P-C, Hsu C-C, Lambert GH. Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans. Lancet. 2000;356(9237):1240–1.
Article
CAS
PubMed
Google Scholar
Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ. Effects of endocrine disruptors on obesity. Int J Androl. 2008;31(2):201–8.
Article
CAS
PubMed
Google Scholar
Dewailly E, Ayotte P, Bruneau S, Gingras S, Belles-Isles M, Roy R. Susceptibility to infections and immune status in Inuit infants exposed to organochlorines. Environ Health Perspect. 2000;108(3):205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huen K, Yousefi P, Bradman A, Yan L, Harley KG, Kogut K, et al. Effects of age, sex, and persistent organic pollutants on DNA methylation in children. Environ Mol Mutagen. 2014;55(3):209–22.
Article
CAS
PubMed
Google Scholar
Dao T, Hong X, Wang X, Tang W-Y. Aberrant 5′-CpG methylation of cord blood TNFα associated with maternal exposure to polybrominated diphenyl ethers. PLoS One. 2015;10(9):e0138815.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kappil MA, Li Q, Li A, Dassanayake PS, Xia Y, Nanes JA, et al. In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development. Environ Epigenet. 2016;2(1):dvv013.
Zhao Y, Liu P, Wang J, Xiao X, Meng X, Zhang Y. Umbilical cord blood PBDEs concentrations are associated with placental DNA methylation. Environ Int. 2016;97:1–6.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Azumi K, Goudarzi H, Araki A, Miyashita C, Kobayashi S, et al. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: the Hokkaido study. J Expo Sci Environ Epidemiol. 2017;27(3):251.
Article
CAS
PubMed
Google Scholar
Leter G, Consales C, Eleuteri P, Uccelli R, Specht IO, Toft G, et al. Exposure to perfluoroalkyl substances and sperm DNA global methylation in Arctic and European populations. Environ Mol Mutagen. 2014;55(7):591–600.
Article
CAS
PubMed
Google Scholar
Consales C, Toft G, Leter G, Bonde JPE, Uccelli R, Pacchierotti F, et al. Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations. Environ Mol Mutagen. 2016;57(3):200–9.
Article
CAS
PubMed
Google Scholar
Somm E, Stouder C, Paoloni-Giacobino A. Effect of developmental dioxin exposure on methylation and expression of specific imprinted genes in mice. Reprod Toxicol. 2013;35:150–5.
Article
CAS
PubMed
Google Scholar
Wu Q, Ohsako S, Ishimura R, Suzuki JS, Tohyama C. Exposure of mouse preimplantation embryos to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod. 2004;70(6):1790–7.
Article
CAS
PubMed
Google Scholar
Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology. 2009;150(7):3376–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog: Published in cooperation with the University of Texas MD Anderson Cancer Center. 2003;38(2):78–84.
Article
CAS
Google Scholar
Zama AM, Uzumcu M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology. 2009;150(10):4681–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruner-Tran KL, Osteen KG. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol. 2011;31(3):344–50.
Article
CAS
PubMed
Google Scholar
Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167–82.
Article
PubMed
Google Scholar
He J, Charlet L. A review of arsenic presence in China drinking water. J Hydrol. 2013;492:79–88.
Article
CAS
Google Scholar
Gustin K, Tofail F, Vahter M, Kippler M. Cadmium exposure and cognitive abilities and behavior at 10 years of age: a prospective cohort study. Environ Int. 2018;113:259–68.
Article
CAS
PubMed
Google Scholar
Quazi S, Sarkar D, Datta R. Human health risk from arsenical pesticide contaminated soils: a long-term greenhouse study. J Hazard Mater. 2013;262:1031–8.
Article
CAS
PubMed
Google Scholar
Aoki Y, Yee J, Mortensen ME. Blood cadmium by race/hispanic origin: the role of smoking. Environ Res. 2017;155:193–8.