Fesahat F, Montazeri F, Hoseini SM. Preimplantation genetic testing in assisted reproduction technology. J Gynecol Obstet Hum Reprod. 2020;49(5):101723.
Article
PubMed
Google Scholar
Esteves SC, Humaidan P, Roque M, Agarwal A. Female infertility and assisted reproductive technology. Panminerva Med. 2019;61(1):1–2.
Article
PubMed
Google Scholar
Agarwal A, Esteves SC, Humaidan P, Roque M. Male infertility and assisted reproductive technology. Panminerva Med. 2019;61(2):101–3.
Article
PubMed
Google Scholar
Mukaida T, Wada S, Takahashi K, Pedro P, An T, Kasai M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod. 1998;13(10):2874–9.
Article
CAS
PubMed
Google Scholar
Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod. 1999;14(12):3077–9.
Article
CAS
PubMed
Google Scholar
Kometas M, Christman GM, Kramer J, Rhoton-Vlasak A. Methods of ovarian tissue cryopreservation: is vitrification superior to slow freezing?—Ovarian tissue freezing methods. Reprod Sci. 2021;28(12):3291–302.
Article
PubMed
Google Scholar
Ramos L, Galbinski S, Nacul A, Jiménez MF, Frantz N, Bos-Mikich A, Detailed morphological analysis of cryoinjury in human ovarian tissue following vitrification or slow freezing. 2021.
Arshad U, Sagheer M, González-Silvestry FB, Hassan M, Sosa F. Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing: a systematic meta-analysis. Cryobiology. 2021;101:1–11.
Article
PubMed
Google Scholar
Ahuja KK, Macklon N. Vitrification and the demise of fresh treatment cycles in ART. Reprod Biomed Online. 2020;41(2):217–24.
Article
PubMed
Google Scholar
Cornet-Bartolomé D, Rodriguez A, García D, Barragán M, Vassena R. Efficiency and efficacy of vitrification in 35,654 sibling oocytes from donation cycles. Hum Reprod. 2020;35(10):2262–71.
Article
PubMed
Google Scholar
Cao Y, Xing Q, Zhang ZG, Wei ZL, Zhou P, Cong L. Cryopreservation of immature and in-vitro matured human oocytes by vitrification. Reprod Biomed Online. 2009;19(3):369–73.
Article
PubMed
Google Scholar
Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online. 2018;37(3):327–39.
Article
CAS
PubMed
Google Scholar
Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenet. 2020;12(1):1–15.
Article
Google Scholar
Yodrug T, Parnpai R, Hirao Y, Somfai T. Effect of vitrification at different meiotic stages on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Anim Sci J. 2021;92(1):e13596.
Article
CAS
PubMed
Google Scholar
Moulavi F, Saadeldin I, Swelum A, Tasdighi F, Hosseini-Fahraji H, Hosseini S. Oocyte vitrification induces loss of DNA methylation and histone acetylation in the resulting embryos derived using ICSI in dromedary camel. Zygote. 2021;66:1–10.
Google Scholar
Renfree MB, Hore TA, Shaw G, Graves JA, Pask AJ. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet. 2009;10:241–62.
Article
CAS
PubMed
Google Scholar
Anvar Z, Chakchouk I, Demond H. DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting. Zygote. 2021;12(8):66.
Google Scholar
Kaneko-Ishino T, Ishino F. The evolutionary advantage in mammals of the complementary monoallelic expression mechanism of genomic imprinting and its emergence from a defense against the insertion into the host genome. Front Genet. 2022;13: 832983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry. 2022;12(1):210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell. 2022;57(1):63-79.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 2006;113(1–4):279–91.
Article
CAS
PubMed
Google Scholar
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Zygote. 2019;76(20):4009–21.
CAS
Google Scholar
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Dias AJB, Rios ÁFL. Multi-locus imprinting disturbances of Beckwith–Wiedemann and large offspring syndrome/abnormal offspring syndrome: a brief review. Theriogenology. 2021;173:193–201.
Article
CAS
PubMed
Google Scholar
Lim DH, Maher ER. Genomic imprinting syndromes and cancer. Adv Genet. 2010;70:145–75.
Article
CAS
PubMed
Google Scholar
Elhamamsy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017;34(5):549–62.
Article
PubMed
PubMed Central
Google Scholar
Hanna CW, Kelsey G. Features and mechanisms of canonical and noncanonical genomic imprinting. Adv Genet. 2021;35(11–12):821–34.
CAS
Google Scholar
Kelsey G, Feil R, New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond Ser B Biol Sci. 2013:368(1609):20110336.
Monk D. Germline-derived DNA methylation and early embryo epigenetic reprogramming: the selected survival of imprints. Int J Biochem Cell Biol. 2015;67:128–38.
Article
CAS
PubMed
Google Scholar
SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod. 2018;99(1):252–62.
Article
PubMed
PubMed Central
Google Scholar
Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Biol Reprod. 2020;12(1):64.
CAS
Google Scholar
Szabó PE, Hübner K, Schöler H, Mann JR. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev. 2002;115(1–2):157–60.
Article
PubMed
Google Scholar
Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F, Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. 2002.
Stewart KR, Veselovska L, Kelsey G. Establishment and functions of DNA methylation in the germline. Epigenomics. 2016;8(10):1399–413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update. 2018;24(5):556–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20(4):235–48.
Article
CAS
PubMed
Google Scholar
Barberet J, Binquet C, Guilleman M, Doukani A, Choux C, Bruno C, Bourredjem A, Chapusot C, Bourc’his D, Duffourd Y, Fauque P. Do assisted reproductive technologies and in vitro embryo culture influence the epigenetic control of imprinted genes and transposable elements in children? Hum Reprod. 2021;36(2):479–92.
Article
CAS
PubMed
Google Scholar
Ochoa E. Alteration of genomic imprinting after assisted reproductive technologies and long-term health. Life. 2021;11(8):66.
Article
Google Scholar
Denomme MM, Mann MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction. 2012;144(4):393–409.
Article
CAS
PubMed
Google Scholar
Sciorio R, El Hajj N. Epigenetic risks of medically assisted reproduction. J Clin Med. 2022;11(8):66.
Article
Google Scholar
DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–60.
Article
CAS
PubMed
Google Scholar
Gicquel C, Gaston V, Mandelbaum J, Siffroi J-P, Flahault A, Le Bouc Y, In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCNQ1OT gene. Am J Hum Genet. 2003;72(5):1338.
Halliday J, Oke K, Breheny S, Algar E, Amor DJ. Beckwith–Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet. 2004;75(3):526–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod. 2009;15(8):471–7.
Article
CAS
PubMed
Google Scholar
Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics. 2020;15(1–2):12–25.
Article
PubMed
Google Scholar
DeAngelis AM, Martini AE, Owen CM. Assisted Reproductive Technology and Epigenetics. Seminars in reproductive medicine. 2018;36(3–04):221–32.
Article
PubMed
Google Scholar
Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature. 1985;313(6003):573–5.
Article
CAS
PubMed
Google Scholar
Nakagata N. High survival rate of unfertilized mouse oocytes after vitrification. J Reprod Fertil. 1989;87(2):479–83.
Article
CAS
PubMed
Google Scholar
El Cury-Silva T, Nunes ME, Casalechi M, Comim FV, Rodrigues JK, Reis FM. Cryoprotectant agents for ovarian tissue vitrification: systematic review. Cryobiology. 2021;66:5.
Google Scholar
Li J, Xiong S, Zhao Y, Li C, Han W, Huang G. Effect of the re-vitrification of embryos at different stages on embryonic developmental potential. Front Endocrinol. 2021;12:66.
Google Scholar
Cobo A, García-Velasco JA, Remohí J, Pellicer A. Oocyte vitrification for fertility preservation for both medical and nonmedical reasons. Fertil Steril. 2021;115(5):1091–101.
Article
PubMed
Google Scholar
Koohestanidehaghi Y, Torkamanpari M, Shirmohamadi Z, Lorian K, Vatankhah M. The effect of cysteine and glutamine on human sperm functional parameters during vitrification. Andrologia. 2021;53(1):13870.
Article
Google Scholar
Nur Karakus F, Bulgurcuoglu Kuran S, Solakoglu S. Effect of curcumin on sperm parameters after the cryopreservation. Eur J Obstet Gynecol Reprod Biol. 2021;267:161–6.
Article
PubMed
Google Scholar
Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, Lulat AG, Risopatron MJ, Sanchez R. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction. 2008;136(2):167–73.
Article
CAS
PubMed
Google Scholar
Riva NS, Ruhlmann C, Iaizzo RS, Marcial Lopez CA, Martinez AG. Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA assisted reproduction. 2018;22(4):331–7.
PubMed
Google Scholar
Aizpurua J, Medrano L, Enciso M, Sarasa J, Romero A, Fernandez MA, Gomez-Torres MJ. New permeable cryoprotectant-free vitrification method for native human sperm. Hum Reprod. 2017;32(10):2007–15.
Article
CAS
PubMed
Google Scholar
Sharma R, Kattoor AJ, Ghulmiyyah J, Agarwal A. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med. 2015;61(1):1–12.
Article
CAS
PubMed
Google Scholar
Hu H, Ji G, Shi X, Liu R, Zhang J, Zhang H, Yuan X, Zhang G, Yuan W, Li M. Comparison of rapid freezing versus vitrification for human sperm cryopreservation using sucrose in closed straw systems. Cell Tissue Bank. 2020;21(4):667–73.
Article
CAS
PubMed
Google Scholar
Amer M, Ismail N, Gamal El Din SF, Rashad EZ, Fakhry E, Abd El Hakim W, Ragab A. 2019 Effect of cryoprotectant-free vitrification versus conventional freezing on human testicular sperm motility: a prospective comparative study. Hum Fertil. 2019;66:1–6.
Google Scholar
Li Y-X, Zhou L, Lv M-Q, Ge P, Liu Y-C, Zhou D-X. Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2019;233:84–92.
Article
CAS
PubMed
Google Scholar
Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55.
CAS
PubMed
Google Scholar
Debrock S, Peeraer K, Fernandez Gallardo E, De Neubourg D, Spiessens C, D’Hooghe TM. Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing: a RCT. Hum Reprod. 2015;30(8):1820–30.
Article
CAS
PubMed
Google Scholar
Mature oocyte cryopreservation. a guideline. Fertil Steril. 2013;99(1):37–43.
Article
Google Scholar
Cobo A, Serra V, Garrido N, Olmo I, Pellicer A, Remohi J, Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil Steril. 2014;102(4):1006–1015e4.
Martinez M, Rabadan S, Domingo J, Cobo A, Pellicer A, Garcia-Velasco JA. Obstetric outcome after oocyte vitrification and warming for fertility preservation in women with cancer. Reprod Biomed Online. 2014;29(6):722–8.
Article
PubMed
Google Scholar
Henry L, Labied S, Jouan C, Nisolle M. Preservation of female fertility: The current therapeutic strategy. Int J Gynaecol Obstet. 2022;156(1):3–9.
Article
PubMed
Google Scholar
Maggiulli R, Vaiarelli A, Cimadomo D, Giancani A, Tacconi L, Fabozzi G, Ubaldi FM, Rienzi L. Fertility preservation through oocyte vitrification: clinical and laboratory perspectives. J Vis Exp. 2021;175:66.
Google Scholar
Dolmans MM, Manavella DD. Recent advances in fertility preservation. J Obstet Gynaecol Res. 2019;45(2):266–79.
Article
PubMed
Google Scholar
Nagy ZP, Shapiro D, Chang CC. Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment. Fertil Steril. 2020;113(2):241–7.
Article
CAS
PubMed
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.
Article
Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–24.
Article
Google Scholar
Sonigo C, Beau I, Binart N, Grynberg M. The impact of chemotherapy on the ovaries: molecular aspects and the prevention of ovarian damage. Int J Mol Sci. 2019;20(21):5342.
Article
CAS
PubMed Central
Google Scholar
Gargus E, Deans R, Anazodo A, Woodruff TK. Management of primary ovarian insufficiency symptoms in survivors of childhood and adolescent cancer. J Natl Compr Canc Netw. 2018;16(9):1137–49.
Article
PubMed
PubMed Central
Google Scholar
Donnez J, Dolmans M-M. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65.
Article
PubMed
Google Scholar
Medicine PC. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2019;112(6):1022–33.
Article
Google Scholar
Dolmans MM, von Wolff M, Poirot C, Diaz-Garcia C, Cacciottola L, Boissel N, Liebenthron J, Pellicer A, Donnez J, Andersen CY. Transplantation of cryopreserved ovarian tissue in a series of 285 women: a review of five leading European centers. Fertil Steril. 2021;115(5):1102–15.
Article
CAS
PubMed
Google Scholar
Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Scientific reports. 2017;7(1):8538.
Article
PubMed
PubMed Central
Google Scholar
El Cury-Silva T, Nunes MEG, Casalechi M, Comim FV, Rodrigues JK, Reis FM. Cryoprotectant agents for ovarian tissue vitrification: Systematic review. Cryobiology. 2021;6:66.
Google Scholar
Rivas Leonel EC, Lucci CM, Amorim CA. Cryopreservation of human ovarian tissue: a review. Transfusion medicine and hemotherapy. 2019;46(3):173–81.
Article
PubMed
PubMed Central
Google Scholar
Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, Ho CH, Kawamura N, Tamura M, Hashimoto S, Sugishita Y, Morimoto Y, Hosoi Y, Yoshioka N, Ishizuka B, Hsueh AJ. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA. 2013;110(43):17474–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki N, Yoshioka N, Takae S, Sugishita Y, Tamura M, Hashimoto S, Morimoto Y, Kawamura K. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–15.
Article
PubMed
Google Scholar
Santi D, De Vincentis S, Magnani E, Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5(4):695–703.
Article
CAS
PubMed
Google Scholar
Peng H, Zhao P, Liu J, Zhang J, Zhang J, Wang Y, Wu L, Song M, Wang W. Novel epigenomic biomarkers of male infertility identified by methylation patterns of CpG sites within imprinting control regions of H19 and SNRPN genes. OMICS. 2018;22(5):354–64.
Article
CAS
PubMed
Google Scholar
Costes V, Chaulot-Talmon A, Sellem E. Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Cryobiology. 2022;14(1):54.
CAS
Google Scholar
Zeng C, Peng W, Ding L, He L, Zhang Y, Fang D, Tang K. A preliminary study on epigenetic changes during boar spermatozoa cryopreservation. Cryobiology. 2014;69(1):119–27.
Article
CAS
PubMed
Google Scholar
Flores E, Ramió-Lluch L, Bucci D, Fernández-Novell J, Peña A, Rodríguez-Gil J. Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm. Theriogenology. 2011;76(8):1450–64.
Article
CAS
PubMed
Google Scholar
Jia G, Fu X, Cheng K, Yue M, Jia B, Hou Y, Zhu S. Spermatozoa cryopreservation alters pronuclear formation and zygotic DNA demethylation in mice. Theriogenology. 2015;83(6):1000–6.
Article
PubMed
Google Scholar
Chao S, Li J, Jin X, Tang H, Wang G, Gao G. Epigenetic reprogramming of embryos derived from sperm frozen at − 20°C. Sci China Life Sci. 2012;55(4):349–57.
Article
PubMed
Google Scholar
de Oliveira RA, Scarlet D, Ille N, Aurich C. Cooled-storage of equine semen does not induce major changes in sperm DNA methylation. Theriogenology. 2017;89:289–94.
Article
PubMed
Google Scholar
Aurich C, Schreiner B, Ille N, Alvarenga M, Scarlet D. Cytosine methylation of sperm DNA in horse semen after cryopreservation. Theriogenology. 2016;86(5):1347–52.
Article
CAS
PubMed
Google Scholar
Kläver R, Bleiziffer A, Redmann K, Mallidis C, Kliesch S, Gromoll J. Routine cryopreservation of spermatozoa is safe—evidence from the DNA methylation pattern of nine spermatozoa genes. J Assist Reprod Genet. 2012;29(9):943–50.
Article
PubMed
PubMed Central
Google Scholar
Khosravizadeh Z, Hassanzadeh G, Tavakkoly Bazzaz J, Alizadeh F, Totonchi M, Salehi E, Khodamoradi K, Khanehzad M, Hosseini SR, Abolhassani F. The effect of cryopreservation on DNA methylation patterns of the chromosome 15q11-q13 region in human spermatozoa. Cell Tissue Bank. 2020;21(3):433–45.
Article
PubMed
Google Scholar
Park JK, Lee JH. Development of optimized vitrification procedures using closed carrier system to improve the survival and developmental competence of vitrified mouse oocytes. Cell. 2021;10(7):66.
Google Scholar
Viana IGR, Vireque AA, Navarro PA. Comparing the effects of a commercial and a prototype vitrification medium on meiotic spindle morphology and survival rate of mouse oocytes. Cell. 2022;6:66.
Google Scholar
Girka E, Gatenby L, Gutierrez EJ, Bondioli KR. The effects of microtubule stabilizing and recovery agents on vitrified bovine oocytes. Theriogenology. 2022;182:9–16.
Article
CAS
PubMed
Google Scholar
Khalili MA, Maione M, Palmerini MG, Bianchi S, Macchiarelli G, Nottola SA. Ultrastructure of human mature oocytes after vitrification. Eur J histochem. 2022;56(3):38.
Article
Google Scholar
Palmerini MG, Antinori M, Maione M, Cerusico F, Versaci C, Nottola SA, Macchiarelli G, Khalili MA, Antinori S. Ultrastructure of immature and mature human oocytes after cryotop vitrification. J Reprod Dev. 2014;60(6):411–20.
Article
PubMed
PubMed Central
Google Scholar
Hwang I-S, Kwon D-J, Im G-S, Tashima K, Hochi S, Hwang S. High incidence of polyspermic fertilization in bovine oocytes matured in vitro after Cryotop vitrification. CryoLetters. 2016;37(1):27–33.
PubMed
Google Scholar
Ma Y, Long C, Liu G, Bai H, Ma L, Bai T, Zuo Y, Li S. WGBS combined with RNA-seq analysis revealed that Dnmt1 affects the methylation modification and gene expression changes during mouse oocyte vitrification. Theriogenology. 2021;6:66.
Google Scholar
Chen H, Zhang L, Deng T, Zou P, Wang Y, Quan F, Zhang Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology. 2016;86(3):868–78.
Article
CAS
PubMed
Google Scholar
Chen H, Zhang L, Wang Z, Chang H, Xie X, Fu L, Zhang Y, Quan F. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev. 2019;86(7):862–70.
Article
CAS
PubMed
Google Scholar
Cantatore C, George JS, Depalo R, D’Amato G, Moravek M, Smith GD. Mouse oocyte vitrification with and without dimethyl sulfoxide: influence on cryo-survival, development, and maternal imprinted gene expression. J Assist Reprod Genet. 2021;66:1–10.
Google Scholar
Cheng KR, Fu XW, Zhang RN, Jia GX, Hou YP, Zhu SE. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions inmouse blastocysts. Fertil Steril. 2014;102(4):1183-1190.e3.
Article
CAS
PubMed
Google Scholar
Zhao YH, Wang JJ, Zhang PP, Hao HS, Pang YW, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev. 2020;32(7):676–89.
Article
CAS
PubMed
Google Scholar
Ying L, Xiang-Wei F, Jun-Jie L, Dian-Shuai Y, Shi-En Z. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification. Zygote. 2014;22(2):138–45.
Article
Google Scholar
Al-Khtib M, Perret A, Khoueiry R, Ibala-Romdhane S, Blachère T, Greze C, Lornage J, Lefèvre A. Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro. Fertil Steril. 2011;95(6):1955–60.
Article
CAS
PubMed
Google Scholar
Liu M-H, Zhou W-H, Chu D-P, Fu L, Sha W, Li Y. Ultrastructural changes and methylation of human oocytes vitrified at the germinal vesicle stage and matured in vitro after thawing. Gynecol Obstet Inves. 2017;82(3):252–61.
Article
CAS
Google Scholar
DeMunck N, Petrussa L, Verheyen G, Staessen C, Vandeskelde Y, Sterckx J, Bocken G, Jacobs K, Stoop D, De Rycke M. Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy) methylation analysis consolidate the safety of human oocyte vitrification. Basic Sci Reprod Med. 2015;21(6):535–44.
Article
CAS
Google Scholar
Bartolac LK, Lowe JL, Koustas G, Grupen CG, Sjöblom C. Vitrification, not cryoprotectant exposure, alters the expression of developmentally important genes in in vitro produced porcine blastocysts. Cryobiology. 2018;80:70–6.
Article
CAS
PubMed
Google Scholar
Movahed E, Shabani R, Hosseini S, Shahidi S, Salehi M. Interfering effects of in vitro fertilization and vitrification on expression of Gtl2 and Dlk1 in mouse blastocysts. Int J Fertil Steril. 2020;14(2):110.
CAS
PubMed
PubMed Central
Google Scholar
Jahangiri M, Shahhoseini M, Movaghar B. H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reprod Biomed Online. 2014;29(5):559–66.
Article
CAS
PubMed
Google Scholar
Yao J, Geng L, Huang R, Peng W, Chen X, Jiang X, Yu M, Li M, Huang Y, Yang X. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction. 2017;154(3):197–205.
Article
CAS
Google Scholar
Garfield AS, Michael C, Smith FM, Kim M, Stewart-Cox JE, Kerry G, Sian B, Jing X, Dalley JW, Hurst LD. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature. 2011;469(7331):534–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Y, Ma Y, Wen L, Lei H, Chen S, Wang X. Changes in DNA methylation and imprinting disorders in E9. 5 mouse fetuses and placentas derived from vitrified 8-cell embryos. Mol Reprod Dev. 2019;6:66.
Google Scholar
Wang Z, Xu L, He F. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril. 2010;93(8):2729–33.
Article
CAS
PubMed
Google Scholar
Derakhshan-Horeh M, Abolhassani F, Jafarpour F, Moini A, Karbalaie K, Hosseini SM, Nasr-Esfahani MH. Vitrification at Day3 stage appears not to affect the methylation status of H19/IGF2 differentially methylated region of in vitro produced human blastocysts. Cryobiology. 2016;73(2):168–74.
Article
CAS
PubMed
Google Scholar
Yao J-F, Huang Y-F, Huang R-F, Lin S-X, Guo C-Q, Hua C-Z, Wu P-Y, Hu J-F, Li Y-Z. Effects of vitrification on the imprinted gene Snrpn in neonatal placental tissue. Reprod Dev Med. 2020;4(1):25.
Article
Google Scholar
Fauque P, De Mouzon J, Devaux A, Epelboin S, Gervoise-Boyer MJ, Levy R, Valentin M, Viot G, Bergere A, DeVienne C, Jonveaux P, Pessione F. Reproductive technologies, female infertility, and the risk of imprinting-related disorders. Clin Epigenet. 2020;12(1):191.
Article
Google Scholar
Barberet J, Romain G, Binquet C, Guilleman M, Bruno C, Ginod P, Chapusot C, Choux C, Fauque P. Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertil Steril. 2021;116(6):1468–80.
Article
CAS
PubMed
Google Scholar
Sauvat F, Capito C, Sarnacki S, Poirot C, Bachelot A, Meduri G, Dandolo L, Binart N. Immature cryopreserved ovary restores puberty and fertility in mice without alteration of epigenetic marks. PLoS ONE. 2008;3(4):1972.
Article
Google Scholar
He Z-Y, Wang H-Y, Zhou X, Liang X-Y, Yan B, Wang R, Ma L-H, Wang Y-L. Evaluation of vitrification protocol of mouse ovarian tissue by effect of DNA methyltransferase-1 and paternal imprinted growth factor receptor-binding protein 10 on signaling pathways. Cryobiology. 2018;80:89–95.
Article
CAS
PubMed
Google Scholar
Wang HY, Li YH, Sun L, Gao X, You L, Wang Y, Ma JL, Chen ZJ. Allotransplantation of cryopreserved prepubertal mouse ovaries restored puberty and fertility without affecting methylation profile of Snrpn-DMR. Fertil Steril. 2013;99(1):241-247e4.
Article
CAS
PubMed
Google Scholar
Trapphoff T, El Hajj N, Zechner U, Haaf T, Eichenlaub-Ritter U. DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod. 2010;25(12):3025–42.
Article
CAS
PubMed
Google Scholar
Damavandi M, Farrokh P, Zavareh S. Effect of mouse ovarian vitrification on promoter methylation of inhba and inhbb in granulosa cells of follicles. Cryo Lett. 2021;42(2):67–72.
Google Scholar