WHO. P07 disorders related to short gestation and low birth weight in icd-10. 2016. http://www.icd10data.com/ICD10CM/Codes/P00-P96/P05-P08/P07-/P07.10. Accessed 08/31/2017.
Chen Y, Wu L, Zhang W, Zou L, Li G, Fan L. Delivery modes and pregnancy outcomes of low birth weight infants in China. J Perinatol. 2016;36(1):41–6. https://doi.org/10.1038/jp.2015.137.
WHO. Global nutrition targets 2025: low birth weight policy brief. 2014. http://www.who.int/nutrition/publications/globaltargets2025_policybrief_lbw/en/. Accessed 08/31/2017.
McNamara BJ, Gubhaju L, Chamberlain C, Stanley F, Eades SJ. Early life influences on cardio-metabolic disease risk in aboriginal populations—what is the evidence? A systematic review of longitudinal and case-control studies. Int J Epidemiol. 2012;41(6):1661–82. https://doi.org/10.1093/ije/dys190.
Article
PubMed
Google Scholar
Pfab T, Slowinski T, Godes M, Halle H, Priem F, Hocher B. Low birth weight, a risk factor for cardiovascular diseases in later life, is already associated with elevated fetal glycosylated hemoglobin at birth. Circulation. 2006;114(16):1687–92. https://doi.org/10.1161/CIRCULATIONAHA.106.625848.
Article
CAS
PubMed
Google Scholar
Zarrati M, Shidfar F, Razmpoosh E, Nezhad FN, Keivani H, Hemami MR, et al. Does low birth weight predict hypertension and obesity in schoolchildren? Ann Nutr Metab. 2013;63(1–2):69–76. https://doi.org/10.1159/000351869.
Article
CAS
PubMed
Google Scholar
Silverwood RJ, Pierce M, Hardy R, Sattar N, Whincup P, Ferro C, et al. Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int. 2013;84(6):1262–70. https://doi.org/10.1038/ki.2013.223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lund LK, Vik T, Lydersen S, Lohaugen GC, Skranes J, Brubakk AM, et al. Mental health, quality of life and social relations in young adults born with low birth weight. Health Qual Life Outcomes. 2012;10:146. https://doi.org/10.1186/1477-7525-10-146.
Article
PubMed
PubMed Central
Google Scholar
Walter EC, Koepsell TD, Chien JW. Low birth weight and respiratory hospitalizations in adolescence. Pediatr Pulmonol. 2010; https://doi.org/10.1002/ppul.21398.
Main KM, Jensen RB, Asklund C, Hoi-Hansen CE, Skakkebaek NE. Low birth weight and male reproductive function. Horm Res. 2006;65(Suppl 3):116–22. https://doi.org/10.1159/000091516.
CAS
PubMed
Google Scholar
Wardlaw TM, World Health Organization, UNICEF, editors. Low birthweight: country, regional and global estimates. Geneva : New York: WHO ; UNICEF; 2004.
Fedrick J, Adelstein P. Factors associated with low birth weight of infants delivered at term. Br J Obstet Gynaecol. 1978;85(1):1–7.
Article
CAS
PubMed
Google Scholar
Novakovic B, Gordon L, Robinson WP, Desoye G, Saffery R. Glucose as a fetal nutrient: dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation. J Nutr Biochem. 2013;24(1):282–8. https://doi.org/10.1016/j.jnutbio.2012.06.006.
Article
CAS
PubMed
Google Scholar
Valero De Bernab J, Soriano T, Albaladejo R, Juarranz M, Calle MAE, Mart Nez D, et al. Risk factors for low birth weight: a review. Eur J Obstet Gyn R B. 2004;116(1):3–15. https://doi.org/10.1016/j.ejogrb.2004.03.007.
Article
Google Scholar
Niu Z, Xie C, Wen X, Tian F, Ding P, He Y, et al. Placenta mediates the association between maternal second-hand smoke exposure during pregnancy and small for gestational age. Placenta. 2015;36(8):876–80. https://doi.org/10.1016/j.placenta.2015.05.005.
Article
CAS
PubMed
Google Scholar
Roland MC, Friis CM, Voldner N, Godang K, Bollerslev J, Haugen G, et al. Fetal growth versus birthweight: the role of placenta versus other determinants. PLoS One. 2012;7(6):e39324. https://doi.org/10.1371/journal.pone.0039324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brett KE, Ferraro ZM, Yockell-Lelievre J, Gruslin A, Adamo KB. Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci. 2014;15(9):16153–85. https://doi.org/10.3390/ijms150916153.
Article
PubMed
PubMed Central
Google Scholar
Alwasel SH, Abotalib Z, Aljarallah JS, Osmond C, Al OS, Harrath A, et al. The breadth of the placental surface but not the length is associated with body size at birth. Placenta. 2012;33(8):619–22. https://doi.org/10.1016/j.placenta.2012.04.015.
Article
CAS
PubMed
Google Scholar
Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol. 2008;61(12):1254–60. https://doi.org/10.1136/jcp.2008.055236.
Article
CAS
PubMed
Google Scholar
Capellini I. The evolutionary significance of placental interdigitation in mammalian reproduction: contributions from comparative studies. Placenta. 2012;33(10):763–8. https://doi.org/10.1016/j.placenta.2012.07.004.
Article
CAS
PubMed
Google Scholar
Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7(3):165–97.
Article
CAS
PubMed
Google Scholar
Yang QE, Giassetti MI, Ealy AD. Fibroblast growth factors activate mitogen-activated protein kinase pathways to promote migration in ovine trophoblast cells. Reproduction. 2011;141(5):707–14. https://doi.org/10.1530/REP-10-0541.
Article
CAS
PubMed
Google Scholar
Feng L, Liao WX, Luo Q, Zhang HH, Wang W, Zheng J, et al. Caveolin-1 orchestrates fibroblast growth factor 2 signaling control of angiogenesis in placental artery endothelial cell caveolae. J Cell Physiol. 2012;227(6):2480–91. https://doi.org/10.1002/jcp.22984.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mata-Greenwood E, Liao WX, Zheng J, Chen DB. Differential activation of multiple signalling pathways dictates eNOS upregulation by FGF2 but not VEGF in placental artery endothelial cells. Placenta. 2008;29(8):708–17. https://doi.org/10.1016/j.placenta.2008.05.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Song Y, Chen DB, Zheng J. Protein phosphatase 3 differentially modulates vascular endothelial growth factor- and fibroblast growth factor 2-stimulated cell proliferation and signaling in ovine fetoplacental artery endothelial cells. Biol Reprod. 2008;79(4):704–10. https://doi.org/10.1095/biolreprod.108.068957.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng J, Wen Y, Song Y, Wang K, Chen DB, Magness RR. Activation of multiple signaling pathways is critical for fibroblast growth factor 2- and vascular endothelial growth factor-stimulated ovine fetoplacental endothelial cell proliferation. Biol Reprod. 2008;78(1):143–50. https://doi.org/10.1095/biolreprod.107.064477.
Article
CAS
PubMed
Google Scholar
Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, et al. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS One. 2009;4(11):e7856. https://doi.org/10.1371/journal.pone.0007856.
Article
PubMed
PubMed Central
Google Scholar
Kunath T, Yamanaka Y, Detmar J, MacPhee D, Caniggia I, Rossant J, et al. Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta. 2014;35(12):1079–88. https://doi.org/10.1016/j.placenta.2014.09.008.
Article
CAS
PubMed
Google Scholar
Pfarrer C, Weise S, Berisha B, Schams D, Leiser R, Hoffmann B, et al. Fibroblast growth factor (fgf)-1, fgf2, fgf7 and fgf receptors are uniformly expressed in trophoblast giant cells during restricted trophoblast invasion in cows. Placenta. 2006;27(6–7):758–70. https://doi.org/10.1016/j.placenta.2005.06.007.
Article
CAS
PubMed
Google Scholar
Baczyk D, Dunk C, Huppertz B, Maxwell C, Reister F, Giannoulias D, et al. Bi-potential behaviour of cytotrophoblasts in first trimester chorionic villi. Placenta. 2006;27(4–5):367–74. https://doi.org/10.1016/j.placenta.2005.03.006.
Article
CAS
PubMed
Google Scholar
Ozawa M, Yang QE, Ealy AD. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction. 2013;145(2):191–201. https://doi.org/10.1530/REP-12-0220.
Article
CAS
PubMed
Google Scholar
Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A. 1998;95(9):5082–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Januar V, Desoye G, Novakovic B, Cvitic S, Saffery R. Epigenetic regulation of human placental function and pregnancy outcome: considerations for causal inference. Am J Obstet Gynecol. 2015;213(4 Suppl):S182–96. https://doi.org/10.1016/j.ajog.2015.07.011.
Article
CAS
PubMed
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. https://doi.org/10.1038/npp.2012.112.
Article
CAS
PubMed
Google Scholar
Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007;27:363–88. https://doi.org/10.1146/annurev.nutr.27.061406.093705.
Article
CAS
PubMed
Google Scholar
Bouwland-Both MI, van Mil NH, Stolk L, Eilers PH, Verbiest MM, Heijmans BT, et al. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: the generation R study. PLoS One. 2013;8(12):e81731. https://doi.org/10.1371/journal.pone.0081731.
Article
PubMed
PubMed Central
Google Scholar
Rumbajan JM, Yamaguchi Y, Nakabayashi K, Higashimoto K, Yatsuki H, Nishioka K, et al. The HUS1B promoter is hypomethylated in the placentas of low-birth-weight infants. Gene. 2016;583(2):141–6. https://doi.org/10.1016/j.gene.2016.02.025.
Article
CAS
PubMed
Google Scholar
Xiao X, Zhao Y, Jin R, Chen J, Wang X, Baccarelli A, et al. Fetal growth restriction and methylation of growth-related genes in the placenta. Epigenomics-Uk. 2016;8(1):33–42. https://doi.org/10.2217/epi.15.101.
Article
CAS
Google Scholar
Tian F, Hivert M, Wen X, Xie C, Niu Z, Fan L, et al. Tissue differences in DNA methylation changes at AHRR in full term low birth weight in maternal blood, placenta and cord blood in Chinese. Placenta. 2017;52:49–57. https://doi.org/10.1016/j.placenta.2017.02.017.
Article
CAS
PubMed
Google Scholar
Bianco-Miotto T, Mayne BT, Buckberry S, Breen J, Rodriguez LC, Roberts CT. Recent progress towards understanding the role of DNA methylation in human placental development. Reproduction. 2016;152(1):R23–30. https://doi.org/10.1530/REP-16-0014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohan-Ghadr HR, Kadam L, Jain C, Armant DR, Drewlo S. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adhes Migr. 2016;10(1–2):126–35. https://doi.org/10.1080/19336918.2015.1098800.
Article
CAS
Google Scholar
Bashir ST, Gastal MO, Tazawa SP, Tarso SG, Hales DB, Cuervo-Arango J, et al. The mare as a model for luteinized unruptured follicle syndrome: intrafollicular endocrine milieu. Reproduction. 2016;151(3):271–83. https://doi.org/10.1530/REP-15-0457.
Article
CAS
PubMed
Google Scholar
Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A. 2005;102(44):15785–90. https://doi.org/10.1073/pnas.0507816102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. https://doi.org/10.1093/bioinformatics/bts034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanderweele TJ, Vansteelandt S. Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol. 2010;172(12):1339–48. https://doi.org/10.1093/aje/kwq332.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Zhang B. Assessing natural direct and indirect effects for a continuous exposure and a dichotomous outcome. J Stat Theory Pract. 2016;10(3):574–87. https://doi.org/10.1080/15598608.2016.1203843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.
CAS
PubMed
PubMed Central
Google Scholar
Haworth KE, Farrell WE, Emes RD, Ismail KM, Carroll WD, Hubball E, et al. Methylation of the FGFR2 gene is associated with high birth weight centile in humans. Epigenomics-Uk. 2014;6(5):477–91. https://doi.org/10.2217/epi.14.40.
Article
CAS
Google Scholar
Katoh M. FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J Invest Dermatol. 2009;129(8):1861–7. https://doi.org/10.1038/jid.2009.97.
Article
CAS
PubMed
Google Scholar
Fryer AA, Emes RD, Ismail KM, Haworth KE, Mein C, Carroll WD, et al. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics-Us. 2011;6(1):86–94. https://doi.org/10.4161/epi.6.1.13392.
Article
CAS
Google Scholar
Hu Y, Xu H, Li Z, Zheng X, Jia X, Nie Q, et al. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One. 2013;8(2):e56411. https://doi.org/10.1371/journal.pone.0056411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hillman SL, Finer S, Smart MC, Mathews C, Lowe R, Rakyan VK, et al. Novel DNA methylation profiles associated with key gene regulation and transcription pathways in blood and placenta of growth-restricted neonates. Epigenetics-Us. 2015;10(1):50–61. https://doi.org/10.4161/15592294.2014.989741.
Article
Google Scholar
Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 2012;22(8):1395–406. https://doi.org/10.1101/gr.136598.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turan N, Ghalwash MF, Katari S, Coutifaris C, Obradovic Z, Sapienza C. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genet. 2012;5:10. https://doi.org/10.1186/1755-8794-5-10.
CAS
Google Scholar
Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, et al. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Persp. 2012;120(2):296.
Article
CAS
Google Scholar
Gaunt TR, Shihab HA, Hemani G, Min JL, Woodward G, Lyttleton O, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 2016;17(1) https://doi.org/10.1186/s13059-016-0926-z.
Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52. https://doi.org/10.1038/nature19806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013;45(1):76–82. https://doi.org/10.1038/ng.2477.
Article
CAS
PubMed
Google Scholar
Urbanek M, Hayes MG, Armstrong LL, Morrison J, Lowe LP, Badon SE, et al. The chromosome 3q25 genomic region is associated with measures of adiposity in newborns in a multi-ethnic genome-wide association study. Hum Mol Genet. 2013;22(17):3583–96. https://doi.org/10.1093/hmg/ddt168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metrustry SJ, Edwards MH, Medland SE, Holloway JW, Montgomery GW, Martin NG, et al. Variants close to ntrk2 gene are associated with birth weight in female twins. Twin Res Hum Genet. 2014;17(4):254–61. https://doi.org/10.1017/thg.2014.34.
Article
PubMed
Google Scholar
Daca-Roszak P, Pfeifer A, Żebracka-Gala J, Rusinek D, Szybińska A, Jarząb B, et al. Impact of SNPs on methylation readouts by Illumina Infinium HumanMethylation450 BeadChip Array: implications for comparative population studies. BMC Genomics. 2015;16(1) https://doi.org/10.1186/s12864-015-2202-0.
Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114(6):744–54. https://doi.org/10.1172/JCI22991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Bajoria R, Aplin JD. Decreased vascularization and cell proliferation in placentas of intrauterine growth—restricted fetuses with abnormal umbilical artery flow velocity waveforms. Am J Obstet Gynecol. 2002;187(3):764–9. https://doi.org/10.1067/mob.2002.125243.
Article
PubMed
Google Scholar
Kondo T, Zheng L, Liu W, Kurebayashi J, Asa SL, Ezzat S. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res. 2007;67(11):5461–70. https://doi.org/10.1158/0008-5472.CAN-06-4477.
Article
CAS
PubMed
Google Scholar
UCSC: H3k27ac mark (often found near active regulatory elements) on 7 cell lines from encode. 2017. https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=509764167_hBFLTAE3Vuhnfv0O6RMuAiUE2hXp&c=chr5&g=wgEncodeRegMarkH3k27ac. Accessed 5 Sept 2017.
Google Scholar
Salafia CM, Zhang J, Charles AK, Bresnahan M, Shrout P, Sun W, et al. Placental characteristics and birthweight. Paediatr Perinat Epidemiol. 2008;22(3):229–39. https://doi.org/10.1111/j.1365-3016.2008.00935.x.
Article
PubMed
Google Scholar
Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34(9):745–50. https://doi.org/10.1016/j.placenta.2013.05.003.
Article
CAS
PubMed
Google Scholar
Sivarao S, Vidyadaran MK, Jammal ABE, Zainab S, Goh YM, Ramesh KN. Weight, volume and surface area of placenta of normal pregnant women and their relation to maternal and neonatal parameters in Malay, Chinese and Indian ethnic groups. Placenta. 2002;23(8–9):691–6. https://doi.org/10.1053/plac.2002.0817.
Article
CAS
PubMed
Google Scholar
Kippler M, Engstrom K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, et al. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics-Us. 2013;8(5):494–503. https://doi.org/10.4161/epi.24401.
Article
CAS
Google Scholar
Ke X, McKnight RA, Caprau D, O'Grady S, Fu Q, Yu X, et al. Intrauterine growth restriction affects hippocampal dual specificity phosphatase 5 gene expression and epigenetic characteristics. Physiol Genomics. 2011;43(20):1160–9. https://doi.org/10.1152/physiolgenomics.00242.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baserga M, Kaur R, Hale MA, Bares A, Yu X, Callaway CW, et al. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11beta-hydroxysteroid dehydrogenase type 2 in a sex-specific manner. Am J Physiol Regul Integr Comp Physiol. 2010;299(1):R334–42. https://doi.org/10.1152/ajpregu.00122.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar