Registries FM, et al. EUROCAT Prevalence Data Tables; 2011. p. 1–16. https://doi.org/10.1002/wene.178.
Book
Google Scholar
Yanchar NL, Soucy P. Long-term outcome after Hirschsprung’s disease: patients’ perspectives. J Pediatr Surg. 1999;34:1152–60.
Article
CAS
PubMed
Google Scholar
Moore SW, Albertyn R, Cywes S. Clinical outcome and long-term quality of life after surgical correction of Hirschsprung’s disease. J Pediatr Surg. 1996;31:1496–502.
Article
CAS
PubMed
Google Scholar
Stensrud KJ, Emblem R, Bjørnland K. Functional outcome after operation for Hirschsprung disease—transanal vs transabdominal approach. J Pediatr Surg. 2010;45:1640–4.
Article
PubMed
Google Scholar
Amiel J, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45:1–14.
Article
CAS
PubMed
Google Scholar
Salomon R, et al. Germline mutations of the RET ligand GDNF are not sufficient to cause hirschsprung disease. Nat Genet. 1996;14:345–7.
Article
CAS
PubMed
Google Scholar
Pagon Ra, A. M. P. A. H. H. editors G. & al., et. Parisi MA. Hirschsprung disease overview. Seattle Univ. Washington, Seattle; 1993-2017. 2002.
Sauka-Spengler T, Bronner-Fraser M. Evolution of the neural crest viewed from a gene regulatory perspective. Genesis. 2008;46:673–82.
Article
PubMed
Google Scholar
Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci. 2007;8:466–79.
Article
CAS
PubMed
Google Scholar
Bronner ME. Formation and migration of neural crest cells in the vertebrate embryo. Histochem Cell Biol. 2012;138:179–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao MM, Young HM. Development of enteric neuron diversity. J Cell Mol Med. 2009;13:1193–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romeo G, et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature. 1994;367:377–8.
Article
CAS
PubMed
Google Scholar
Edery P, et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature. 1994;367:378–80.
Article
CAS
PubMed
Google Scholar
Baynash AG, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79:1277–85.
Article
CAS
PubMed
Google Scholar
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2012;10:43–57.
Article
PubMed
CAS
Google Scholar
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305:G1–G24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson D, Zimmer J, Nakamura H, Puri P. Hirschsprung’s disease in twins: a systematic review and meta-analysis. Pediatr Surg Int. 2017;33:855–9.
Article
CAS
PubMed
Google Scholar
Burkardt DDC, Graham JM, Short SS, Frykman PK. Advances in Hirschsprung disease genetics and treatment strategies: an update for the primary care pediatrician. Clin Pediatr (Phila). 2014. https://doi.org/10.1177/0009922813500846.
Article
PubMed
Google Scholar
Mundt E, Bates MD. Genetics of Hirschsprung disease and anorectal malformations. Semin Pediatr Surg. 2010. https://doi.org/10.1053/j.sempedsurg.2009.11.015.
Article
PubMed
Google Scholar
Emison ES, et al. Differential contributions of rare and common, coding and noncoding ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet. 2010;87:60–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang CSM, et al. Uncovering the genetic lesions underlying the most severe form of Hirschsprung disease by whole-genome sequencing. Eur J Hum Genet. 2018. https://doi.org/10.1038/s41431-018-0129-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gui H, et al. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 2017;18:48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cedar H, Bergman Y. Epigenetic silencing during early lineage commitment. StemBook; 2008.
Google Scholar
Zheng G, et al. ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol Cell. 2013;49:18–29.
Article
CAS
PubMed
Google Scholar
Jia G, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, et al. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 2018;19:69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma C, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018;19:68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Frye M, Harada BT, Behm M. He, C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.
Article
CAS
PubMed
Google Scholar
Berdasco M, Esteller M. DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther. 2011;2:42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.
Article
CAS
PubMed
Google Scholar
Torroglosa A, et al. Epigenetics in ENS development and Hirschsprung disease. Dev Biol. 2016;417:209–16.
Article
CAS
PubMed
Google Scholar
Zhou Z, et al. Down-regulation of MeCP2 in Hirschsprung’s disease. J Pediatr Surg. 2013;48:2099–105.
Article
PubMed
Google Scholar
Villalba-Benito L, et al. Overexpression of DNMT3b target genes during Enteric Nervous System development contribute to the onset of Hirschsprung disease. Sci Rep. 2017;7:6221.
Article
PubMed
PubMed Central
Google Scholar
Martins-Taylor K, Schroeder DI, LaSalle JM, Lalande M, Xu R-H. Role of DNMT3B in the regulation of early neural and neural crest specifiers. Epigenetics. 2012;7:71–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy N, Goldstein AM. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106.
Article
PubMed
PubMed Central
Google Scholar
Wang G, et al. Demethylation of GFRA4 promotes cell proliferation and invasion in Hirschsprung disease. DNA Cell Biol. 2018;37:316–24.
Article
CAS
PubMed
Google Scholar
Tang W, et al. Methylation analysis of EDNRB in human colon tissues of Hirschsprung’s disease. Pediatr Surg Int. 2013;29:683–8.
Article
PubMed
Google Scholar
Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27:1318–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizzen CA, Brownell JE, Cook RG, Allis CD. Histone acetyltransferases: preparation of substrates and assay procedures. Methods Enzymol. 1999;304:675–96.
Article
CAS
PubMed
Google Scholar
Harikumar A, Meshorer E. Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 2015;16:1609–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol. 2006;7:540–6.
Article
CAS
PubMed
Google Scholar
Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol. 2011;12:36–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatta K, Takagi S, Fujisawa H, Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol. 1987;120:215–27.
Article
CAS
PubMed
Google Scholar
Nakagawa S, Takeichi M. Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development. 1995;121:1321–32.
CAS
PubMed
Google Scholar
Ignatius MS, Moose HE, El-Hodiri HM, Henion PD. colgate/hdac1 Repression of foxd3 expression is required to permit mitfa-dependent melanogenesis. Dev Biol. 2008;313:568–83.
Article
CAS
PubMed
Google Scholar
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of rna synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ignatius MS, et al. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development. PLoS One. 2013;8:e63218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacob C, et al. HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia. J Neurosci. 2014;34:6112–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haberland M, Mokalled MH, Montgomery RL, Olson EN. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev. 2009;23:1625–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu JJ, Kam MK, Garcia-Barceló MM, Tam PKH, Lui VCH. HOXB5 binds to multi-species conserved sequence (MCS+9.7) of RET gene and regulates RET expression. Int J Biochem Cell Biol. 2014;51:142–9.
Article
CAS
PubMed
Google Scholar
Puppo F, et al. Comparative genomic sequence analysis coupled to chromatin immunoprecipitation: a screening procedure applied to search for regulatory elements at the RET locus. Physiol Genomics. 2005;23:269–74.
Article
CAS
PubMed
Google Scholar
Klungland A, Dahl JA, Greggains G, Fedorcsak P, Filipczyk A. Reversible RNA modifications in meiosis and pluripotency. Nat Methods. 2016;14:18–22.
Article
PubMed
CAS
Google Scholar
Dominissini D, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530:441–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol. 2016;12:311–6.
Article
CAS
PubMed
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.
Article
CAS
PubMed
Google Scholar
Li S, et al. MiRNA profiling reveals dysregulation of RET and RET-regulating pathways in Hirschsprung’s disease. PLoS One. 2016;11:e0150222.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sergi CM, Caluseriu O, McColl H, Eisenstat DD. Hirschsprung’s disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr Res. 2017;81:177–91.
Article
PubMed
Google Scholar
Heilman KL, Leach RA, Tuck MT. Internal 6-methyladenine residues increase the in vitro translation efficiency of dihydrofolate reductase messenger RNA. Int J Biochem Cell Biol. 1996;28:823–9.
Article
CAS
PubMed
Google Scholar
Niu Y, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics. 2013;11:8–17.
Article
CAS
PubMed
Google Scholar
Wang X, He C. Dynamic RNA modifications in posttranscriptional regulation. Mol Cell. 2014;56:5–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordstrand LM, et al. Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects. PLoS One. 2010;5:e13827.
Article
PubMed
PubMed Central
CAS
Google Scholar
van den Born E, et al. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat Commun. 2011;2:172.
Article
PubMed
CAS
Google Scholar
Ougland R. Hirschsprung’s disease - epigenetic factors in the development of the enteric nervous system. Res Propos. 2016:1–8.
Ougland R, et al. Role of ALKBH1 in the core transcriptional network of embryonic stem cells. Cell Physiol Biochem. 2016;38:173–84.
Article
CAS
PubMed
Google Scholar
Ougland R, Rognes T, Klungland A, Larsen E. Non-homologous functions of the AlkB homologs. J Mol Cell Biol. 2015;7:494–504.
Article
CAS
PubMed
Google Scholar
Alemu E, He C, Klungland A. ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair (Amst). 2016;44:87–91.
Article
CAS
Google Scholar
Fu Y, et al. The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA. Angew Chem Int Ed. 2010;49:8885–8.
Article
CAS
Google Scholar
Fu D, et al. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol. 2010;30:2449–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ougland R, et al. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell. 2004;16:107–16.
Article
CAS
PubMed
Google Scholar
Ueda Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 2017;7:42271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langer JC. Hirschsprung disease. Curr Opin Pediatr. 2013. https://doi.org/10.1097/MOP.0b013e328360c2a0.
Article
PubMed
Google Scholar
Heuckeroth RO. Stem cells make the bowel nervous. Nature. 2016;531:44–5.
Article
CAS
PubMed
Google Scholar
Fattahi F, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531:105–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burns AJ, et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol. 2016;417:229–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson DJ, Edgar DH, Kenny SE. Future therapies for Hirschsprung’s disease. Semin Pediatr Surg. 2012;21:364–70.
Article
PubMed
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
Article
CAS
PubMed
Google Scholar
Lindley RM, Hawcutt DB, Connell MG, Edgar DH, Kenny SE. Properties of secondary and tertiary human enteric nervous system neurospheres. J Pediatr Surg. 2009;44:1249–55 discussion 1255-6.
Article
PubMed
Google Scholar
Cheng LS, et al. Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments. Pediatr Res. 2017;81:838–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotta R, et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest. 2013; doi: e10.1172/JCI65963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rollo BN, et al. Enteric neural cells from Hirschsprung disease patients form ganglia in autologous aneuronal colon. Cell Mol Gastroenterol Hepatol. 2016;2:92–109.
Article
PubMed
Google Scholar
Cooper JE, et al. In vivo transplantation of fetal human gut-derived enteric neural crest cells. Neurogastroenterol Motil. 2017;29:e12900.
Article
CAS
Google Scholar
Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology. 2009;136:2214–2225.e3.
Article
CAS
PubMed
Google Scholar
Cheng LS, et al. Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease. Neurogastroenterol Motil. 2015. https://doi.org/10.1111/nmo.12635.
Article
CAS
Google Scholar
Hotta R, Natarajan D, Burns AJ, Thapar N. Stem cells for GI motility disorders. Curr Opin Pharmacol. 2011. https://doi.org/10.1016/j.coph.2011.09.004.
Article
CAS
PubMed
Google Scholar
Burns AJ, Thapar N. Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastroenterol Hepatol. 2014;11:317–28.
Article
PubMed
Google Scholar
Wilkinson DJ, Bethell GS, Shukla R, Kenny SE, Edgar DH. Isolation of enteric nervous system progenitor cells from the aganglionic gut of patients with Hirschsprung’s disease. PLoS One. 2015;10:1–15.
Google Scholar
Baker DEC, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25:207–15.
Article
CAS
PubMed
Google Scholar
Cooper JE, et al. In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS One. 2016;11:e0147989.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stamp LA, Young HM. Recent advances in regenerative medicine to treat enteric neuropathies: use of human cells. Neurogastroenterol Motil. 2017;29:e12993.
Article
Google Scholar
Lai FP-L, et al. Correction of Hirschsprung-associated mutations in human induced pluripotent stem cells via clustered regularly interspaced short palindromic repeats/Cas9, restores neural crest cell function. Gastroenterology. 2017;153:139–153.e8.
Article
CAS
PubMed
Google Scholar
Schriemer D, et al. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes. Dev Biol. 2016;416:255–65.
Article
CAS
PubMed
Google Scholar
Fu M, et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 2010;137:631–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng LS, et al. Optimizing neurogenic potential of enteric neurospheres for treatment of neurointestinal diseases. J Surg Res. 2016;206:451–9.
Article
PubMed
PubMed Central
Google Scholar
Yang X-J, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310–8.
Article
CAS
PubMed
Google Scholar
Welch AK, Jacobs ME, Wingo CS, Cain BD. Early progress in epigenetic regulation of endothelin pathway genes. Br J Pharmacol. 2013;168:327–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiesmann F, et al. Frequent loss of endothelin-3 (EDN3) expression due to epigenetic inactivation in human breast cancer. Breast Cancer Res. 2009;11:R34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Griseri P, et al. Rescue of human RET gene expression by sodium butyrate: a novel powerful tool for molecular studies in Hirschsprung disease. Gut. 2003;52:1154–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enríquez P. CRISPR-mediated epigenome editing. Yale J Biol Med. 2016;89:471–86.
PubMed
PubMed Central
Google Scholar
Memic F, et al. Transcription and signaling regulators in developing neuronal subtypes of mouse and human enteric nervous system. Gastroenterology. 2018;154:624–36.
Article
CAS
PubMed
Google Scholar
Xie N, Zhou Y, Sun Q, Tang B. Novel epigenetic techniques provided by the CRISPR/Cas9 system. Stem Cells Int. 2018;2018:7834175.
PubMed
PubMed Central
Google Scholar
Savell KE, Day JJ. Applications of CRISPR/Cas9 in the mammalian central nervous system. Yale J Biol Med. 2017;90:567–81.
CAS
PubMed
PubMed Central
Google Scholar
Goldstein AM, Hofstra RMW, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet. 2013;83:307–16.
Article
CAS
PubMed
Google Scholar
Heidenreich M, Zhang F. Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci. 2016;17:36–44.
Article
CAS
PubMed
Google Scholar
Tang CS-M, et al. Identification of genes associated with Hirschsprung disease, based on whole-genome sequence analysis, and potential effects on enteric nervous system development. Gastroenterology. 2018;155:1908–1922.e5.
Article
CAS
PubMed
Google Scholar
Brosens E, et al. Genetics of enteric neuropathies. Dev Biol. 2016;417:198–208.
Article
CAS
PubMed
Google Scholar