World Health Organization. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. Accessed 27 May 2021.
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15. https://doi.org/10.1056/NEJMoa2034577.
Article
CAS
PubMed
Google Scholar
Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–38. https://doi.org/10.1056/NEJMoa2028436.
Article
CAS
PubMed
Google Scholar
Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396(10267):1979–93. https://doi.org/10.1016/S0140-6736(20)32466-1.
Article
PubMed
Google Scholar
Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D, Truyers C, et al. Immunogenicity of the Ad26COV2S vaccine for COVID-19. JAMA. 2021;325(15):1535–44. https://doi.org/10.1001/jama.2021.3645.
Article
CAS
PubMed
Google Scholar
Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim results of a phase 1–2a trial of Ad26COV2S covid-19 vaccine. N Engl J Med. 2021;384(19):1824–35. https://doi.org/10.1056/NEJMoa2034201.
Article
CAS
PubMed
Google Scholar
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117(21):11727–34. https://doi.org/10.1073/pnas.2003138117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantuti-Castelvetri L, Ojha R, Pedro L, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–60. https://doi.org/10.1126/science.abd2985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daly JL, Simonetti B, Klein K, Chen K, Williamson MK, Antón-Plágaro C, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–5. https://doi.org/10.1126/science.abd3072.
Article
CAS
PubMed
Google Scholar
Mayi BS, Leibowitz JA, Woods AT, Ammon KA, Liu AE, Raja A. The role of Neuropilin-1 in COVID-19. PLoS Pathog. 2021;17(1):e1009153. https://doi.org/10.1371/journal.ppat.1009153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler ES, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–2808. https://doi.org/10.1016/j.cell.2020.02.052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71. https://doi.org/10.1038/s41422-020-0282-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569–78. https://doi.org/10.1016/S0140-6736(20)31022-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young B, Tan TT, Leo YS. The place for remdesivir in COVID-19 treatment. Lancet Infect Dis. 2021;21(1):20–1. https://doi.org/10.1016/S1473-3099(20)30911-7.
Article
CAS
PubMed
Google Scholar
Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives. Nature. 2020;582(7813):469. https://doi.org/10.1038/d41586-020-01824-5.
Article
CAS
PubMed
Google Scholar
Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970–5. https://doi.org/10.1073/pnas.2005615117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duret PM, Sebbag E, Mallick A, Gravier S, Spielmann L, Messer L. Recovery from COVID-19 in a patient with spondyloarthritis treated with TNF-alpha inhibitor etanercept. Ann Rheum Dis. 2020;79(9):1251–2. https://doi.org/10.1136/annrheumdis-2020-217362.
Article
CAS
PubMed
Google Scholar
Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325–31. https://doi.org/10.1016/S2665-9913(20)30127-2.
Article
PubMed
PubMed Central
Google Scholar
Putman M, Chock YPE, Tam H, Kim AHJ, Sattui SE, Berenbaum F, et al. Antirheumatic disease therapies for the treatment of COVID-19: a systematic review and meta-analysis. Arthritis Rheumatol. 2021;73(1):36–47. https://doi.org/10.1002/art.41469.
Article
CAS
PubMed
Google Scholar
Tomson T, Battino D, Perucca E. The remarkable story of valproic acid. Lancet Neurol. 2016;15(2):141. https://doi.org/10.1016/S1474-4422(15)00398-1.
Article
PubMed
Google Scholar
Lübbert M, Grishina O, Schmoor C, Schlenk RF, Jost E, Crysandt M, et al. Valproate and retinoic acid in combination with decitabine in elderly nonfit patients with acute myeloid leukemia: results of a multicenter, randomized, 2 2. Phase II Trial J Clin Oncol. 2020;38(3):257–70. https://doi.org/10.1200/JCO.19.01053.
Article
PubMed
Google Scholar
Caponigro F, Di Gennaro E, Ionna F, Longo F, Aversa C, Pavone E, et al. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer. 2016;16(1):918. https://doi.org/10.1186/s12885-016-2957-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robert E, Guibaud P. Maternal valproic acid and congenital neural tube defects. Lancet. 1982;2(8304):937. https://doi.org/10.1016/s0140-6736(82)90908-4.
Article
CAS
PubMed
Google Scholar
Delgado FG, Cárdenas P, Castellanos JE. Valproic acid downregulates cytokine expression in human macrophages infected with dengue virus. Diseases. 2018;6(3):59. https://doi.org/10.3390/diseases6030059.
Article
CAS
PubMed Central
Google Scholar
Leu SJ, Yang YY, Liu HC, Cheng CY, Wu YC, Huang MH, et al. Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J Cell Physiol. 2017;232(5):1176–86. https://doi.org/10.1002/jcp.25604.
Article
CAS
PubMed
Google Scholar
Saouaf SJ, Li B, Zhang G, Shen Y, Furuuchi N, Hancock WW, Greene MI. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol. 2009;87(2):99–1043. https://doi.org/10.1016/j.yexmp.2009.06.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieto-Patlán E, Serafín-Lopez J, Wong-Baeza I, Pérez-Tapia SM, Cobos-Marín L, Estrada-Parra S, et al. Valproic acid promotes a decrease in mycobacterial survival by enhancing nitric oxide production in macrophages stimulated with IFN-gamma. Tuberculosis (Edinb). 2019;114:123. https://doi.org/10.1016/j.tube.2018.12.007.
Article
CAS
Google Scholar
Vázquez-Calvo A, Saiz JC, Sobrino F, Martín-Acebes MA. Inhibition of enveloped virus infection of cultured cells by valproic acid. J Virol. 2011;85(3):1267–74. https://doi.org/10.1128/JVI.01717-10.
Article
CAS
PubMed
Google Scholar
Vázquez-Calvo Á, Martín-Acebes MA, Sáiz JC, Ngo N, Sobrino F, de la Torre JC. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res. 2013;99(2):172–9. https://doi.org/10.1016/j.antiviral.2013.05.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gil M, González-González R, Vázquez-Calvo A, Álvarez-Gutiérrez A, Martín-Acebes MA, Praena B, et al. Clinical infections by herpesviruses in patients treated with valproic acid: a nested case-control study in the Spanish primary care database, BIFAP. J Clin Med. 2019;8(9):1442. https://doi.org/10.3390/jcm8091442.
Article
CAS
PubMed Central
Google Scholar
Unal G, Turan B, Balcioglu YH. Immunopharmacological management of COVID-19: Potential therapeutic role of valproic acid. Med Hypotheses. 2020;143:109891. https://doi.org/10.1016/j.mehy.2020.109891.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitt B, Sutton NR, Wang Z, Goonewardena SN, Holinstat M. Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. Eur J Pharmacol. 2021;898:173988. https://doi.org/10.1016/j.ejphar.2021.173988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naasani I. COMPARE analysis, a bioinformatic approach to accelerate drug repurposing against Covid-19 and other emerging epidemics. SLAS Discov. 2021;26(3):345–51. https://doi.org/10.1177/2472555220975672.
Article
CAS
PubMed
Google Scholar
Beyerstedt S, Casaro EB, Rangel EB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021. https://doi.org/10.1007/s10096-020-04138-6.
Article
PubMed
PubMed Central
Google Scholar
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185–92. https://doi.org/10.1007/s11684-020-0754-0.
Article
PubMed
Google Scholar
Li Y, Zhang Z, Yang L, Lian X, Xie Y, Li S, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience. 2020;23(8):101400. https://doi.org/10.1016/j.isci.2020.101400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Fan Z, Chen M, Chen Y, Rong D, Cui Z, et al. Forkhead transcription factor FOXO3a mediates interferon-γ-induced MHC II transcription in macrophages. Immunology. 2019;158(4):304–13. https://doi.org/10.1111/imm.13116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276(39):36734–41. https://doi.org/10.1074/jbc.M101287200.
Article
CAS
PubMed
Google Scholar
Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004;64(3):1079–86. https://doi.org/10.1158/0008-5472.
Article
PubMed
Google Scholar
Sixto-López Y, Bello M, Correa-Basurto J. Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des. 2020;34(8):857–78. https://doi.org/10.1007/s10822-020-00304-2.
Article
CAS
PubMed
Google Scholar
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–90. https://doi.org/10.1007/s00134-020-05985-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–8. https://doi.org/10.1093/cid/ciaa248.
Article
CAS
PubMed
Google Scholar
Zhang Y, Gao Y, Qiao L, Wang W, Chen D. Inflammatory response cells during acute respiratory distress syndrome in patients with coronavirus disease 2019 (COVID-19). Ann Intern Med. 2020;173(5):402–4. https://doi.org/10.7326/L20-0227.
Article
PubMed
Google Scholar
Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. 2020;18(1):164. https://doi.org/10.1186/s12967-020-02339-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S. Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res. 2000;857(1–2):246–51. https://doi.org/10.1016/s0006-8993(99)02439-7.
Article
CAS
PubMed
Google Scholar
Chen S, Ye J, Chen X, Shi J, Wu W, Lin W, et al. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J Neuroinflammation. 2018;15(1):150. https://doi.org/10.1186/s12974-018-1193-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci. 2021;28(1):9. https://doi.org/10.1186/s12929-020-00703-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teodori L, Sestili P, Madiai V, Coppari S, Fraternale D, et al. MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative target for existing anti-COVID-19 therapeutics. Front Pharmacol. 2020;11:582003. https://doi.org/10.3389/fphar.2020.582003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi Y, Hayakawa A, Sano R, Fukuda H, Harada M, Kubo R, et al. Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. Sci Rep. 2021;11(1):3379. https://doi.org/10.1038/s41598-021-82970-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park I, et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep. 2015;13(7):1444–55. https://doi.org/10.1016/j.celrep.2015.10.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YJ, Greer CB, Cecchini KR, Harris LN, Tuck DP, Kim TH. HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene. 2013;32(23):2828–35. https://doi.org/10.1038/onc.2013.32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke NE, Belyaev ND, Lambert DW, Turner AJ. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin Sci (Lond). 2014;126(7):507–16. https://doi.org/10.1042/CS20130291.
Article
CAS
Google Scholar
Jang I, Kim EN, Lim JH, Kim MY, Ban TH, Yoon HE, et al. Effects of resveratrol on the renin-angiotensin system in the aging kidney. Nutrients. 2018;10(11):1741. https://doi.org/10.3390/nu10111741.
Article
CAS
PubMed Central
Google Scholar
Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med. 2019;51(9):1–11. https://doi.org/10.1038/s12276-019-0302-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosch-Presegué L, Vaquero A. Sirtuins in stress response: guardians of the genome. Oncogene. 2014;33(29):3764–75. https://doi.org/10.1038/onc.2013.344.
Article
CAS
PubMed
Google Scholar
Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, et al. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell. 2021;184(8):2167–218. https://doi.org/10.1016/j.cell.2021.03.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu DC, Waby JS, Chirakkal H, Staton CA, Corfe BM. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Mol Cancer. 2010;9:276. https://doi.org/10.1186/1476-4598-9-276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21(3):427–36. https://doi.org/10.1038/sj.onc.1205108.
Article
CAS
PubMed
Google Scholar
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. https://doi.org/10.1016/j.ejim.2020.04.037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mairuae N, Cheepsunthorn P. Valproic acid attenuates nitric oxide and interleukin-1β production in lipopolysaccharide-stimulated iron-rich microglia. Biomed Rep. 2018;8(4):359–64. https://doi.org/10.3892/br.2018.1062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LF, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001;293(5535):1653–7. https://doi.org/10.1126/science.1062374.
Article
CAS
Google Scholar
Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J. 2002;21(23):6539–48. https://doi.org/10.1093/emboj/cdf660.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang B, Yang XD, Lamb A, Chen LF. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal. 2010;22(9):1282–90. https://doi.org/10.1016/j.cellsig.2010.03.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene. 2006;25(51):6717–30. https://doi.org/10.1038/sj.onc.1209937.
Article
CAS
PubMed
Google Scholar
Kiernan R, Brès V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, et al. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem. 2003;278(4):2758–66. https://doi.org/10.1074/jbc.M209572200.
Article
CAS
PubMed
Google Scholar
Ishinaga H, Jono H, Lim JH, Kweon SM, Xu H, Ha UH, et al. TGF-beta induces p65 acetylation to enhance bacteria-induced NF-kappaB activation. EMBO J. 2007;26(4):1150–62. https://doi.org/10.1038/sj.emboj.7601546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buerki C, Rothgiesser KM, Valovka T, Owen HR, Rehrauer H, Fey M, et al. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65. Nucleic Acids Res. 2008;36(5):1665–80. https://doi.org/10.1093/nar/gkn003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodiha M, Salimi A, Wang YM, Stochaj U. Pharmacological AMP kinase activators target the nucleolar organization and control cell proliferation. PLoS ONE. 2014;9(1):e88087. https://doi.org/10.1371/journal.pone.0088087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leus NG, van der Wouden PE, van den Bosch T, Hooghiemstra WTR, Ourailidou ME, Kistemaker LE, et al. 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 2647 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity. Biochem Pharmacol. 2016;108:58–74. https://doi.org/10.1016/j.bcp.2016.03.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji MH, Li GM, Jia M, Zhu SH, Gao DP, Fan YX, et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2013;36(6):1453–9. https://doi.org/10.1007/s10753-013-9686-z.
Article
CAS
PubMed
Google Scholar
Ding D, Greenberg ML. Lithium and valproate decrease the membrane phosphatidylinositol/phosphatidylcholine ratio. Mol Microbiol. 2003;47(2):373–81. https://doi.org/10.1046/j.1365-2958.2003.03284.x.
Article
CAS
PubMed
Google Scholar
Xu X, Müller-Taubenberger A, Adley KE, Pawolleck N, Lee VW, Wiedemann C, et al. Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid. Eukaryot Cell. 2007;6(6):899–906. https://doi.org/10.1128/EC.00104-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crespillo AJ, Praena B, Bello-Morales R, Lerma L, Vázquez-Calvo A, Martín-Acebes MA, et al. Inhibition of herpes virus infection in oligodendrocyte cultured cells by valproic acid. Virus Res. 2016;214:71–9. https://doi.org/10.1016/j.virusres.2016.01.009.
Article
CAS
PubMed
Google Scholar
Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, et al. Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses. 2021;13(2):354. https://doi.org/10.3390/v13020354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Wei J, Huang T, Lei L, Shen C, Lai J, et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother Res. 2021;35(3):1127–9. https://doi.org/10.1002/ptr.6916.
Article
CAS
PubMed
Google Scholar
Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell. 2003;4(4):263–75. https://doi.org/10.1016/s1535-6108(03)00241-1.
Article
CAS
PubMed
Google Scholar