McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60(5):497–502. doi:10.1001/archpsyc.60.5.497.
Article
PubMed
Google Scholar
Shinozaki G, Potash JB. New developments in the genetics of bipolar disorder. Curr Psychiatry Rep. 2014;16(11):493. doi:10.1007/s11920-014-0493-5.
Article
PubMed
Google Scholar
Muhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5:3339. doi:10.1038/ncomms4339.
Article
PubMed
Google Scholar
Visscher PM, Goddard ME, Derks EM, Wray NR. Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry. 2012;17(5):474–85. doi:10.1038/mp.2011.65.
Article
CAS
PubMed
Google Scholar
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. doi:10.1126/science.1222794.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seifuddin F, Pirooznia M, Judy JT, Goes FS, Potash JB, Zandi PP. Systematic review of genome-wide gene expression studies of bipolar disorder. BMC Psychiatry. 2013;13:213. doi:10.1186/1471-244X-13-213.
Article
PubMed Central
PubMed
Google Scholar
Beech RD, Lowthert L, Leffert JJ, Mason PN, Taylor MM, Umlauf S, et al. Increased peripheral blood expression of electron transport chain genes in bipolar depression. Bipolar Disord. 2010;12(8):813–24. doi:10.1111/j.1399-5618.2010.00882.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaminsky Z, Jones I, Verma R, Saleh L, Trivedi H, Guintivano J, et al. DNA methylation and expression of KCNQ3 in bipolar disorder. Bipolar Disord. 2014. doi:10.1111/bdi.12230.
PubMed
Google Scholar
Strauss JS, Khare T, De Luca V, Jeremian R, Kennedy JL, Vincent JB, et al. Quantitative leukocyte BDNF promoter methylation analysis in bipolar disorder. Int J Bipolar Disord. 2013;1:28. doi:10.1186/2194-7511-1-28.
Article
PubMed Central
PubMed
Google Scholar
Ruzicka WB, Subburaju S, Benes FM. Circuit- and diagnosis-specific DNA methylation changes at gamma-aminobutyric acid-related genes in postmortem human hippocampus in schizophrenia and bipolar disorder. JAMA psychiatry. 2015;72(6):541–51. doi:10.1001/jamapsychiatry.2015.49.
Article
PubMed
Google Scholar
Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Translational psychiatry. 2012;2:e132. doi:10.1038/tp.2012.55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaminsky Z, Tochigi M, Jia P, Pal M, Mill J, Kwan A, et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol Psychiatry. 2012;17(7):728–40. doi:10.1038/mp.2011.64.
Article
CAS
PubMed
Google Scholar
Lemire M, Zaidi SH, Ban M, Ge B, Aissi D, Germain M, et al. Long-range epigenetic regulation is conferred by genetic variation located at thousands of independent loci. Nat Commun. 2015;6:6326. doi:10.1038/ncomms7326.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20(24):4786–96. doi:10.1093/hmg/ddr416.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Camarillo C, Xu J, Arana TB, Xiao Y, Zhao Z, et al. Genome-wide methylome analyses reveal novel epigenetic regulation patterns in schizophrenia and bipolar disorder. BioMed research international. 2015;2015:201587. doi:10.1155/2015/201587.
PubMed Central
PubMed
Google Scholar
Xiao Y, Camarillo C, Ping Y, Arana TB, Zhao H, Thompson PM, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS One. 2014;9(4):e95875. doi:10.1371/journal.pone.0095875.
Article
PubMed Central
PubMed
Google Scholar
Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M, et al. A locus for bipolar affective disorder on chromosome 4p. Nat Genet. 1996;12(4):427–30. doi:10.1038/ng0496-427.
Article
CAS
PubMed
Google Scholar
Le Hellard S, Lee AJ, Underwood S, Thomson PA, Morris SW, Torrance HS, et al. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder. Biol Psychiatry. 2007;61(6):797–805. doi:10.1016/j.biopsych.2006.06.029.
Article
PubMed
Google Scholar
Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–9. doi:10.4161/epi.23470.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14:293. doi:10.1186/1471-2164-14-293.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3(9):1724–35. doi:10.1371/journal.pgen.0030161.
Article
CAS
PubMed
Google Scholar
Ong ML, Holbrook JD. Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell. 2014;13(1):142–55. doi:10.1111/acel.12159.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2008;13(2):197–207. doi:10.1038/sj.mp.4002012.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X, Strohmaier J, et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet. 2011;88(3):372–81. doi:10.1016/j.ajhg.2011.01.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008;40(9):1056–8. doi:10.1038/ng.209.
Article
PubMed Central
CAS
PubMed
Google Scholar
Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43(10):977–83. doi:10.1038/ng.943.
Article
Google Scholar
Consortium C. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523(7562):588–91. doi:10.1038/nature14659.
Article
Google Scholar
Consortium SWGotPG. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. doi:10.1038/nature13595.
Article
Google Scholar
Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45(10):1150–9. doi:10.1038/ng.2742.
Article
CAS
PubMed
Google Scholar
Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet. 2011;43(12):1224–7. doi:10.1038/ng.980.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 2014;357(2):477–92. doi:10.1007/s00441-014-1806-z.
Article
CAS
PubMed
Google Scholar
Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, et al. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry. 2014;76(12):977–83. doi:10.1016/j.biopsych.2014.04.013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696–711. doi:10.1016/j.ajhg.2008.01.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cordova-Palomera A, Fatjo-Vilas M, Gasto C, Navarro V, Krebs MO, Fananas L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Translational psychiatry. 2015;5:e557. doi:10.1038/tp.2015.49.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, Uchida E, et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol. 2008;15(11):1138–46. doi:10.1038/nsmb.1504.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald 3rd ER, Hurov KE, Luo J, et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell. 2007;129(2):289–301. doi:10.1016/j.cell.2007.03.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
International Schizophrenia C. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–41. doi:10.1038/nature07239.
Article
Google Scholar
Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–6. doi:10.1038/nature07229.
Article
PubMed Central
CAS
PubMed
Google Scholar
Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41. doi:10.1016/j.cell.2012.02.039.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ionita-Laza I, Xu B, Makarov V, Buxbaum JD, Roos JL, Gogos JA, et al. Scan statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism. Proc Natl Acad Sci U S A. 2014;111(1):343–8. doi:10.1073/pnas.1309475110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roginski RS, Mohan Raj BK, Birditt B, Rowen L. The human GRINL1A gene defines a complex transcription unit, an unusual form of gene organization in eukaryotes. Genomics. 2004;84(2):265–76. doi:10.1016/j.ygeno.2004.04.004.
Article
CAS
PubMed
Google Scholar
Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci. 1998;18(6):2017–27.
CAS
PubMed
Google Scholar
Roginski RS, Goubaeva F, Mikami M, Fried-Cassorla E, Nair MR, Yang J. GRINL1A colocalizes with n-methyl d-aspartate receptor NR1 subunit and reduces n-methyl d-aspartate toxicity. Neuroreport. 2008;19(17):1721–6. doi:10.1097/WNR.0b013e328317f05f.
Article
CAS
PubMed
Google Scholar
Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiological research / Academia Scientiarum Bohemoslovaca. 2014;63 Suppl 1:S191–203.
CAS
PubMed
Google Scholar
Harrison PJ. Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol. 2015;29(2):85–96. doi:10.1177/0269881114553647.
Article
PubMed Central
PubMed
Google Scholar
Ghasemi M, Phillips C, Trillo L, De Miguel Z, Das D, Salehi A. The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev. 2014;47:336–58. doi:10.1016/j.neubiorev.2014.08.017.
Article
CAS
PubMed
Google Scholar
O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50. doi:10.1038/nature10989.
Article
PubMed Central
PubMed
Google Scholar
Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013;41(Database issue):D56–63. doi:10.1093/nar/gks1172.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9. doi:10.1016/S0140-6736(12)62129-1.
Article
Google Scholar
Amato D. Serotonin in antipsychotic drugs action. Behav Brain Res. 2015;277:125–35. doi:10.1016/j.bbr.2014.07.025.
Article
CAS
PubMed
Google Scholar
Celada P, Puig M, Amargos-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29(4):252–65.
PubMed Central
PubMed
Google Scholar
Lacerda-Pinheiro SF, Pinheiro Junior RF, Pereira de Lima MA, Lima da Silva CG, Vieira dos Santos Mdo S, Teixeira Junior AG, et al. Are there depression and anxiety genetic markers and mutations? A systematic review. Journal of affective disorders. 2014;168:387–98. doi:10.1016/j.jad.2014.07.016.
Article
PubMed
Google Scholar
Zhao X, Sun L, Sun YH, Ren C, Chen J, Wu ZQ, et al. Association of HTR2A T102C and A-1438G polymorphisms with susceptibility to major depressive disorder: a meta-analysis. Neurol Sci. 2014;35(12):1857–66. doi:10.1007/s10072-014-1970-7.
Article
PubMed
Google Scholar
Ruderfer DM, Fanous AH, Ripke S, McQuillin A, Amdur RL, Schizophrenia Working Group of Psychiatric Genomics, et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry. 2014;19(9):1017–24. doi:10.1038/mp.2013.138.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hill MJ, Donocik JG, Nuamah RA, Mein CA, Sainz-Fuertes R, Bray NJ. Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells. Schizophr Res. 2014;153(1-3):225–30. doi:10.1016/j.schres.2014.01.034.
Article
PubMed Central
PubMed
Google Scholar
Lin Y, Bloodgood BL, Hauser JL, Lapan AD, Koon AC, Kim TK, et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature. 2008;455(7217):1198–204. doi:10.1038/nature07319.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75. doi:10.1038/nrn1683.
Article
PubMed
Google Scholar
Furukawa-Hibi Y, Nagai T, Yun J, Yamada K. Stress increases DNA methylation of the neuronal PAS domain 4 (Npas4) gene. Neuroreport. 2015;26(14):827–32. doi:10.1097/WNR.0000000000000430.
CAS
PubMed
Google Scholar
Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13(6):R43. doi:10.1186/gb-2012-13-6-r43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lokk K, Modhukur V, Rajashekar B, Martens K, Magi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15(4):r54. doi:10.1186/gb-2014-15-4-r54.
Article
PubMed Central
PubMed
Google Scholar
Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86. doi:10.1186/1471-2105-13-86.
Article
PubMed Central
PubMed
Google Scholar
Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31. doi:10.1186/gb-2014-15-2-r31.
Article
PubMed Central
PubMed
Google Scholar
Asai T, Bundo M, Sugawara H, Sunaga F, Ueda J, Tanaka G, et al. Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. The international journal of neuropsychopharmacology/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum. 2013;16(10):2285–94. doi:10.1017/S1461145713000710.
Article
CAS
Google Scholar
Carlberg L, Scheibelreiter J, Hassler MR, Schloegelhofer M, Schmoeger M, Ludwig B, et al. Brain-derived neurotrophic factor (BDNF)-epigenetic regulation in unipolar and bipolar affective disorder. J Affect Disord. 2014;168:399–406. doi:10.1016/j.jad.2014.07.022.
Article
CAS
PubMed
Google Scholar
Menke A, Binder EB. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin Neurosci. 2014;16(3):395–404.
PubMed Central
PubMed
Google Scholar
Sugawara H, Bundo M, Asai T, Sunaga F, Ueda J, Ishigooka J, et al. Effects of quetiapine on DNA methylation in neuroblastoma cells. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:117–21. doi:10.1016/j.pnpbp.2014.08.010.
Article
CAS
PubMed
Google Scholar
Lee RS, Pirooznia M, Guintivano J, Ly M, Ewald ER, Tamashiro KL, et al. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Translational psychiatry. 2015;5, e600. doi:10.1038/tp.2015.90.
Article
CAS
PubMed
Google Scholar
Drysdale E, Knight HM, McIntosh AM, Blackwood DH. Cognitive endophenotypes in a family with bipolar disorder with a risk locus on chromosome 4. Bipolar Disord. 2013;15(2):215–22. doi:10.1111/bdi.12040.
Article
PubMed
Google Scholar
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. doi:10.1093/bioinformatics/btu049.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gibson G. The environmental contribution to gene expression profiles. Nat Rev Genet. 2008;9(8):575–81. doi:10.1038/nrg2383.
Article
CAS
PubMed
Google Scholar
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. doi:10.1093/bioinformatics/bts034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007.
Article
PubMed Central
PubMed
Google Scholar
Butcher LM, Beck S. Probe Lasso: a novel method to rope in differentially methylated regions with 450K DNA methylation data. Methods. 2014. doi:10.1016/j.ymeth.2014.10.036.
PubMed
Google Scholar
Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006;27(2-3):126–39. doi:10.1016/j.mam.2005.12.003.
Article
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.
Article
PubMed Central
PubMed
Google Scholar
Eden E, Lipson D, Yogev S, Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol. 2007;3(3):e39. doi:10.1371/journal.pcbi.0030039.
Article
PubMed Central
PubMed
Google Scholar
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48. doi:10.1186/1471-2105-10-48.
Article
PubMed Central
PubMed
Google Scholar