Wang R, Ying Z, Zhao J, Zhang Y, Lu H, Deng Y, et al. Lys(203) and Lys(382) are essential for the proteasomal degradation of BACE1. Curr Alzheimer Res. 2012;9(5):606–15.
Article
PubMed
CAS
Google Scholar
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.
Article
PubMed
Google Scholar
Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.
Article
Google Scholar
Wu Y, Xu Q, Song W. Oxidative stress and Alzheimer’s disease. In: Laher I, editor. Systems biology of free radicals and antioxidants. Berlin: Springer Berlin Heidelberg; 2014. p. 2147-74.
Chapman SN, Mehndiratta P, Johansen MC, McMurry TL, Johnston KC, Southerland AM. Current perspectives on the use of intravenous recombinant tissue plasminogen activator (tPA) for treatment of acute ischemic stroke. Vasc Health Risk Manag. 2014;10:75–87. https://doi.org/10.2147/VHRM.S39213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015;131:21–64. https://doi.org/10.1016/j.pneurobio.2015.05.002.
Article
PubMed
CAS
Google Scholar
Han X, Niu J, Zhao Y, Kong Q, Tong T, Han L. HDAC4 stabilizes SIRT1 via sumoylation SIRT1 to delay cellular senescence. Clin Exp Pharmacol Physiol. 2016;43(1):41–6. https://doi.org/10.1111/1440-1681.12496.
Article
PubMed
CAS
Google Scholar
Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, et al. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest. 2013;123(3):1359–70. https://doi.org/10.1172/JCI61084.
Article
PubMed
PubMed Central
CAS
Google Scholar
He M, Zhang B, Wei X, Wang Z, Fan B, Du P, et al. HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2013;17(4):531–42. https://doi.org/10.1111/jcmm.12040.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang QY, Wang ZJ, Sun DM, Wang Y, Xu P, Wu WJ, et al. Novel therapeutic effects of leonurine on ischemic stroke: new mechanisms of BBB integrity. Oxidative Med Cell Longev. 2017;2017:7150376. https://doi.org/10.1155/2017/7150376.
Article
Google Scholar
Yuan H, Denton K, Liu L, Li XJ, Benashski S, McCullough L, et al. Nuclear translocation of histone deacetylase 4 induces neuronal death in stroke. Neurobiol Dis. 2016;91:182–93. https://doi.org/10.1016/j.nbd.2016.03.004.
Article
PubMed
CAS
Google Scholar
Morris B, Etoubleau C, Bourthoumieu S, Reynaud-Perrine S, Laroche C, Lebbar A, et al. Dose dependent expression of HDAC4 causes variable expressivity in a novel inherited case of brachydactyly mental retardation syndrome. Am J Med Genet A. 2012;158A(8):2015–20. https://doi.org/10.1002/ajmg.a.35463.
Article
PubMed
CAS
Google Scholar
Otsuki K, Uchida S, Hobara T, Yamagata H, Watanabe Y. Epigenetic regulation in depression. Nihon Shinkei Seishin Yakurigaku Zasshi. 2012;32(4):181–6.
PubMed
CAS
Google Scholar
Shen X, Chen J, Li J, Kofler J, Herrup K. Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro. 2016;3:1. https://doi.org/10.1523/ENEURO.0124-15.2016.
Article
Google Scholar
Wu Y, Hou F, Wang X, Kong Q, Han X, Bai B. Aberrant expression of histone deacetylases 4 in cognitive disorders: molecular mechanisms and a potential target. Front Mol Neurosci. 2016;9:114. https://doi.org/10.3389/fnmol.2016.00114.
Article
PubMed
PubMed Central
CAS
Google Scholar
Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello SR. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol. 2008;68(8):1076–92. https://doi.org/10.1002/dneu.20637.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen YT, Zang XF, Pan J, Zhu XL, Chen F, Chen ZB, et al. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol. 2012;39(9):751–8. https://doi.org/10.1111/j.1440-1681.2012.05729.x.
Article
PubMed
CAS
Google Scholar
Sen T, Sen N. Isoflurane-induced inactivation of CREB through histone deacetylase 4 is responsible for cognitive impairment in developing brain. Neurobiol Dis. 2016;96:12–21. https://doi.org/10.1016/j.nbd.2016.08.005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang G, Zhang T, Li N, Wu L, Gu J, Li C, et al. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br J Pharmacol. 2018;175(3):517–31. https://doi.org/10.1111/bph.14102.
Article
PubMed
CAS
Google Scholar
Jeong CH, Kim SM, Lim JY, Ryu CH, Jun JA, Jeun SS. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int. 2014;2014:129145. https://doi.org/10.1155/2014/129145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang Y, Lin YH, Ni HY, Dong J, Yuan HJ, Zhang Y, et al. Inhibiting histone deacetylase 2 (HDAC2) promotes functional recovery from stroke. J Am Heart Assoc. 2017;6:10. https://doi.org/10.1161/JAHA.117.007236.
Article
Google Scholar
Lin YH, Dong J, Tang Y, Ni HY, Zhang Y, Su P, et al. Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci. 2017;37(28):6712–28. https://doi.org/10.1523/JNEUROSCI.0341-17.2017.
Article
PubMed
CAS
Google Scholar
Han Z, Dong X, Zhang C, Wu Y, Yuan Z, Wang X. Polymorphism of HDAC9 gene is associated with increased risk of acute coronary syndrome in Chinese Han population. Biomed Res Int. 2016;2016:3746276. https://doi.org/10.1155/2016/3746276.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci. 2007;27(23):6128–40. https://doi.org/10.1523/JNEUROSCI.0296-07.2007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459(7243):55–60. https://doi.org/10.1038/nature07925.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim MS, Akhtar MW, Adachi M, Mahgoub M, Bassel-Duby R, Kavalali ET, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci. 2012;32(32):10879–86. https://doi.org/10.1523/JNEUROSCI.2089-12.2012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu Y, Wang X, Zhou X, Cheng B, Li G, Bai B. Temporal expression of Apelin/Apelin receptor in ischemic stroke and its therapeutic potential. Front Mol Neurosci. 2017;10:1. https://doi.org/10.3389/fnmol.2017.00001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98. https://doi.org/10.1016/j.neuron.2010.07.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang S, Zis O, Ly PT, Wu Y, Zhang M, Cai F, et al. Down-regulation of MIF by NFkappaB under hypoxia accelerated neuronal loss during stroke. FASEB J. 2014; https://doi.org/10.1096/fj.14-253625.
Gutierrez-Vargas JA, Munoz-Manco JI, Garcia-Segura LM, Cardona-Gomez GP. GluN2B N-methyl-D-aspartic acid receptor subunit mediates atorvastatin-induced neuroprotection after focal cerebral ischemia. J Neurosci Res. 2014;92(11):1529–48. https://doi.org/10.1002/jnr.23426.
Article
PubMed
CAS
Google Scholar
Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.
Article
PubMed
CAS
Google Scholar
Arenillas JF, Sobrino T, Castillo J, Davalos A. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med. 2007;9(3):205–12.
Article
PubMed
Google Scholar
Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery. Trends Mol Med. 2015;21(9):543–8. https://doi.org/10.1016/j.molmed.2015.07.005.
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Liu Q, Jiang Y, Wu L, Xu G, Liu X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience. 2015;290:288–99. https://doi.org/10.1016/j.neuroscience.2015.01.038.
Article
PubMed
CAS
Google Scholar
Seto SW, Chang D, Jenkins A, Bensoussan A, Kiat H. Angiogenesis in ischemic stroke and angiogenic effects of Chinese herbal medicine. J Clin Med. 2016;5:6. https://doi.org/10.3390/jcm5060056.
Article
CAS
Google Scholar
Li Y, Zhang X, Cui L, Chen R, Zhang Y, Zhang C, et al. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem. 2017; https://doi.org/10.1111/jnc.14140.
Ruan L, Wang B, ZhuGe Q, Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015;1623:166–73. https://doi.org/10.1016/j.brainres.2015.02.042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol. 2015;7:11. https://doi.org/10.1101/cshperspect.a019034.
Article
CAS
Google Scholar
Guo F, Lou J, Han X, Deng Y, Huang X. Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke. Front Physiol. 2017;8:559. https://doi.org/10.3389/fphys.2017.00559.
Article
PubMed
PubMed Central
Google Scholar
Borlongan CV. Age of PISCES: stem-cell clinical trials in stroke. Lancet. 2016;388(10046):736–8. https://doi.org/10.1016/S0140-6736(16)31259-4.
Article
PubMed
Google Scholar
Lu J, Manaenko A, Hu Q. Targeting adult neurogenesis for poststroke therapy. Stem Cells Int. 2017;2017:5868632. https://doi.org/10.1155/2017/5868632.
Article
PubMed
PubMed Central
Google Scholar
Nagpal A, Choy FC, Howell S, Hillier S, Chan F, Hamilton-Bruce MA, et al. Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: a systematic review and meta-analysis. Stem Cell Res Ther. 2017;8(1):191. https://doi.org/10.1186/s13287-017-0643-x.
Article
PubMed
PubMed Central
Google Scholar
Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013;11(11):e1001717. https://doi.org/10.1371/journal.pbio.1001717.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishino TG, Miyazaki M, Hoshino H, Miwa Y, Horinouchi S, Yoshida M. 14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem Biophys Res Commun. 2008;377(3):852–6. https://doi.org/10.1016/j.bbrc.2008.10.079.
Article
PubMed
CAS
Google Scholar
Wu Q, Yang X, Zhang L, Zhang Y, Feng L. Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol Neurobiol. 2016; https://doi.org/10.1007/s12035-016-0199-2.
Litke C, Bading H, Mauceri D. Histone deacetylase 4 shapes neuronal morphology via a mechanism involving regulation of expression of vascular endothelial growth factor D. J Biol Chem. 2018;293(21):8196–207. https://doi.org/10.1074/jbc.RA117.001613.
Article
PubMed
CAS
Google Scholar
Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics. 2014;6(1):139–50. https://doi.org/10.2217/epi.13.73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A. 1999;96(9):4868–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee HA, Song MJ, Seok YM, Kang SH, Kim SY, Kim I. Histone deacetylase 3 and 4 complex stimulates the transcriptional activity of the mineralocorticoid receptor. PLoS One. 2015;10(8):e0136801. https://doi.org/10.1371/journal.pone.0136801.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ginnan R, Sun LY, Schwarz JJ, Singer HA. MEF2 is regulated by CaMKIIdelta2 and a HDAC4-HDAC5 heterodimer in vascular smooth muscle cells. Biochem J. 2012;444(1):105–14. https://doi.org/10.1042/BJ20120152.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J 3rd, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151(4):821–34. https://doi.org/10.1016/j.cell.2012.09.037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ronan JL, Wu W, Crabtree GR. From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet. 2013;14(5):347–59. https://doi.org/10.1038/nrg3413.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang P, Sun Q, Zhao C, Ling S, Li Q, Chang YZ, et al. HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4. Cell Signal. 2014;26(3):556–63. https://doi.org/10.1016/j.cellsig.2013.11.026.
Article
PubMed
CAS
Google Scholar
Schwartz S, Truglio M, Scott MJ, Fitzsimons HL. Long-term memory in Drosophila is influenced by the histone deacetylase HDAC4 interacting with the SUMO-conjugating enzyme Ubc9. Genetics. 2016; https://doi.org/10.1534/genetics.115.183194.
Kang B, Li W, Xi W, Yi Y, Ciren Y, Shen H, et al. Hydrogen sulfide protects cardiomyocytes against apoptosis in ischemia/reperfusion through MiR-1-regulated histone deacetylase 4 pathway. Cell Physiol Biochem. 2017;41(1):10–21. https://doi.org/10.1159/000455816.
Article
PubMed
CAS
Google Scholar
Kassis H, Chopp M, Liu XS, Shehadah A, Roberts C, Zhang ZG. Histone deacetylase expression in white matter oligodendrocytes after stroke. Neurochem Int. 2014;77:17–23. https://doi.org/10.1016/j.neuint.2014.03.006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sorensen SS, Nygaard AB, Carlsen AL, Heegaard NHH, Bak M, Christensen T. Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomark Res. 2017;5:24. https://doi.org/10.1186/s40364-017-0104-9.
Article
PubMed
PubMed Central
Google Scholar
Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, et al. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One. 2016;11(9):e0163645. https://doi.org/10.1371/journal.pone.0163645.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Zhang J, Han R, Liu H, Sun D, Liu X. Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. J Clin Neurosci. 2015;22(2):291–5. https://doi.org/10.1016/j.jocn.2014.05.042.
Article
PubMed
CAS
Google Scholar
Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2016;53(10):6809–17. https://doi.org/10.1007/s12035-015-9605-4.
Article
PubMed
CAS
Google Scholar
Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res. 2012;216(2):225–30. https://doi.org/10.1007/s00221-011-2925-3.
Article
PubMed
CAS
Google Scholar
Winbanks CE, Wang B, Beyer C, Koh P, White L, Kantharidis P, et al. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem. 2011;286(16):13805–14. https://doi.org/10.1074/jbc.M110.192625.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One. 2013;8(6):e66393. https://doi.org/10.1371/journal.pone.0066393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kassis H, Shehadah A, Chopp M, Roberts C, Zhang ZG. Stroke induces nuclear shuttling of histone deacetylase 4. Stroke. 2015;46(7):1909–15. https://doi.org/10.1161/STROKEAHA.115.009046.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kassis H, Shehadah A, Li C, Zhang Y, Cui Y, Roberts C, et al. Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke. Neurochem Int. 2016;96:24–31. https://doi.org/10.1016/j.neuint.2016.04.006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu XS, Chopp M, Kassis H, Jia LF, Hozeska-Solgot A, Zhang RL, et al. Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience. 2012;220:313–21. https://doi.org/10.1016/j.neuroscience.2012.06.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baltan S, Murphy SP, Danilov CA, Bachleda A, Morrison RS. Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci. 2011;31(11):3990–9. https://doi.org/10.1523/JNEUROSCI.5379-10.2011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neuner SM, Wilmott LA, Hoffmann BR, Mozhui K, Kaczorowski CC. Hippocampal proteomics defines pathways associated with memory decline and resilience in ‘normal’ aging and Alzheimer’s disease mouse models. Behav Brain Res. 2016; https://doi.org/10.1016/j.bbr.2016.06.002.
Fitzsimons HL, Schwartz S, Given FM, Scott MJ. The histone deacetylase HDAC4 regulates long-term memory in Drosophila. PLoS One. 2013;8(12):e83903. https://doi.org/10.1371/journal.pone.0083903.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luan B, Goodarzi MO, Phillips NG, Guo X, Chen YD, Yao J, et al. Leptin-mediated increases in catecholamine signaling reduce adipose tissue inflammation via activation of macrophage HDAC4. Cell Metab. 2014;19(6):1058–65. https://doi.org/10.1016/j.cmet.2014.03.024.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Qin X, Liu S, Li J, Zhu X, Gao T, et al. Peroxisome proliferator-activated receptor gamma is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J Neurochem. 2011;118(3):429–39. https://doi.org/10.1111/j.1471-4159.2011.07316.x.
Article
PubMed
CAS
Google Scholar
Wu Q, Yang X, Zhang L, Zhang Y, Feng L. Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of parkinson’s disease. Mol Neurobiol. 2017;54(9):6970–83. https://doi.org/10.1007/s12035-016-0199-2.
Article
PubMed
CAS
Google Scholar
Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006;66(17):8814–21. https://doi.org/10.1158/0008-5472.CAN-05-4598.
Article
PubMed
CAS
Google Scholar
Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22(10):3549–60. https://doi.org/10.1096/fj.08-108548.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu J, Zhou X, Li Q, Zhou SM, Hu B, Hu GW, et al. Role of phosphorylated HDAC4 in stroke-induced angiogenesis. Biomed Res Int. 2017;2017:2957538. https://doi.org/10.1155/2017/2957538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-kappaB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015;34(43):5482–93. https://doi.org/10.1038/onc.2015.6.
Article
PubMed
CAS
Google Scholar
Madelaine R, Sloan SA, Huber N, Notwell JH, Leung LC, Skariah G, et al. MicroRNA-9 couples brain neurogenesis and angiogenesis. Cell Rep. 2017;20(7):1533–42. https://doi.org/10.1016/j.celrep.2017.07.051.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang C, Zuo F, Wang Y, Lu H, Yang Q, Wang J. Progesterone changes VEGF and BDNF expression and promotes neurogenesis after ischemic stroke. Mol Neurobiol. 2016. Epub ahead of print. https://doi.org/10.1007/s12035-015-9651-y.
Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, et al. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One. 2014;9(4):e94348. https://doi.org/10.1371/journal.pone.0094348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Latchney SE, Jiang Y, Petrik DP, Eisch AJ, Hsieh J. Inducible knockout of Mef2a, -c, and -d from nestin-expressing stem/progenitor cells and their progeny unexpectedly uncouples neurogenesis and dendritogenesis in vivo. FASEB J. 2015;29(12):5059–71. https://doi.org/10.1096/fj.15-275651.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Z, McKercher SR, Cui J, Nie Z, Soussou W, Roberts AJ, et al. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci. 2008;28(26):6557–68. https://doi.org/10.1523/JNEUROSCI.0134-08.2008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang AH, Yang XJ. Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol. 2001;21(17):5992–6005.
Article
PubMed
PubMed Central
CAS
Google Scholar
McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408(6808):106–11. https://doi.org/10.1038/35040593.
Article
PubMed
PubMed Central
CAS
Google Scholar
McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol. 2001;21(18):6312–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A. 2007;104(44):17335–40. https://doi.org/10.1073/pnas.0706487104.
Article
PubMed
PubMed Central
Google Scholar
Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91. https://doi.org/10.1038/nrd4360.
Article
PubMed
CAS
Google Scholar
Faria Freitas M, Cuendet M, Bertrand P. HDAC inhibitors: a 2013–2017 patent survey. Expert Opin Ther Pat. 2018:1–17. https://doi.org/10.1080/13543776.2018.1459568.
Gaur V, Connor T, Sanigorski A, Martin SD, Bruce CR, Henstridge DC, et al. Disruption of the class IIa HDAC corepressor complex increases energy expenditure and lipid oxidation. Cell Rep. 2016;16(11):2802–10. https://doi.org/10.1016/j.celrep.2016.08.005.
Article
PubMed
CAS
Google Scholar
Zhang LX, DeNicola M, Qin X, Du J, Ma J, Tina Zhao Y, et al. Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol. 2014;307(4):C358–72. https://doi.org/10.1152/ajpcell.00187.2013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khalil W, Xia H, Bodempudi V, Kahm J, Hergert P, Smith K, et al. Pathologic regulation of collagen I by an aberrant protein phosphatase 2A/histone deacetylase C4/MicroRNA-29 signal axis in idiopathic pulmonary fibrosis fibroblasts. Am J Respir Cell Mol Biol. 2015;53(3):391–9. https://doi.org/10.1165/rcmb.2014-0150OC.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen C, Wei X, Wang S, Jiao Q, Zhang Y, Du G, et al. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation. Biochim Biophys Acta. 2016;1863(7 Pt A):1633–42. https://doi.org/10.1016/j.bbamcr.2016.04.018.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72(2):269–77. https://doi.org/10.1002/ana.23588.
Article
PubMed
CAS
Google Scholar
Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, Cenciarelli C, et al. Potential of stem cell-based therapy for ischemic stroke. Front Neurol. 2018;9:34. https://doi.org/10.3389/fneur.2018.00034.
Article
PubMed
PubMed Central
Google Scholar
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. https://doi.org/10.1016/j.stem.2015.06.007.
Article
PubMed
CAS
Google Scholar