Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226–32.
Article
CAS
PubMed
Google Scholar
Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.
Article
CAS
PubMed
Google Scholar
Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13.
Article
CAS
PubMed
Google Scholar
Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP. A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci U S A. 2009;106(3):671–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng J, Nagrajan HK, Yi SV. Fundamental diversity of human CpG islands at multiple biological levels. Epigenetics. 2014;9(4):483–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Illingworth R, Kerr A, Desousa D, Jørgensen H, Ellis P, Stalker J, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 2008;6(1): e22.
Article
PubMed
PubMed Central
Google Scholar
Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. Curr Opin Plant Biol. 2017;36:103–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol. 2005;15(2):154–9.
Article
CAS
PubMed
Google Scholar
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell. 2006;126(6):1189–201.
Article
CAS
PubMed
Google Scholar
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39(1):61–9.
Article
CAS
PubMed
Google Scholar
Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010;20(17):R780–5.
Article
CAS
PubMed
Google Scholar
Sarda S, Zeng J, Hunt BG, Yi SV. The evolution of invertebrate gene body methylation. Mol Biol Evol. 2012;29(8):1907–16.
Article
CAS
PubMed
Google Scholar
Hunt BG, Glastad KM, Yi SV, Goodisman MAD. Patterning and regulatory associations of DNA methylation are mirrored by histone modifications in insects. Genome Biol Evol. 2013;5(3):591–8.
Article
PubMed
PubMed Central
Google Scholar
Zilberman D. An evolutionary case for functional gene body methylation in plants and animals. Genome Biol. 2017;18(1):87.
Article
PubMed
PubMed Central
Google Scholar
Jeziorska DM, Murray RJS, De Gobbi M, Gaentzsch R, Garrick D, Ayyub H, et al. DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proc Natl Acad Sci U S A. 2017;114(36):E7526–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev. 2003;17(4):419–37.
Article
CAS
PubMed
Google Scholar
Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature. 2017;543(7643):72–7.
Article
CAS
PubMed
Google Scholar
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ligtenberg MJL, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009;41(1):112–7.
Article
CAS
PubMed
Google Scholar
Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520(7546):243–7.
Article
CAS
PubMed
Google Scholar
Hashimoto H, Vertino PM, Cheng X. Molecular coupling of DNA methylation and histone methylation. Epigenomics. 2010;2(5):657–69.
Article
CAS
PubMed
Google Scholar
Ooi SKT, Qiu C, Bernstein E, Li K, Jia D, Yang Z, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J-L, Zhou BO, Zhang R-R, Zhang K-L, Zhou J-Q, Xu G-L. The N-terminus of histone H3 is required for de novo DNA methylation in chromatin. Proc Natl Acad Sci U S A. 2009;106(52):22187–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A, Bock I, et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 2010;38(13):4246–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elango N, Yi SV. Functional relevance of CpG island length for regulation of gene expression. Genetics. 2011;187(4):1077–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartl D, Krebs AR, Grand RS, Baubec T, Isbel L, Wirbelauer C, et al. CG dinucleotides enhance promoter activity independent of DNA methylation. Genome Res. 2019;29(4):554–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S-M, Choi W-Y, Lee J, Kim Y-J. The regulatory mechanisms of intragenic DNA methylation. Epigenomics. 2015;7(4):527–31.
Article
CAS
PubMed
Google Scholar
Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13(14):1192–200.
Article
CAS
PubMed
Google Scholar
Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003;31(9):2305–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Rauch T, Chen Z-X, Szabó PE, Riggs AD, Pfeifer GP. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 2006;281(28):19489–500.
Article
CAS
PubMed
Google Scholar
Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A, et al. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun. 2011;2:533.
Article
PubMed
Google Scholar
Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol. 2008;15(11):1176–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE. 2008;3(9): e3156.
Article
PubMed
PubMed Central
Google Scholar
Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152(1–2):352–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benetti R, Gonzalo S, Jaco I, Schotta G, Klatt P, Jenuwein T, et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol. 2007;178(6):925–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pannetier M, Julien E, Schotta G, Tardat M, Sardet C, Jenuwein T, et al. PR-SET7 and SUV4-20H regulate H4 lysine-20 methylation at imprinting control regions in the mouse. EMBO Rep. 2008;9(10):998–1005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svobodová Kovaříková A, Legartová S, Krejčí J, Bártová E. H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Aging (Albany NY). 2018;10(10):2585–605.
Article
PubMed
Google Scholar
Kapoor-Vazirani P, Kagey JD, Powell DR, Vertino PM. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 2008;68(16):6810–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren W, Fan H, Grimm SA, Kim JJ, Li L, Guo Y, et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun. 2021;12(1):2490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Zhang X, Zong L, Gao Q, Zhang C, Wei R, et al. Gene body methylation safeguards ribosomal DNA transcription by preventing PHF6-mediated enrichment of repressive histone mark H4K20me3. J Biol Chem. 2021;297(4): 101195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13(2):115–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.
Article
CAS
PubMed
Google Scholar
Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan KN, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573(7773):281–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinkman AB, Gu H, Bartels SJJ, Zhang Y, Matarese F, Simmer F, et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 2012;22(6):1128–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Estarás C, Fueyo R, Akizu N, Beltrán S, Martínez-Balbás MA. RNA polymerase II progression through H3K27me3-enriched gene bodies requires JMJD3 histone demethylase. Mol Biol Cell. 2013;24(3):351–60.
Article
PubMed
PubMed Central
Google Scholar
Deaton AM, Webb S, Kerr ARW, Illingworth RS, Guy J, Andrews R, et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011;21(7):1074–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science. 2007;315(5815):1141–3.
Article
CAS
PubMed
Google Scholar
Ball MP, Li JB, Gao Y, Lee J-H, LeProust EM, Park I-H, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009;27(4):361–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011;20(4):670–80.
Article
CAS
PubMed
Google Scholar
Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3(4):462–74.
Article
PubMed
PubMed Central
Google Scholar
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones PA. The DNA methylation paradox. Trends Genet. 1999;15(1):34–7.
Article
CAS
PubMed
Google Scholar
Scandaglia M, Barco A. Contribution of spurious transcription to intellectual disability disorders. J Med Genet. 2019;56(8):491–8.
Article
CAS
PubMed
Google Scholar
Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aure MR, Fleischer T, Bjørklund S, Ankill J, Castro-Mondragon JA, Børresen-Dale A-L, et al. Crosstalk between microRNA expression and DNA methylation drives the hormone-dependent phenotype of breast cancer. Genome Med. 2021;13(1):72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batsché E, Yi J, Mauger O, Kornobis E, Hopkins B, Hanmer-Lloyd C, et al. CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Res. 2021;49(11):6213–37.
Article
PubMed
PubMed Central
Google Scholar
Singh S, Narayanan SP, Biswas K, Gupta A, Ahuja N, Yadav S, et al. Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc Natl Acad Sci U S A. 2017;114(43):11440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorincz MC, Dickerson DR, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol. 2004;11(11):1068–75.
Article
CAS
PubMed
Google Scholar
Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72(1):73–84.
Article
CAS
PubMed
Google Scholar
Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem. 1993;268(1):305–14.
Article
CAS
PubMed
Google Scholar
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.
Article
CAS
PubMed
Google Scholar
Li S, Zhang J, Huang S, He X. Genome-wide analysis reveals that exon methylation facilitates its selective usage in the human transcriptome. Brief Bioinform. 2018;19(5):754–64.
Article
CAS
PubMed
Google Scholar
Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem. 2015;84:165–98.
Article
CAS
PubMed
Google Scholar
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iannone C, Valcárcel J. Chromatin’s thread to alternative splicing regulation. Chromosoma. 2013;122(6):465–74.
Article
CAS
PubMed
Google Scholar
Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell. 2011;144(1):16–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 2012;8(5): e1002717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O, Mallm J-P, et al. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 2015;10(7):1122–34.
Article
CAS
PubMed
Google Scholar
Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15(9):469.
Article
PubMed
PubMed Central
Google Scholar
Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiench M, John S, Baek S, Johnson TA, Sung M-H, Escobar T, et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 2011;30(15):3028–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlet J, Duymich CE, Lay FD, Mundbjerg K, Dalsgaard Sørensen K, Liang G, et al. Bivalent regions of cytosine methylation and H3K27 acetylation suggest an active role for DNA methylation at enhancers. Mol Cell. 2016;62(3):422–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinhaus R, Gonzalez T, Seelow D, Robinson PN. Pervasive and CpG-dependent promoter-like characteristics of transcribed enhancers. Nucleic Acids Res. 2020;48(10):5306–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montibus B, Cercy J, Bouschet T, Charras A, Maupetit-Méhouas S, Nury D, et al. TET3 controls the expression of the H3K27me3 demethylase Kdm6b during neural commitment. Cell Mol Life Sci. 2021;78(2):757–68.
Article
CAS
PubMed
Google Scholar
Bell JSK, Vertino PM. Orphan CpG islands define a novel class of highly active enhancers. Epigenetics. 2017;12(6):449–64.
Article
PubMed
PubMed Central
Google Scholar
Lee S-M, Lee J, Noh K-M, Choi W-Y, Jeon S, Oh GT, et al. Intragenic CpG islands play important roles in bivalent chromatin assembly of developmental genes. Proc Natl Acad Sci U S A. 2017;114(10):E1885–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi W-Y, Hwang J-H, Cho A-N, Lee AJ, Lee J, Jung I, et al. DNA methylation of Intragenic CpG islands are required for differentiation from iPSC to NPC. Stem Cell Rev Rep. 2020;16(6):1316–27.
Article
CAS
PubMed
Google Scholar
Lee E, Wang J, Yumoto K, Jung Y, Cackowski FC, Decker AM, et al. DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia. 2016;18(9):553–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong KK. DNMT1: a key drug target in triple-negative breast cancer. Semin Cancer Biol. 2021;72:198–213.
Article
CAS
PubMed
Google Scholar
Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, et al. Large-scale structure of genomic methylation patterns. Genome Res. 2006;16(2):157–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12): e1002384.
Article
PubMed
PubMed Central
Google Scholar
Sen SK, Han K, Wang J, Lee J, Wang H, Callinan PA, et al. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet. 2006;79(1):41–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bodega B, Orlando V. Repetitive elements dynamics in cell identity programming, maintenance and disease. Curr Opin Cell Biol. 2014;31:67–73.
Article
CAS
PubMed
Google Scholar
Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome function. Biol Rev Camb Philos Soc. 2005;80(2):227–50.
Article
PubMed
Google Scholar
Ross JP, Rand KN, Molloy PL. Hypomethylation of repeated DNA sequences in cancer. Epigenomics. 2010;2(2):245–69.
Article
CAS
PubMed
Google Scholar
Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P, Mutirangura A. Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics. 2018;10(2):175–85.
Article
CAS
PubMed
Google Scholar
Wong N, Lam WC, Lai PB, Pang E, Lau WY, Johnson PJ. Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol. 2001;159(2):465–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa G, Barra V, Lentini L, Cilluffo D, Di Leonardo A. DNA demethylation caused by 5-Aza-2′-deoxycytidine induces mitotic alterations and aneuploidy. Oncotarget. 2016;7(4):3726–39.
Article
PubMed
PubMed Central
Google Scholar
Kim B-H, Cho N-Y, Shin SH, Kwon H-J, Jang JJ, Kang GH. CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma. Virchows Arch. 2009;455(4):343–51.
Article
CAS
PubMed
Google Scholar
Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis. 2004;19(2):95–101.
Article
PubMed
Google Scholar
Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin. 2021;14(1):25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda K, Shiraishi K, Eguchi A, Shibata H, Yoshimoto K, Mori T, et al. Long interspersed nucleotide element 1 hypomethylation is associated with poor prognosis of lung adenocarcinoma. Ann Thorac Surg. 2013;96(5):1790–4.
Article
PubMed
Google Scholar
Klein Hesselink EN, Zafon C, Villalmanzo N, Iglesias C, van Hemel BM, Klein Hesselink MS, et al. Increased global DNA hypomethylation in distant metastatic and dedifferentiated thyroid cancer. J Clin Endocrinol Metab. 2018;103(2):397–406.
Article
PubMed
Google Scholar
Choi SH, Worswick S, Byun H-M, Shear T, Soussa JC, Wolff EM, et al. Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J Cancer. 2009;125(3):723–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Ahwany E, Hassan M, Elzallat M, Abdelsalam L, El-Sawy MA-H, Seyam M. Association of Sat-a and Alu methylation status with HCV-induced chronic liver disease and hepatocellular carcinoma. Virus Res. 2022;321:198928.
Article
CAS
PubMed
Google Scholar
Qu GZ, Grundy PE, Narayan A, Ehrlich M. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet. 1999;109(1):34–9.
Article
CAS
PubMed
Google Scholar
Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M. Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res. 1999;423(1–2):91–101.
Article
CAS
PubMed
Google Scholar
Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res. 2004;64(13):4472–80.
Article
CAS
PubMed
Google Scholar
Akers SN, Moysich K, Zhang W, Collamat Lai G, Miller A, Lele S, et al. LINE1 and Alu repetitive element DNA methylation in tumors and white blood cells from epithelial ovarian cancer patients. Gynecol Oncol. 2014;132(2):462–7.
Article
CAS
PubMed
Google Scholar
Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho N-Y, et al. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS ONE. 2014;9(6): e100429.
Article
PubMed
PubMed Central
Google Scholar
Awada Z, Bouaoun L, Nasr R, Tfayli A, Cuenin C, Akika R, et al. LINE-1 methylation mediates the inverse association between body mass index and breast cancer risk: a pilot study in the Lebanese population. Environ Res. 2021;197: 111094.
Article
CAS
PubMed
Google Scholar
Debernardi C, Libera L, Berrino E, Sahnane N, Chiaravalli AM, Laudi C, et al. Evaluation of global and intragenic hypomethylation in colorectal adenomas improves patient stratification and colorectal cancer risk prediction. Clin Epigenet. 2021;13(1):154.
Article
CAS
Google Scholar
Baba Y, Yagi T, Sawayama H, Hiyoshi Y, Ishimoto T, Iwatsuki M, et al. Long interspersed element-1 methylation level as a prognostic biomarker in gastrointestinal cancers. Digestion. 2018;97(1):26–30.
Article
CAS
PubMed
Google Scholar
Martín B, Pappa S, Díez-Villanueva A, Mallona I, Custodio J, Barrero MJ, et al. Tissue and cancer-specific expression of DIEXF is epigenetically mediated by an Alu repeat. Epigenetics. 2020;15(6–7):765–79.
Article
PubMed
PubMed Central
Google Scholar
Huang KK, Ramnarayanan K, Zhu F, Srivastava S, Xu C, Tan ALK, et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell. 2018;33(1):137-150e5.
Article
CAS
PubMed
Google Scholar
Zhou S, Shen Y, Zheng M, Wang L, Che R, Hu W, et al. DNA methylation of METTL7A gene body regulates its transcriptional level in thyroid cancer. Oncotarget. 2017;8(21):34652–60.
Article
PubMed
PubMed Central
Google Scholar
Lee S-M, Lee Y-G, Bae J-B, Choi JK, Tayama C, Hata K, et al. HBx induces hypomethylation of distal intragenic CpG islands required for active expression of developmental regulators. Proc Natl Acad Sci U S A. 2014;111(26):9555–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai AY, Fatemi M, Dhasarathy A, Malone C, Sobol SE, Geigerman C, et al. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med. 2010;207(9):1939–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, et al. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene. 2011;30(31):3404–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y-W, Ma X, Zhang Y-A, Wang M-J, Yatabe Y, Lam S, et al. ITPKA gene body methylation regulates gene expression and serves as an early diagnostic marker in lung and other cancers. J Thorac Oncol. 2016;11(9):1469–81.
Article
PubMed
PubMed Central
Google Scholar
Wong CH, Li CH, Man Tong JH, Zheng D, He Q, Luo Z, et al. The establishment of CDK9/RNA PolII/H3K4me3/DNA methylation feedback promotes HOTAIR expression by RNA elongation enhancement in cancer. Mol Ther. 2022;30(4):1597–609.
Article
CAS
PubMed
Google Scholar
McGuire MH, Dasari SK, Yao H, Wen Y, Mangala LS, Bayraktar E, et al. Gene body methylation of the lymphocyte-specific gene results in its overexpression and regulates cancer mTOR signaling. Mol Cancer Res. 2021;19(11):1917–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in solid tumours–lessons from the past. Nat Rev Clin Oncol. 2013;10(5):256–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Chiappinelli KB, Guzzetta AA, Easwaran H, Yen R-WC, Vatapalli R, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587–98.
Article
PubMed
PubMed Central
Google Scholar
Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65(14):6305–11.
Article
CAS
PubMed
Google Scholar
Cao D, Zhao D, Jia Z, Su T, Zhang Y, Wu Y, et al. Reactivation of Atp4a concomitant with intragenic DNA demethylation for cancer inhibition in a gastric cancer model. Life Sci. 2020;242: 117214.
Article
CAS
PubMed
Google Scholar
Sailer V, Charpentier A, Dietrich J, Vogt TJ, Franzen A, Bootz F, et al. Intragenic DNA methylation of PITX1 and the adjacent long non-coding RNA C5orf66-AS1 are prognostic biomarkers in patients with head and neck squamous cell carcinomas. PLoS ONE. 2018;13(2): e0192742.
Article
PubMed
PubMed Central
Google Scholar
Mathios D, Hwang T, Xia Y, Phallen J, Rui Y, See AP, et al. Genome-wide investigation of intragenic DNA methylation identifies ZMIZ1 gene as a prognostic marker in glioblastoma and multiple cancer types. Int J Cancer. 2019;145(12):3425–35.
Article
CAS
PubMed
Google Scholar
Zhang Y-Y, Zhou J-D, Yang D-Q, He P-F, Yao D-M, Qian Z, et al. Intragenic hypomethylation of DNMT3A in patients with myelodysplastic syndrome. Clin Chem Lab Med. 2018;56(3):485–91.
Article
CAS
PubMed
Google Scholar
Liu Z, Zhang J, Gao Y, Pei L, Zhou J, Gu L, et al. Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis. Clin Cancer Res. 2014;20(17):4598–612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weigel C, Chaisaingmongkol J, Assenov Y, Kuhmann C, Winkler V, Santi I, et al. DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer. Clin Epigenet. 2019;11(1):67.
Article
Google Scholar
Bormann F, Stinzing S, Tierling S, Morkel M, Markelova MR, Walter J, et al. Epigenetic regulation of Amphiregulin and Epiregulin in colorectal cancer. Int J Cancer. 2019;144(3):569–81.
Article
CAS
PubMed
Google Scholar
Uhl B, Dietrich D, Branchi V, Semaan A, Schaefer P, Gevensleben H, et al. DNA methylation of PITX2 and PANCR is prognostic for overall survival in patients with resected adenocarcinomas of the biliary tract. PLoS ONE. 2016;11(10): e0165769.
Article
PubMed
PubMed Central
Google Scholar
Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671–5.
Article
CAS
PubMed
Google Scholar
Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463(7284):1042–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell. 2011;146(1):67–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22(2):246–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Klinkebiel D, Barger CJ, Pandey S, Guda C, Miller A, et al. Global DNA hypomethylation in epithelial ovarian cancer: passive demethylation and association with genomic instability. Cancers (Basel). 2020;12(3):764.
Article
CAS
PubMed
Google Scholar
Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim Biophys Acta. 2010;1806(1):50–7.
CAS
PubMed
Google Scholar
Yen BL, Hwa H-L, Hsu P-J, Chen P-M, Wang L-T, Jiang S-S, et al. HLA-G expression in human mesenchymal stem cells (MSCs) is related to unique methylation pattern in the proximal promoter as well as gene body DNA. Int J Mol Sci. 2020;21(14):5075.
Article
CAS
PubMed
PubMed Central
Google Scholar