Fontenelle IS, Fontenelle LF, Borges MC, Prazeres AM, Rangé BP, Mendlowicz MV, et al. Quality of life and symptom dimensions of patients with obsessive-compulsive disorder. Psychiatry Res. 2010;179:198–203.
Article
PubMed
Google Scholar
Dell’Osso B, Altamura AC, Mundo E, Marazziti D, Hollander E. Diagnosis and treatment of obsessive-compulsive disorder and related disorders. Int J Clin Pract. 2007;61:98–104.
Article
PubMed
Google Scholar
American Psychiatric Association. DSM-5 Diagnostic Classification. Diagnostic and Statistical Manual of Mental Disorders. 2013.
Koran LM, Simpson HB. Guideline watch (March 2013): Practice guideline for the treatment of patients with obsessive-compulsive disorder. APA Practice Guidelines. 2013.
Levy HC, McLean CP, Yadin E, Foa EB. Characteristics of individuals seeking treatment for obsessive-compulsive disorder. Behav Ther. 2013;44:408–16.
Article
PubMed
Google Scholar
García-Soriano G, Rufer M, Delsignore A, Weidt S. Factors associated with non-treatment or delayed treatment seeking in OCD sufferers: a review of the literature. Psychiatry Res. 2014;220:1–10.
Article
PubMed
Google Scholar
De Bruijn C, Beun S, De Graaf R, Ten Have M, Denys D. Subthreshold symptoms and obsessive-compulsive disorder: evaluating the diagnostic threshold. Psychol Med. 2010;40:989–97.
Article
PubMed
Google Scholar
Bellia F, Vismara M, Annunzi E, Cifani C, Benatti B, Dell’Osso B, et al. Genetic and epigenetic architecture of obsessive–compulsive disorder: in search of possible diagnostic and prognostic biomarkers. J Psychiatr Res. 2021;137:554–71.
Article
PubMed
Google Scholar
Faravelli C. Childhood stressful events, HPA axis and anxiety disorders. World J Psychiatry. 2012;2:13–25.
Article
PubMed
PubMed Central
Google Scholar
Gothelf D, Aharonovsky O, Horesh N, Carty T, Apter A. Life events and personality factors in children and adolescents with obsessive-compulsive disorder and other anxiety disorders. Compr Psychiatry. 2004;45:192–8.
Article
PubMed
Google Scholar
Morina N, Sulaj V, Schnyder U, Klaghofer R, Müller J, Martin-Sölch C, et al. Obsessive-compulsive and posttraumatic stress symptoms among civilian survivors of war. BMC Psychiatry. 2016;16:115.
Article
PubMed
PubMed Central
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.
Article
CAS
PubMed
Google Scholar
Yue W, Cheng W, Liu Z, Tang Y, Lu T, Zhang D, et al. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients. Sci Rep. 2016;6:31333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nissen JB, Hansen CS, Starnawska A, Mattheisen M, Børglum AD, Buttenschøn HN, et al. DNA methylation at the neonatal state and at the time of diagnosis: preliminary support for an association with the estrogen receptor 1, gamma-aminobutyric acid B receptor 1, and myelin oligodendrocyte glycoprotein in female adolescent patients with OCD. Front Psychiatry. 2016;7:35.
Article
PubMed
PubMed Central
Google Scholar
D’Addario C, Bellia F, Benatti B, Grancini B, Vismara M, Pucci M, et al. Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. J Psychiatr Res. 2019;114:17–23.
Article
PubMed
Google Scholar
Park CIL, Kim HW, Jeon S, Kang JI, Kim SJ. Reduced DNA methylation of the oxytocin receptor gene is associated with obsessive-compulsive disorder. Clin Epigenetics. 2020;12:101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cappi C, Diniz JB, Requena GL, Lourenço T, Lisboa BCG, Batistuzzo MC, et al. Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. BMC Neurosci. 2016;17:79.
Article
PubMed
PubMed Central
Google Scholar
Schiele MA, Thiel C, Kollert L, Fürst L, Putschin L, Kehle R, et al. Oxytocin receptor gene DNA methylation: a biomarker of treatment response in obsessive-compulsive disorder? Psychother Psychosom. 2021;90:57–63.
Article
PubMed
Google Scholar
Grünblatt E, Marinova Z, Roth A, Gardini E, Ball J, Geissler J, et al. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder. J Psychiatr Res. 2018;96:209–17.
Article
PubMed
Google Scholar
Siu MT, Goodman SJ, Yellan I, Butcher DT, Jangjoo M, Grafodatskaya D, et al. DNA methylation of the oxytocin receptor across neurodevelopmental disorders. J Autism Dev Disord. 2021;51:3610–23.
Article
PubMed
Google Scholar
Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148:24–8.
Article
CAS
PubMed
Google Scholar
Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell. 2016;64:982–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aleksandrova K, Romero-Mosquera B, Hernandez V. Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients. 2017;9:962.
Article
PubMed Central
Google Scholar
Romano KA, Martinez-del Campo A, Kasahara K, Chittim CL, Vivas EI, Amador-Noguez D, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe. 2017;22:279-290.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miro-Blanch J, Yanes O. Epigenetic regulation at the interplay between gut microbiota and host metabolism. Front Genet. 2019;10:638.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, et al. Mining microbes for mental health: determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev. 2021;125:698–761.
Article
CAS
PubMed
Google Scholar
Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.
Article
CAS
PubMed
Google Scholar
Turna J, Grosman Kaplan K, Anglin R, Van Ameringen M. “What’s bugging the Gut in OCD?” A review of the gut microbiome in obsessive-compulsive disorder. Depress Anxiety. 2016;33:171–8.
Article
PubMed
Google Scholar
Rees JC. Obsessive-compulsive disorder and gut microbiota dysregulation. Med Hypotheses. 2014;82:163–6.
Article
PubMed
Google Scholar
Turna J, Grosman Kaplan K, Anglin R, Patterson B, Soreni N, Bercik P, et al. The gut microbiome and inflammation in obsessive-compulsive disorder patients compared to age- and sex-matched controls: a pilot study. Acta Psychiatr Scand. 2020;142:337–47.
Article
CAS
PubMed
Google Scholar
Aps JKM, Martens LC. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150:119–31.
Article
CAS
PubMed
Google Scholar
Chiappin S, Antonelli G, Gatti R, De Palo EF. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 2007;383:30–40.
Article
CAS
PubMed
Google Scholar
Henson BS, Wong DT. Collection, storage, and processing of saliva samples for downstream molecular applications. Methods in molecular biology (Clifton, NJ). 2010;666:21–30.
Article
Google Scholar
Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccarini C, et al. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genomics. 2012;5:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruinsma FJ, Joo JE, Wong EM, Giles GG, Southey MC. The utility of DNA extracted from saliva for genome-wide molecular research platforms. BMC Res Notes. 2018;11:8.
Article
PubMed
PubMed Central
Google Scholar
Chuang YH, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B. Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Medicine. 2017;9:76.
Article
PubMed
PubMed Central
Google Scholar
Murata Y, Fujii A, Kanata S, Fujikawa S, Ikegame T, Nakachi Y, et al. Evaluation of the usefulness of saliva for DNA methylation analysis in cohort studies. Neuropsychopharmacology Reports. 2019;39:301–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishitani S, Parets SE, Haas BW, Smith AK. DNA methylation analysis from saliva samples for epidemiological studies. Epigenetics. 2018;13:352–62.
Article
PubMed
PubMed Central
Google Scholar
Wikenius E, Moe V, Smith L, Heiervang ER, Berglund A. DNA methylation changes in infants between 6 and 52 weeks. Sci Rep. 2019;9:17587.
Article
PubMed
PubMed Central
Google Scholar
Belstrøm D. The salivary microbiota in health and disease. J Oral Microbiol. 2020;12:1723975.
Article
PubMed
PubMed Central
Google Scholar
Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA. 2014;111:E2329–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kastl AJ, Terry NA, Wu GD, Albenberg LG. The structure and function of the human small intestinal microbiota: current understanding and future directions. CMGH. 2020;9:33–45.
PubMed
Google Scholar
First MB, Reed GM, Hyman SE, Saxena S. The development of the ICD-11 Clinical Descriptions and Diagnostic Guidelines for Mental and Behavioural Disorders. World Psychiatry. 2015;14:82–90.
Article
PubMed
PubMed Central
Google Scholar
Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, et al. The Yale-Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46:1006–11.
Article
CAS
PubMed
Google Scholar
Maxwell JAJ, Maxwell. A Model for qualitative research design. Qualitative Research Design: An Interactive Approach. 2013;62.
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1557–79.
Article
Google Scholar
PercieduSert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617–24.
Article
CAS
Google Scholar
Pucci M, Di Bonaventura MVM, Vezzoli V, Zaplatic E, Massimini M, Mai S, et al. Preclinical and clinical evidence for a distinct regulation of mu opioid and type 1 cannabinoid receptor genes expression in obesity. Front Genet. 2019;10:523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aidar M, Line SRP. A simple and cost-effective protocol for DNA isolation from buccal epithelial cells. Braz Dent J. 2007;18:148–52.
Article
PubMed
Google Scholar
Goode MR, Cheong SY, Li N, Ray WC, Bartlett CW. Collection and extraction of saliva DNA for next generation sequencing. J Vis Exp. 2014;2014: 517697.
Google Scholar
Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;854:86–94.
Article
CAS
PubMed
Google Scholar
Liebisch G, Ecker J, Roth S, Schweizer S, Öttl V, Schött HF, et al. Quantification of fecal short chain fatty acids by liquid chromatography tandem mass spectrometry—investigation of pre-analytic stability. Biomolecules. 2019;9:121.
Article
PubMed Central
Google Scholar
Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, et al. Oxytocin increases retention of social cognition in autism. Biol Psychiat. 2007;61:498–503.
Article
CAS
PubMed
Google Scholar
Cyranowski JM, Hofkens TL, Frank E, Seltman H, Cai HM, Amico JA. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom Med. 2008;70:967–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirsch P. Oxytocin in the socioemotional brain: implications for psychiatric disorders. Dialogues Clin Neurosci. 2015;17:463–76.
Article
PubMed
PubMed Central
Google Scholar
Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H. Structure and expression of a human oxytocin receptor. Nature. 1992;356:526–9.
Article
CAS
PubMed
Google Scholar
Mizumoto Y, Kimura T, Ivell R. A genomic element within the third intron of the human oxytocin receptor gene may be involved in transcriptional suppression. Mol Cell Endocrinol. 1997;135:129–38.
Article
CAS
PubMed
Google Scholar
Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81:629–83.
Article
CAS
PubMed
Google Scholar
Adams TG, Kelmendi B, Brake CA, Gruner P, Badour CL, Pittenger C. The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder. Chronic Stress. 2018;2:2470547018758043.
Article
PubMed Central
Google Scholar
Brooks SJ, Naidoo V, Roos A, Foucheá JP, Lochner C, Stein DJ. Early-life adversity and orbitofrontal and cerebellar volumes in adults with obsessive-compulsive disorder: voxel-Based morphometry study. Br J Psychiatry. 2016;208:34–41.
Article
PubMed
Google Scholar
Grisham JR, Fullana MA, Mataix-Cols D, Moffitt TE, Caspi A, Poulton R. Risk factors prospectively associated with adult obsessive-compulsive symptom dimensions and obsessive-compulsive disorder. Psychol Med. 2011;41:2495–506.
Article
CAS
PubMed
Google Scholar
Visser HA, Van Minnen A, Van Megen H, Eikelenboom M, Hoogendoorn AW, Kaarsemaker M, et al. The relationship between adverse childhood experiences and symptom severity, chronicity, and comorbidity in patients with obsessive-compulsive disorder. J Clin Psychiatry. 2014;75:1034–9.
Article
PubMed
Google Scholar
Smearman EL, Almli LM, Conneely KN, Brody GH, Sales JM, Bradley B, et al. Oxytocin receptor genetic and epigenetic variations: association with child abuse and adult psychiatric symptoms. Child Dev. 2016;87:122–34.
Article
PubMed
PubMed Central
Google Scholar
Unternaehrer E, Luers P, Mill J, Dempster E, Meyer AH, Staehli S, et al. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Transl Psychiatry. 2012;2: e150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unternaehrer E, Meyer AH, Burkhardt SCA, Dempster E, Staehli S, Theill N, et al. Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress. 2015;18:451–61.
Article
PubMed
Google Scholar
Ziegler C, Dannlowski U, Bräuer D, Stevens S, Laeger I, Wittmann H, et al. Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology. 2015;40:1528–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, Markunas CA, et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med. 2009;7:62.
Article
PubMed
PubMed Central
Google Scholar
Chagnon YC, Potvin O, Hudon C, Préville M. DNA methylation and single nucleotide variants in the brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) genes are associated with anxiety/depression in older women. Front Genet. 2015;6:230.
Article
PubMed
PubMed Central
Google Scholar
Dadds MR, Moul C, Cauchi A, Dobson-Stone C, Hawes DJ, Brennan J, et al. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev Psychopathol. 2014;26:33–40.
Article
PubMed
Google Scholar
Uhrig S, Hirth N, Broccoli L, von Wilmsdorff M, Bauer M, Sommer C, et al. Reduced oxytocin receptor gene expression and binding sites in different brain regions in schizophrenia: a post-mortem study. Schizophr Res. 2016;177:59–66.
Article
PubMed
Google Scholar
Yang X, Tang Y, Wei Q, Lang B, Tao H, Zhang X, et al. Up-regulated expression of oxytocin mRNA in peripheral blood lymphocytes from first-episode schizophrenia patients. Oncotarget. 2017;8:78882–9.
Article
PubMed
PubMed Central
Google Scholar
Lee MR, Sheskier MB, Farokhnia M, Feng N, Marenco S, Lipska BK, et al. Oxytocin receptor mRNA expression in dorsolateral prefrontal cortex in major psychiatric disorders: a human post-mortem study. Psychoneuroendocrinology. 2018;96:143–7.
Article
CAS
PubMed
Google Scholar
Bearer EL, Mulligan BS. Epigenetic changes associated with early life experiences: saliva, a biospecimen for DNA methylation signatures. Curr Genomics. 2018;19:676–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godderis L, Schouteden C, Tabish A, Poels K, Hoet P, Baccarelli AA, et al. Global methylation and hydroxymethylation in DNA from blood and saliva in healthy volunteers. BioMed Res Int. 2015;2015: 845041.
Article
PubMed
PubMed Central
Google Scholar
Wu HC, Wang Q, Chung WK, Andrulis IL, Daly MB, John EM, et al. Correlation of DNA methylation levels in blood and saliva DNA in young girls of the LEGACY girls study. Epigenetics. 2014;9(929):933.
Google Scholar
Thomas M, Knoblich N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, et al. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin Epigenetics. 2018;10:109.
Article
PubMed
PubMed Central
Google Scholar
Abdolmaleky HM, Nohesara S, Ghadirivasfi M, Lambert AW, Ahmadkhaniha H, Ozturk S, et al. DNA hypermethylation of serotonin transporter gene promoter in drug naïve patients with schizophrenia. Schizophr Res. 2014;152:373–80.
Article
PubMed
PubMed Central
Google Scholar
Papale LA, Seltzer LJ, Madrid A, Pollak SD, Alisch RS. Differentially methylated genes in saliva are linked to childhood stress. Sci Rep. 2018;8:10785.
Article
PubMed
PubMed Central
Google Scholar
Rushing A, Sommer EC, Zhao S, Po’e EK, Barkin SL. Salivary epigenetic biomarkers as predictors of emerging childhood obesity. BMC Med Genetics. 2020;21:34.
Article
CAS
Google Scholar
Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9:47.
Article
PubMed
PubMed Central
Google Scholar
Dumais KM, Veenema AH. Presence and absence of sex differences in structure and function of the brain oxytocin system: implications for understanding the regulation of social behavior. Sex Differ Cent Nerv Syst. 2015;12:33.
Google Scholar
Liang S, Wu X, Jin F. Gut-brain psychology: Rethinking psychology from the microbiota–gut–brain axis. Front Integr Neurosci. 2018;12:33.
Article
PubMed
PubMed Central
Google Scholar
Stefano GB, Pilonis N, Ptacek R, Raboch J, Vnukova M, Kream RM. Gut, microbiome, and brain regulatory axis: relevance to neurodegenerative and psychiatric disorders. Cell Mol Neurobiol. 2018;38:1197–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res. 2018;99:50–61.
Article
PubMed
PubMed Central
Google Scholar
Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res. 2016;176:23–35.
Article
PubMed
Google Scholar
Rea K, Dinan TG, Cryan JF. Gut microbiota: a perspective for psychiatrists. Neuropsychobiology. 2020;79:50–62.
Article
CAS
PubMed
Google Scholar
Codagnone MG, Spichak S, O’Mahony SM, O’Leary OF, Clarke G, Stanton C, et al. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiat. 2019;85:150–63.
Article
CAS
PubMed
Google Scholar
Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the force be with you: the light and dark sides of the microbiota–gut–brain axis in neuropsychiatry. CNS Drugs. 2016;30:1019–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dinan TG, Cryan JF. Mood by microbe: towards clinical translation. Genome Medicine. 2016;8:36.
Article
PubMed
PubMed Central
Google Scholar
Foster JA, Lyte M, Meyer E, Cryan JF. Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol. 2016;19:pyv114.
Article
PubMed
Google Scholar
Maitre Y, Micheneau P, Delpierre A, Mahalli R, Guerin M, Amador G, et al. Did the brain and oral microbiota talk to each other? A review of the literature. J Clin Med. 2020;9:3876.
Article
CAS
PubMed Central
Google Scholar
Jia G, Zhi A, Lai PFH, Wang G, Xia Y, Xiong Z, et al. The oral microbiota—a mechanistic role for systemic diseases. Br Dent J. 2018;224:447–55.
Article
CAS
PubMed
Google Scholar
Sampaio-Maia B, Caldas IM, Pereira ML, Pérez-Mongiovi D, Araujo R. The oral microbiome in health and its implication in oral and systemic diseases. Adv Appl Microbiol. 2016;97:171–210.
Article
CAS
PubMed
Google Scholar
Lu M, Xuan S, Wang Z. Oral microbiota: a new view of body health. Food Science and Human Wellness. 2019
Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms. 2020;8:308.
Article
CAS
PubMed Central
Google Scholar
Kealy J, Greene C, Campbell M. Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett. 2020;726: 133664.
Article
CAS
PubMed
Google Scholar
Olsen I, Hicks SD. Oral microbiota and autism spectrum disorder (ASD). J Oral Microbiol. 2020;12:1702806.
Article
CAS
PubMed
Google Scholar
Ragusa M, Santagati M, Mirabella F, Lauretta G, Cirnigliaro M, Brex D, et al. Potential associations among alteration of salivary mirnas, saliva microbiome structure, and cognitive impairments in autistic children. Int J Mol Sci. 2020;21:6203.
Article
CAS
PubMed Central
Google Scholar
Chen Z, Li J, Gui S, Zhou C, Chen J, Yang C, et al. Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. NeuroReport. 2018;29:417–25.
Article
CAS
PubMed
Google Scholar
Chung YCE, Chen HC, Chou HCL, Chen IM, Lee MS, Chuang LC, et al. Exploration of microbiota targets for major depressive disorder and mood related traits. J Psychiatr Res. 2019;111:74–82.
Article
PubMed
Google Scholar
Rong H, Xie XH, Zhao J, Lai WT, Wang MB, Xu D, et al. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J Psychiatr Res. 2019;113:90–9.
Article
PubMed
Google Scholar
Domènech L, Willis J, Alemany-Navarro M, Morell M, Real E, Escaramís G, et al. Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder. Sci Rep. 2022;12:1448.
Article
PubMed
PubMed Central
Google Scholar
Hesson LB. Gut microbiota and obesity-related gastrointestinal cancer : a focus on epigenetics. Transl Gastrointest Cancer. 2013;2:204–10.
CAS
Google Scholar
Mischke M, Plösch T. More than just a gut instinct-the potential interplay between a baby’s nutrition, its gut microbiome, and the epigenome. Am J Physiol Regul Integr Comp Physiol. 2013;304:R1065–9.
Article
CAS
PubMed
Google Scholar
Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715.
Article
CAS
PubMed Central
Google Scholar
Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav. 2012;61:293–303.
Article
CAS
PubMed
Google Scholar
Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy MM. CNS region-specific oxytocin receptor expression: Importance in regulation of anxiety and sex behavior. J Neurosci. 2001;21:2546–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engelmann M, Ebner K, Wotjak CT, Landgraf R. Endogenous oxytocin is involved in short-term olfactory memory in female rats. Behav Brain Res. 1998;90:89–94.
Article
CAS
PubMed
Google Scholar
Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology. 2011;36:2159–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popik P, Vetulani J. Opposite action of oxytocin and its peptide antagonists on social memory in rats. Neuropeptides. 1991;18:23–7.
Article
CAS
PubMed
Google Scholar
Insel TR, Shapiro LE. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci USA. 1992;89:5981–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-lacZ reporter mouse. Neuroscience. 2003;122:155–67.
Article
CAS
PubMed
Google Scholar
Liu W, Pappas GD, Carter CS. Oxytocin receptors in brain cortical regions are reduced in haploinsufficient (+/-) reeler mice. Neurol Res. 2005;27:339–45.
Article
CAS
PubMed
Google Scholar
Smeltzer MD, Curtis JT, Aragona BJ, Wang Z. Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett. 2006;394:146–51.
Article
CAS
PubMed
Google Scholar
Ninan I. Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex. J Neurochem. 2011;119:324–31.
Article
CAS
PubMed
Google Scholar
Sofroniew MV. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res. 1983;60:101–14.
Article
CAS
PubMed
Google Scholar
Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012;73:553–66.
Article
CAS
PubMed
Google Scholar
Jack A, Connelly JJ, Morris JP. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front Hum Neurosci. 2012;6:280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rios-Covian D, Gueimonde M, Duncan SH, Flint HJ, De Los Reyes-Gavilan CG. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol Lett. 2015;362:fnv176.
Article
PubMed
Google Scholar
Alonso P, López-Solà C, Real E, Segalàs C, Menchón JM. Animal models of obsessive–compulsive disorder: utility and limitations. Neuropsychiatr Dis Treat. 2015;11:1939–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev. 2008;32:1087–102.
Article
CAS
PubMed
Google Scholar
Amitai N, Young JW, Higa K, Sharp RF, Geyer MA, Powell SB. Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. Cogn Affect Behav Neurosci. 2014;14:388–406.
Article
PubMed
PubMed Central
Google Scholar
Li N, Wu X, Li L. Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats. Behav Pharmacol. 2007;18:135–45.
Article
CAS
PubMed
Google Scholar
Baarendse PJJ, Counotte DS, O’Donnell P, Vanderschuren LJMJ. Early social experience is critical for the development of cognitive control and dopamine modulation of prefrontal cortex function. Neuropsychopharmacology. 2013;38:1485–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fei XY, Liu S, Sun YH, Cheng L. Social isolation improves the performance of rodents in a novel cognitive flexibility task. Front Zool. 2019;16:43.
Article
PubMed
PubMed Central
Google Scholar
Krimberg JS, Lumertz FS, Orso R, Viola TW, de Almeida RMM. Impact of social isolation on the oxytocinergic system: a systematic review and meta-analysis of rodent data. Neurosci Biobehav Rev. 2022;134: 104549.
Article
PubMed
Google Scholar
Chen LL, Abbaspour A, Mkoma GF, Bulik CM, Rück C, Djurfeldt D. Gut microbiota in psychiatric disorders: a systematic review. Psychosom Med. 2021;83:679–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70:1174–82.
Article
CAS
PubMed
Google Scholar
Rachman S. Fear of contamination. Behav Res Therapy. 2004;42:1227–55.
Article
CAS
Google Scholar
Bonne NJ, Wong DTW. Salivary biomarker development using genomic, proteomic and metabolomic approaches. Genome Medicine. 2012;4:82.
Article
PubMed
PubMed Central
Google Scholar
Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26:781–91.
Article
CAS
PubMed
PubMed Central
Google Scholar