Allfrey VG, Mirsky AE. Structural modifications of histones and their possible role in the regulation of rna synthesis. Science. 1964;144(3618):559.
Article
CAS
PubMed
Google Scholar
Murray K. The occurrence of epsilon-N-methyl lysine in histones. Biochemistry. 1964;3:10–5.
Article
CAS
PubMed
Google Scholar
Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406(6796):593–9.
Article
CAS
PubMed
Google Scholar
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.
Article
CAS
PubMed
Google Scholar
Kaniskan HU, Martini ML, Jin J. Inhibitors of protein methyltransferases and demethylases. Chem Rev. 2018;118(3):989–1068.
Article
CAS
PubMed
Google Scholar
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer. 2015;15(2):110–24.
Article
CAS
PubMed
Google Scholar
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci. 2015;16(1):1406–28.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wesche J, Kuhn S, Kessler BM, Salton M, Wolf A. Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci. 2017;74(18):3305–15.
Article
CAS
PubMed
Google Scholar
Yi X, Jiang XJ, Li XY, Jiang DS. Histone methyltransferases: novel targets for tumor and developmental defects. Am J Transl Res. 2015;7(11):2159–75.
CAS
PubMed Central
PubMed
Google Scholar
Du SJ, Tan X, Zhang J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken). 2014;297(9):1650–62.
Article
CAS
Google Scholar
Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, et al. SMYD3 links lysine methylation of map 3k2 to ras-driven cancer. Nature. 2014;510(7504):283–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, et al. The SMYD family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr Opin Physiol. 2018;1:140–52.
Article
PubMed
Google Scholar
Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L, Yang Z. Crystal structure of cardiac-specific histone methyltransferase smyd1 reveals unusual active site architecture. J Biol Chem. 2010;285(52):40635–44.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu Y, Chen W, Gaudet J, Cheney MD, Roudaia L, Cierpicki T, et al. Structural basis for recognition of Smrt/N-CoR by the MYND domain and its contribution to aml1/eto's activity. Cancer Cell. 2007;11(6):483–97.
Article
CAS
PubMed Central
PubMed
Google Scholar
Leinhart K, Brown M. SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes (Basel). 2011;2(1):210–8.
Article
CAS
Google Scholar
Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 2002;31(1):25–32.
Article
CAS
PubMed
Google Scholar
Diehl F, Brown MA, van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, et al. Cardiac deletion of SMYD2 is dispensable for mouse heart development. PLoS One. 2010;5(3):e9748.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW. Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer. 2006;5:26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferguson AD, Larsen NA, Howard T, Pollard H, Green I, Grande C, et al. Structural basis of substrate methylation and inhibition of SMYD2. Structure. 2011;19(9):1262–73.
Article
CAS
PubMed
Google Scholar
Xu S, Zhong C, Zhang T, Ding J. Structure of human lysine methyltransferase SMYD2 reveals insights into the substrate divergence in SMYD proteins. J Mol Cell Biol. 2011;3(5):293–300.
Article
CAS
PubMed
Google Scholar
Wu J, Cheung T, Grande C, Ferguson AD, Zhu X, Theriault K, et al. Biochemical characterization of human SET and MYND domain-containing protein 2 methyltransferase. Biochemistry. 2011;50(29):6488–97.
Article
CAS
PubMed
Google Scholar
Jiang Y, Sirinupong N, Brunzelle J, Yang Z. Crystal structures of histone and p53 methyltransferase SMYD2 reveal a conformational flexibility of the autoinhibitory c-terminal domain. PLoS One. 2011;6(6):e21640.
Article
CAS
PubMed Central
PubMed
Google Scholar
Spellmon N, Sun X, Sirinupong N, Edwards B, Li C, Yang Z. Molecular dynamics simulation reveals correlated inter-lobe motion in protein lysine methyltransferase SMYD2. PLoS One. 2015;10(12):e0145758.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chandramouli B, Chillemi G. Conformational dynamics of lysine methyltransferase SMYD2. Insights into the different substrate crevice characteristics of SMYD2 and SMYD3. J Chem Inf Model. 2016;56(12):2467–75.
Article
CAS
PubMed
Google Scholar
Jiang Y, Trescott L, Holcomb J, Zhang X, Brunzelle J, Sirinupong N, et al. Structural insights into estrogen receptor alpha methylation by histone methyltransferase SMYD2, a cellular event implicated in estrogen signaling regulation. J Mol Biol. 2014;426(20):3413–25.
Article
CAS
PubMed
Google Scholar
Wang L, Li L, Zhang H, Luo X, Dai J, Zhou S, et al. Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation. J Biol Chem. 2011;286(44):38725–37.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chandramouli B, Melino G, Chillemi G. SMYD2 conformational changes in response to p53 binding: role of the C-terminal domain. Mol Oncol. 2019;13(6):1450–61.
PubMed Central
PubMed
Google Scholar
Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics. 2008;7(3):560–72.
Article
CAS
PubMed
Google Scholar
Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, et al. Repression of p53 activity by SMYD2-mediated methylation. Nature. 2006;444(7119):629–32.
Article
CAS
PubMed
Google Scholar
Saddic LA, West LE, Aslanian A, Yates JR 3rd, Rubin SM, Gozani O, et al. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem. 2010;285(48):37733–40.
Article
CAS
PubMed Central
PubMed
Google Scholar
Olsen JB, Cao XJ, Han B, Chen LH, Horvath A, Richardson TI, et al. Quantitative profiling of the activity of protein lysine methyltransferase SMYD2 using silac-based proteomics. Mol Cell Proteomics. 2016;15(3):892–905.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ahmed H, Duan S, Arrowsmith CH, Barsyte-Lovejoy D, Schapira M. An integrative proteomic approach identifies novel cellular SMYD2 substrates. J Proteome Res. 2016;15(6):2052–9.
Article
CAS
PubMed
Google Scholar
Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA. Lysine methyltransferase SMYD2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochim Biophys Acta. 2013;1833(4):812–22.
Article
CAS
PubMed
Google Scholar
Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on pten. Neoplasia. 2015;17(4):367–73.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, et al. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 2012;14(6):476–86.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, et al. Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proc Natl Acad Sci U S A. 2013;110(43):17284–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y. SMYD2-dependent Hsp90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett. 2014;351(1):126–33.
Article
CAS
PubMed
Google Scholar
Li LX, Fan LX, Zhou JX, Grantham JJ, Calvet JP, Sage J, et al. Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest. 2017;127(7):2751–64.
Article
PubMed Central
PubMed
Google Scholar
Li LX, Zhou JX, Calvet JP, Godwin AK, Jensen RA, Li X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis. 2018;9(3):326.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao S, Wang Z, Wang W, Hu X, Chen P, Li J, et al. The lysine methyltransferase SMYD2 methylates the kinase domain of type II receptor BMPR2 and stimulates bone morphogenetic protein signaling. J Biol Chem. 2017;292(30):12702–12.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reynoird N, Mazur PK, Stellfeld T, Flores NM, Lofgren SM, Carlson SM, et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 2016;30(7):772–85.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang R, Deng X, Yoshioka Y, Vougiouklakis T, Park JH, Suzuki T, et al. Effects of SMYD2-mediated EML4-alk methylation on the signaling pathway and growth in non-small-cell lung cancer cells. Cancer Sci. 2017;108(6):1203–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, et al. The histone methyltransferase SMYD2 methylates PARP1 and promotes poly (adp-ribosyl) ation activity in cancer cells. Neoplasia. 2014;16(3):257–64, 64 e2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fabini E, Manoni E, Ferroni C, Rio AD, Bartolini M. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Future Med Chem. 2019;11(8):901–21.
Article
CAS
PubMed
Google Scholar
Nguyen H, Allali-Hassani A, Antonysamy S, Chang S, Chen LH, Curtis C, et al. Lly-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J Biol Chem. 2015;290(22):13641–53.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sweis RF, Wang Z, Algire M, Arrowsmith CH, Brown PJ, Chiang GG, et al. Discovery of a-893, a new cell-active benzoxazinone inhibitor of lysine methyltransferase SMYD2. ACS Med Chem Lett. 2015;6(6):695–700.
Article
CAS
PubMed Central
PubMed
Google Scholar
Eggert E, Hillig RC, Koehr S, Stockigt D, Weiske J, Barak N, et al. Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J Med Chem. 2016;59(10):4578–600.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cowen SD, Russell D, Dakin LA, Chen H, Larsen NA, Godin R, et al. Design, synthesis, and biological activity of substrate competitive SMYD2 inhibitors. J Med Chem. 2016;59(24):11079–97.
Article
CAS
PubMed
Google Scholar
Thomenius MJ, Totman J, Harvey D, Mitchell LH, Riera TV, Cosmopoulos K, et al. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. PLoS One. 2018;13(6):e0197372.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sese B, Barrero MJ, Fabregat MC, Sander V, Izpisua Belmonte JC. SMYD2 is induced during cell differentiation and participates in early development. Int J Dev Biol. 2013;57(5):357–64.
Article
CAS
PubMed
Google Scholar
Fujii T, Tsunesumi S, Yamaguchi K, Watanabe S, Furukawa Y. SMYD3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One. 2011;6(8):e23491.
Article
CAS
PubMed Central
PubMed
Google Scholar
Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, et al. SMYD2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev. 2012;26(2):114–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Crucean A, Alqahtani A, Barron DJ, Brawn WJ, Richardson RV, O'Sullivan J, et al. Re-evaluation of hypoplastic left heart syndrome from a developmental and morphological perspective. Orphanet J Rare Dis. 2017;12(1):138.
Article
CAS
PubMed Central
PubMed
Google Scholar
He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res. 2012;110(3):406–15.
Article
CAS
PubMed
Google Scholar
Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012;44(3):343–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Munkanatta Godage DNP, VanHecke GC, Samarasinghe KTG, Feng HZ, Hiske M, Holcomb J, et al. SMYD2 glutathionylation contributes to degradation of sarcomeric proteins. Nat Commun. 2018;9(1):4341.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sajjad A, Novoyatleva T, Vergarajauregui S, Troidl C, Schermuly RT, Tucker HO, et al. Lysine methyltransferase Smyd2 suppresses p53-dependent cardiomyocyte apoptosis. Biochim Biophys Acta. 2014;1843(11):2556–62.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B, et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res. 2017;120(2):341–53.
Article
CAS
PubMed Central
PubMed
Google Scholar
Toghill BJ, Saratzis A, Freeman PJ, Sylvius N, Collaborators U, Bown MJ. Smyd2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and Smyd2 expression in vascular smooth muscle cells. Clin Epigenetics. 2018;10:29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xu G, Liu G, Xiong S, Liu H, Chen X, Zheng B. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) production. J Biol Chem. 2015;290(9):5414–23.
Article
CAS
PubMed Central
PubMed
Google Scholar
Qi J, Yang P, Yi B, Huo Y, Chen M, Zhang J, et al. Heat shock protein 90 inhibition by 17-DMAG attenuates abdominal aortic aneurysm formation in mice. Am J Physiol Heart Circ Physiol. 2015;308(8):H841–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sakamoto LH, Andrade RV, Felipe MS, Motoyama AB, Pittella SF. SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor. Leuk Res. 2014;38(4):496–502.
Article
CAS
PubMed
Google Scholar
Komatsu S, Imoto I, Tsuda H, Kozaki KI, Muramatsu T, Shimada Y, et al. Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis. 2009;30(7):1139–46.
Article
CAS
PubMed
Google Scholar
Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T, et al. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer. 2015;112(2):357–64.
Article
CAS
PubMed
Google Scholar
DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61(6):409–18.
Article
PubMed
Google Scholar
Song J, Liu Y, Chen Q, Yang J, Jiang Z, Zhang H, et al. Expression patterns and the prognostic value of the SMYD family members in human breast carcinoma using integrative bioinformatics analysis. Oncol Lett. 2019;17(4):3851–61.
PubMed Central
PubMed
Google Scholar
Basile D, Cinausero M, Iacono D, Pelizzari G, Bonotto M, Vitale MG, et al. Androgen receptor in estrogen receptor positive breast cancer: beyond expression. Cancer Treat Rev. 2017;61:15–22.
Article
CAS
PubMed
Google Scholar
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev. 2017;97(3):1045–87.
Article
PubMed
Google Scholar
Obermann WMJ. A motif in Hsp90 and p23 that links molecular chaperones to efficient estrogen receptor alpha methylation by the lysine methyltransferase SMYD2. J Biol Chem. 2018;293(42):16479–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kukita A, Sone K, Oda K, Hamamoto R, Kaneko S, Komatsu M, et al. Histone methyltransferase SMYD2 selective inhibitor lly-507 in combination with poly ADP ribose polymerase inhibitor has therapeutic potential against high-grade serous ovarian carcinomas. Biochem Biophys Res Commun. 2019;513(2):340–6.
Article
CAS
PubMed
Google Scholar
Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.
Article
CAS
PubMed
Google Scholar
Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(9):1274–84.
Article
CAS
PubMed
Google Scholar
Pires-Luis AS, Vieira-Coimbra M, Vieira FQ, Costa-Pinheiro P, Silva-Santos R, Dias PC, et al. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication. Epigenetics. 2015;10(11):1033–43.
Article
PubMed Central
PubMed
Google Scholar
Ohtomo-Oda R, Komatsu S, Mori T, Sekine S, Hirajima S, Yoshimoto S, et al. SMYD2 overexpression is associated with tumor cell proliferation and a worse outcome in human papillomavirus-unrelated nonmultiple head and neck carcinomas. Hum Pathol. 2016;49:145–55.
Article
CAS
PubMed
Google Scholar
Bagislar S, Sabo A, Kress TR, Doni M, Nicoli P, Campaner S, et al. SMYD2 is a MYC-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget. 2016;7(41):66398–415.
Article
PubMed Central
PubMed
Google Scholar
Zipin-Roitman A, Aqaqe N, Yassin M, Biechonski S, Amar M, van Delft MF, et al. SMYD2 lysine methyltransferase regulates leukemia cell growth and regeneration after genotoxic stress. Oncotarget. 2017;8(10):16712–27.
Article
PubMed Central
PubMed
Google Scholar
Oliveira-Santos W, Rabello DA, Lucena-Araujo AR, de Oliveira FM, Rego EM, Pittella Silva F, et al. Residual expression of SMYD2 and SMYD3 is associated with the acquisition of complex karyotype in chronic lymphocytic leukemia. Tumour Biol. 2016;37(7):9473–81.
Article
CAS
PubMed
Google Scholar
Xu W, Chen F, Fei X, Yang X, Lu X. Overexpression of SET and MYND domain-containing protein 2 (SMYD2) is associated with tumor progression and poor prognosis in patients with papillary thyroid carcinoma. Med Sci Monit. 2018;24:7357–65.
Article
PubMed Central
PubMed
Google Scholar
Zuo SR, Zuo XC, He Y, Fang WJ, Wang CJ, Zou H, et al. Positive expression of SMYD2 is associated with poor prognosis in patients with primary hepatocellular carcinoma. J Cancer. 2018;9(2):321–30.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ren H, Wang Z, Chen Y, Liu Y, Zhang S, Zhang T, et al. SMYD2-oe promotes oxaliplatin resistance in colon cancer through MDR1/p-glycoprotein via MEK/ERK/AP1 pathway. Onco Targets Ther. 2019;12:2585–94.
Article
PubMed Central
PubMed
Google Scholar
Boehm D, Jeng M, Camus G, Gramatica A, Schwarzer R, Johnson JR, et al. SMYD2-mediated histone methylation contributes to HIV-1 latency. Cell Host Microbe. 2017;21(5):569–79 e6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fan JD, Lei PJ, Zheng JY, Wang X, Li S, Liu H, et al. The selective activation of p53 target genes regulated by SMYD2 in BIX-01294 induced autophagy-related cell death. PLoS One. 2015;10(1):e0116782.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Q, Lawrence CR, Nowak RA, Flaws JA, Bagchi MK, Bagchi IC. Bisphenol A and phthalates modulate peritoneal macrophage function in female mice involving SYMD2-H3K36 dimethylation. Endocrinology. 2018;159(5):2216–28.
Article
PubMed Central
PubMed
Google Scholar