Xu J, Sinclair KD. One-carbon metabolism and epigenetic regulation of embryo development. Reproduction, Fertility and Development. 2015. doi:10.1071/RD14377.
Google Scholar
Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94(4):1027–76. doi:10.1152/physrev.00029.2013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steegers-Theunissen RPM, Twigt J, Pestinger V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update. 2013;19(6):640–55. doi:10.1093/humupd/dmt041.
Article
CAS
PubMed
Google Scholar
Jung A, Kampman E. Nutrition, epigenetics, and cancer: an epidemiological perspective. Nutrition in Epigenetics. Oxford, UK: Wiley-Blackwell; 2011. p. 329–43.
Liu JJ, Ward RL. Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet. 2010;71:79–121. doi:10.1016/B978-0-12-380864-6.00004-3.
Article
CAS
PubMed
Google Scholar
Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature. Mol Genet Metab. 2014;113(4):243–52. doi:10.1016/j.ymgme.2014.10.006.
Article
CAS
PubMed
Google Scholar
Amarasekera M, Martino D, Ashley S, Harb H, Kesper D, Strickland D et al. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB journal:official publication of the Federation of American Societies for Experimental Biology. 2014. doi:10.1096/fj.13-249029.
Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One. 2009;4(11):e7845. doi:10.1371/journal.pone.0007845.
Article
PubMed Central
PubMed
Google Scholar
Hoyo C, Murtha AP, Schildkraut JM, Jirtle RL, Demark-Wahnefried W, Forman MR, et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics. 2011;6(7):928–36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr. 2013;97(1):94–9. doi:10.3945/ajcn.112.042572.
Article
CAS
PubMed
Google Scholar
McKay JA, Groom A, Potter C, Coneyworth LJ, Ford D, Mathers JC, et al. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12. PLoS One. 2012;7(3):e33290. doi:10.1371/journal.pone.0033290.
Article
PubMed Central
CAS
PubMed
Google Scholar
McKay JA, Mathers JC. Diet induced epigenetic changes and their implications for health. Acta Physiologica. 2011;202(2):103–18. doi:10.1111/j.1748-1716.2011.02278.x.
Article
CAS
PubMed
Google Scholar
Vickers MH. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6(6):2165–78. doi:10.3390/nu6062165.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barker DJP. Fetal and infant origins of adult disease. London: British Medical Journal; 1992.
Google Scholar
Barker DJP. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997;13(9):807–13. doi:10.1016/S0899-9007(97)00193-7.
Article
CAS
PubMed
Google Scholar
Jacob RA, Gretz DM, Taylor PC, James SJ, Pogribny IP, Miller BJ, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12.
CAS
PubMed
Google Scholar
Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003.
CAS
PubMed
Google Scholar
Lucock M, Yates Z. Folic acid fortification: a double-edged sword. Curr Opin Clin Nutr Metab Care. 2009;12(6):555–64. doi:10.1097/MCO.0b013e32833192bc.
Article
CAS
PubMed
Google Scholar
van Wijngaarden JP, Doets EL, Szczecińska A, Souverein OW, Duffy ME, Dullemeijer C, et al. Vitamin B(12), folate, homocysteine, and bone health in adults and elderly people: a systematic review with meta-analyses. J Nutri Metabol. 2013;2013:486186. doi:10.1155/2013/486186.
Google Scholar
McLean RR, Hannan MT. B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep. 2007;5(3):112–9.
Article
PubMed
Google Scholar
Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015;313(13):1325–35. doi:10.1001/jama.2015.2274.
Article
CAS
PubMed
Google Scholar
Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet. 2007;369(9576):1876–82. doi:10.1016/S0140-6736(07)60854-X.
Article
CAS
PubMed
Google Scholar
Durga J, van Boxtel MPJ, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16. doi:10.1016/S0140-6736(07)60109-3.
Article
CAS
PubMed
Google Scholar
Bassett JK, Severi G, Hodge AM, Baglietto L, Hopper JL, English DR, et al. Dietary intake of B vitamins and methionine and colorectal cancer risk. Nutr Cancer. 2013;65(5):659–67. doi:10.1080/01635581.2013.789114.
Article
CAS
PubMed
Google Scholar
Kim D-H, Smith-Warner S, Spiegelman D, Yaun S-S, Colditz G, Freudenheim J, et al. Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control. 2010;21(11):1919–30. doi:10.1007/s10552-010-9620-8.
Article
PubMed Central
PubMed
Google Scholar
Gibson TM, Weinstein SJ, Pfeiffer RM, Hollenbeck AR, Subar AF, Schatzkin A, et al. Pre- and postfortification intake of folate and risk of colorectal cancer in a large prospective cohort study in the United States. Am J Clin Nutr. 2011;94(4):1053–62. doi:10.3945/ajcn.110.002659.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ulrich CM, Potter JD. Folate supplementation: too much of a good thing? Cancer Epidemiol Biomarkers Prev. 2006;15(2):189–93. doi:10.1158/1055-9965.epi-06-0054.
Article
PubMed
Google Scholar
Kim YI. Folic acid fortification and supplementation—good for some but not so good for others. Nutr Rev. 2007;65(11):504–11.
Article
PubMed
Google Scholar
van den Donk M, Pellis L, Crott JW, van Engeland M, Friederich P, Nagengast FM, et al. Folic acid and vitamin B-12 supplementation does not favorably influence uracil incorporation and promoter methylation in rectal mucosa DNA of subjects with previous colorectal adenomas. J Nutr. 2007;137(9):2114–20.
PubMed
Google Scholar
Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA. 2007;297(21):2351–9. doi:10.1001/jama.297.21.2351.
Article
CAS
PubMed
Google Scholar
Rochtus A, Izzi B, Vangeel E, Louwette S, Wittevrongel C, Lambrechts D et al. DNA methylation analysis of homeobox genes implicates HOXB7 hypomethylation as risk factor for neural tube defects. Epigenetics : official journal of the DNA Methylation Society. 2015:1–10. doi:10.1080/15592294.2014.998531.
Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci. 1999;96(1):214–9. doi:10.1073/pnas.96.1.214.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang L, Hoque A, Luo RZ, Yuan J, Lu Z, Nishimoto A, et al. Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin Cancer Res. 2003;9(10 Pt 1):3660–6.
CAS
PubMed
Google Scholar
Chen J, Shi S, Yang W, Chen C. Over-expression of ARHI decreases tumor growth, migration, and invasion in human glioma. 2014;31(3):1–10. doi:10.1007/s12032-014-0846-2.
Li Y, Liu M, Zhang Y, Han C, You J, Yang J et al. Effects of ARHI on breast cancer cell biological behavior regulated by microRNA-221. 2013;34(6):3545–54. doi:10.1007/s13277-013-0933-6.
Yuan J, Luo RZ, Fujii S, Wang L, Hu W, Andreeff M, et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res. 2003;63(14):4174–80.
CAS
PubMed
Google Scholar
Yu Y, Fujii S, Yuan J, Luo RZ, Wang LIN, Bao J, et al. Epigenetic regulation of ARHI in breast and ovarian cancer cells. Ann N Y Acad Sci. 2003;983(1):268–77. doi:10.1111/j.1749-6632.2003.tb05981.x.
Article
CAS
PubMed
Google Scholar
Quail DF, Zhang G, Walsh LA, Siegers GM, Dieters-Castator DZ, Findlay SD, et al. Embryonic morphogen nodal promotes breast cancer growth and progression. PLoS One. 2012;7(11):e48237. doi:10.1371/journal.pone.0048237.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strizzi L, Hardy KM, Margaryan NV, Hillman DW, Seftor EA, Chen B, et al. Potential for the embryonic morphogen nodal as a prognostic and predictive biomarker in breast cancer. Breast Cancer Res. 2012;14(3):R75. doi:10.1186/bcr3185.
Article
PubMed Central
PubMed
Google Scholar
Chen J, Liu WB, Jia WD, Xu GL, Ma JL, Ren Y, et al. Embryonic morphogen nodal is associated with progression and poor prognosis of hepatocellular carcinoma. PLoS One. 2014;9(1):e85840. doi:10.1371/journal.pone.0085840.
Article
PubMed Central
PubMed
Google Scholar
Lee CC, Jan HJ, Lai JH, Ma HI, Hueng DY, Lee YC, et al. Nodal promotes growth and invasion in human gliomas. Oncogene. 2010;29(21):3110–23. doi:10.1038/onc.2010.55.
Article
CAS
PubMed
Google Scholar
Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature. 2000;403(6768):385–9.
Article
CAS
PubMed
Google Scholar
Schier AF. Nodal morphogens. Cold Spring Harb Perspect Biol. 2009;1(5):a003459. doi:10.1101/cshperspect.a003459.
Article
PubMed Central
PubMed
Google Scholar
Liszewski W, Ritner C, Aurigui J, Wong SSY, Hussain N, Krueger W, et al. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, nodal. Differentiation. 2012;83(4):169–78. doi:10.1016/j.diff.2011.12.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arai D, Hayakawa K, Ohgane J, Hirosawa M, Nakao Y, Tanaka S, et al. An epigenetic regulatory element of the nodal gene in the mouse and human genomes. Mech Dev. 2015;136(0):143–54. doi:10.1016/j.mod.2014.12.003.
Article
CAS
PubMed
Google Scholar
Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47. doi:10.1186/1741-7007-5-47.
Article
PubMed Central
PubMed
Google Scholar
Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat. 2010;192(5):261–74. doi:10.1016/j.aanat.2010.07.009.
Article
CAS
PubMed
Google Scholar
Wellik DM. Hox genes and vertebrate axial pattern. Curr Top Dev Biol. 2009;88:257-78. doi: 10.1016/S0070-2153(09)88009-5.
Article
CAS
PubMed
Google Scholar
Soshnikova N, Duboule D. Epigenetic temporal control of mouse Hox genes in vivo. Science. 2009;324(5932):1320–3. doi:10.1126/science.1171468.
Article
CAS
PubMed
Google Scholar
Czeizel AE, Dudas I, Metneki J. Pregnancy outcomes in a randomised controlled trial of periconceptional multivitamin supplementation. Final report. Arch Gynecol Obstet. 1994;255(3):131–9.
Article
CAS
PubMed
Google Scholar
Wolff T, Witkop CT, Miller T, Syed SB. Folic acid supplementation for the prevention of neural tube defects: an update of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2009;150(9):632–9.
Article
PubMed
Google Scholar
Kappen C, Mello MA, Finnell RH, Salbaum JM. Folate modulates Hox gene controlled skeletal phenotypes. Genesis. 2004;39(3):155–66. doi:10.1002/gene.20036.
Article
PubMed Central
CAS
PubMed
Google Scholar
Imbard A, Benoist J-F, Blom HJ. Neural tube defects, folic acid and methylation. Int J Environ Res Public Health. 2013;10(9):4352–89. doi:10.3390/ijerph10094352.
Article
PubMed Central
PubMed
Google Scholar
Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10(5):361–71. doi:10.1038/nrc2826.
Article
CAS
PubMed
Google Scholar
Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence?. Nat Rev Cancer. 2002;2(10):777–85.
Article
CAS
PubMed
Google Scholar
Liu S, Jin K, Hui Y, Fu J, Jie C, Feng S et al. HOXB7 Promotes malignant progression by activating the TGFβ signaling pathway. Cancer research. 2014. doi:10.1158/0008-5472.can-14-3100.
Wu X, Chen H, Parker B, Rubin E, Zhu T, Lee JS, et al. HOXB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelial-mesenchymal transition. Cancer Res. 2006;66(19):9527–34. doi:10.1158/0008-5472.can-05-4470.
Article
CAS
PubMed
Google Scholar
Kovochich AN, Arensman M, Lay AR, Rao NP, Donahue T, Li X et al. HOXB7 promotes invasion and predicts survival in pancreatic adenocarcinoma. Cancer. 2013;119(3):10.1002/cncr.27725. doi:10.1002/cncr.27725.
Yuan H, Kajiyama H, Ito S, Yoshikawa N, Hyodo T, Asano E, et al. ALX1 induces snail expression to promote epithelial-to-mesenchymal transition and invasion of ovarian cancer cells. Cancer Res. 2013;73(5):1581–90. doi:10.1158/0008-5472.can-12-2377.
Article
CAS
PubMed
Google Scholar
van Wijngaarden JP, Swart KM, Enneman AW, Dhonukshe-Rutten RA, van Dijk SC, Ham AC, et al. Effect of daily vitamin B-12 and folic acid supplementation on fracture incidence in elderly individuals with an elevated plasma homocysteine concentration: B-PROOF, a randomized controlled trial. Am J Clin Nutr. 2014;100(6):1578–86. doi:10.3945/ajcn.114.090043.
Article
PubMed
Google Scholar
Ronn T, Volkov P, Davegardh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572. doi:10.1371/journal.pgen.1003572.
Article
PubMed Central
PubMed
Google Scholar
Jacobsen SC, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9. doi:10.1007/s00125-012-2717-8.
Article
CAS
PubMed
Google Scholar
Kupers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van Gemert S, Scholtens S et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. International journal of epidemiology. 2015. doi:10.1093/ije/dyv048.
Slieker RC, Bos SD, Goeman JJ, Bovée JVMG, Talens RP, van der Breggen R, et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics Chromatin. 2013;6:26. doi:10.1186/1756-8935-6-26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31-R. doi:10.1186/gb-2014-15-2-r31.
Article
Google Scholar
Montano C, Irizarry R, Kaufmann W, Talbot K, Gur R, Feinberg A, et al. Measuring cell-type specific differential methylation in human brain tissue. Genome Biol. 2013;14(8):R94.
Article
PubMed Central
PubMed
Google Scholar
Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol. 2014;5:164. doi:10.3389/fphys.2014.00164.
Article
PubMed Central
PubMed
Google Scholar
de Bree A, van der Put NMJ, Mennen LI, Verschuren WMM, Blom HJ, Galan P et al. Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations. Eur J Clin Nutr. 2005;59(4):480–8.
Article
PubMed
Google Scholar
Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50(1):3–32. doi:10.1373/clinchem.2003.021634.
Article
CAS
PubMed
Google Scholar
van Wijngaarden JP, Dhonukshe-Rutten RA, van Schoor NM, van der Velde N, Swart KM, Enneman AW, et al. Rationale and design of the B-PROOF study, a randomized controlled trial on the effect of supplemental intake of vitamin B12 and folic acid on fracture incidence. BMC Geriatr. 2011;11:80. doi:10.1186/1471-2318-11-80.
Article
PubMed Central
PubMed
Google Scholar
Garretsen HFL. Probleemdrinken: Prevalentiebepaling, beinvloedende factoren en preventiemogelijkheden: Theoretische overwegingen en onderzoek in Rotterdam (thesis in Dutch, with summary in English). 1983.
Google Scholar
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. doi:10.1093/bioinformatics/btu049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11. doi:10.1093/nar/29.1.308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maksimovic J, Gordon L, Oshlack A. SWAN: subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44. doi:10.1186/gb-2012-13-6-r44.
Article
PubMed Central
PubMed
Google Scholar
Hansen KD. IlluminaHumanMethylation450kanno.ilmn12.hg19: annotation for illumina’s 450k methylation arrays. R package version 0.2.1.
Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010;11:587. doi:10.1186/1471-2105-11-587.
Article
CAS
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. doi:10.1093/nar/30.1.207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420.
Chapter
Google Scholar
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. 2004. Statistical Applications in Genetics and Molecular Biology, Vol. 3, No. 1, Article 3.
Google Scholar
Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21(9):2067–75. doi:10.1093/bioinformatics/bti270.
Article
CAS
PubMed
Google Scholar
Peters T, Buckley M, Statham A, Pidsley R, Samaras K, Lord R, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8(1):6.
PubMed Central
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B. 1995;57(1):289–300. doi:10.2307/2346101.
Google Scholar
Houseman E, Accomando W, Koestler D, Christensen B, Marsit C, Nelson H, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13(1):86.
Article
Google Scholar
Koestler DC, Christensen BC, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types. Epigenetics. 2013;8(8):816–26. doi:10.4161/epi.25430.
Article
PubMed Central
CAS
PubMed
Google Scholar
Comments
View archived comments (1)