Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int J Surg. 2005;3:129–40.
Article
CAS
PubMed
Google Scholar
Giacinto O, Satriano U, Nenna A, Spadaccio C, Lusini M, Mastroianni C, Nappi F, Chello M. Inflammatory response and endothelial dysfunction following cardiopulmonary bypass: pathophysiology and pharmacological targets. Recent Pat Inflamm Allergy Drug Discov. 2019;13:158–73.
Article
CAS
PubMed
Google Scholar
Ruifrok WT, Westenbrink BD, de Boer RA, den Hamer IJ, Erasmus ME, Mungroop HE, Epema AH, Voors AA, van Veldhuisen DJ, van Gilst WH. Apoptosis during CABG surgery with the use of cardiopulmonary bypass is prominent in ventricular but not in atrial myocardium. Neth Heart J. 2010;18:236–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Squiccimarro E, Stasi A, Lorusso R, Paparella D: Narrative review of the systemic inflammatory reaction to cardiac surgery and cardiopulmonary bypass. Artif Organs; n/a
Wen Z, Lei Z, Yao L, Jiang P, Gu T, Ren F, Liu Y, Gou C, Li X, Wen T. Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure. Cell Death Dis. 2016;7:e2391–e2391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw RJ, Austin J, Taylor J, Dutt T, Wang G, Abrams ST, Toh CH. Circulating histone levels correlate with the severity of COVID-19 and the extent of coagulation activation and inflammation. Blood. 2020;136:19–19.
Article
Google Scholar
Yokoyama Y, Ito T, Yasuda T, Furubeppu H, Kamikokuryo C, Yamada S, Maruyama I, Kakihana Y. Circulating histone H3 levels in septic patients are associated with coagulopathy, multiple organ failure, and death: a single-center observational study. Thromb J. 2019;17:1.
Article
PubMed
PubMed Central
Google Scholar
Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W, Wang G, Toh CH. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med. 2013;187:160–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alhamdi Y, Abrams ST, Cheng Z, Jing S, Su D, Liu Z, Lane S, Welters I, Wang G, Toh C-H. Circulating histones are major mediators of cardiac injury in patients with sepsis*. Crit Care Med. 2015;43:2094–103.
Article
CAS
PubMed
Google Scholar
Liu T, Huang W, Szatmary P, Abrams ST, Alhamdi Y, Lin Z, Greenhalf W, Wang G, Sutton R, Toh CH. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg. 2017;104:1215–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chew Michelle S, Brandslund I, Brix-Christensen V, Ravn Hanne B, Hjortdal Vibeke E, Pedersen J, Hjortholm K, Hansen Ole K, Tønnesen E. Tissue injury and the inflammatory response to pediatric cardiac surgery with cardiopulmonary bypass: a descriptive study. Anesthesiology. 2001;94:745–53.
Article
Google Scholar
Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–31.
Article
CAS
PubMed
Google Scholar
Nowill AE, Fornazin MC, Spago MC, Dorgan Neto V, Pinheiro VRP, Alexandre SSS, Moraes EO, Souza G, Eberlin MN, Marques LA, Meurer EC, Franchi GC Jr, de Campos-Lima PO. Immune response resetting in ongoing sepsis. J Immunol. 2019;203:1298–312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019;105:329–38.
Article
CAS
PubMed
Google Scholar
Fink R, Al-Obaidi M, Grewal S, Winter M, Pepper J. Monocyte activation markers during cardiopulmonary bypass. Perfusion. 2003;18:83–6.
Article
CAS
PubMed
Google Scholar
Flier S, Concepcion AN, Versteeg D, Kappen TH, Hoefer IE, de Lange DW, Pasterkamp G, Buhre WF. Monocyte hyporesponsiveness and Toll-like receptor expression profiles in coronary artery bypass grafting and its clinical implications for postoperative inflammatory response and pneumonia: an observational cohort study. Eur J Anaesthesiol. 2015;32:177–88.
Article
CAS
PubMed
Google Scholar
Reschke C. Epigenetic regulation of cytokine production in endotoxin tolerance. Medicine. Berlin: Humbol University; 2016.
Google Scholar
Pena OM, Hancock DG, Lyle NH, Linder A, Russell JA, Xia J, Fjell CD, Boyd JH, Hancock RE. An endotoxin tolerance signature predicts sepsis and organ dysfunction at initial clinical presentation. EBioMedicine. 2014;1:64–71.
Article
PubMed
PubMed Central
Google Scholar
Xiao LI, Cao Y, Wang Y, Lai X, Gao K-Q, Du P, Zhang B-K, Jia S-J. Aberrant histone modifications of global histone and MCP-1 promoter in CD14+ monocytes from patients with coronary artery disease. Die Pharmazie Int J Pharm Sci. 2018;73:202–6.
CAS
Google Scholar
Szerafin T, Hoetzenecker K, Hacker S, Horvath A, Pollreisz A, Árpád P, Mangold A, Wliszczak T, Dworschak M, Seitelberger R, Wolner E, Ankersmit HJ. Heat shock proteins 27, 60, 70, 90α, and 20S proteasome in on-pump versus off-pump coronary artery bypass graft patients. Ann Thorac Surg. 2008;85:80–7.
Article
PubMed
Google Scholar
Schafler A, Kirmanoglou K, Gallmeier U, Pecher P. Heat shock protein 60 expression in patients undergoing cardiac operations. J Cardiovasc Surg. 2003;44:187.
CAS
Google Scholar
Gao H, Zhang N, Lu F, Yu X, Zhu L, Mo X, Wang W. Circulating histones for predicting prognosis after cardiac surgery: a prospective study. Interact Cardiovasc Thorac Surg. 2016;23:681–7.
Article
PubMed
Google Scholar
Wehlin L, Vedin J, Vaage J, Lundahl J. Peripheral blood monocyte activation during coronary artery bypass grafting with or without cardiopulmonary bypass. Scand Cardiovasc J. 2005;39:78–86.
Article
PubMed
Google Scholar
Cao Y, Lu L, Liu M, Li XC, Sun RR, Zheng Y, Zhang PY. Impact of epigenetics in the management of cardiovascular disease: a review. Eur Rev Med Pharmacol Sci. 2014;18:3097–104.
CAS
PubMed
Google Scholar
Liu Y, Reynolds LM, Ding J, Hou L, Lohman K, Young T, Cui W, Huang Z, Grenier C, Wan M, Stunnenberg HG, Siscovick D, Hou L, Psaty BM, Rich SS, Rotter JI, Kaufman JD, Burke GL, Murphy S, Jacobs DR, Post W, Hoeschele I, Bell DA, Herrington D, Parks JS, Tracy RP, McCall CE, Stein JH. Blood monocyte transcriptome and epigenome analyses reveal loci associated with human atherosclerosis. Nat Commun. 2017;8:393.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kapellos TS, Bonaguro L, Gemund I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035.
Article
CAS
PubMed
PubMed Central
Google Scholar
McEwen BS. Biomarkers for assessing population and individual health and disease related to stress and adaptation. Metabolism. 2015;64:S2–10.
Article
CAS
PubMed
Google Scholar
Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med Hypotheses. 2009;73:770–80.
Article
CAS
PubMed
Google Scholar
Lötsch J, Schneider G, Reker D, Parnham MJ, Schneider P, Geisslinger G, Doehring A. Common non-epigenetic drugs as epigenetic modulators. Trends Mol Med. 2013;19:742–53.
Article
PubMed
CAS
Google Scholar
Addo KA, Bulka C, Dhingra R, Santos HP Jr, Smeester L, O’Shea TM, Fry RC. Acetaminophen use during pregnancy and DNA methylation in the placenta of the extremely low gestational age newborn (ELGAN) cohort. Environ Epigenetics. 2019. https://doi.org/10.1093/eep/dvz010.
Article
Google Scholar
Nikpay M, Stewart AFR, McPherson R. Partitioning the heritability of coronary artery disease highlights the importance of immune-mediated processes and epigenetic sites associated with transcriptional activity. Cardiovasc Res. 2017;113:973–83.
Article
CAS
PubMed
Google Scholar
Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology. 2013;139:285–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall AW, Chaffin M, Roselli C, Lin H, Lubitz SA, Bianchi V, Geeven G, Bedi K, Margulies KB, de Laat W, Tucker NR, Ellinor PT. Epigenetic analyses of human left atrial tissue identifies gene networks underlying atrial fibrillation. Circ Genom Precis Med. 2020;13: e003085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaaban H, Keshari RS, Silasi-Mansat R, Popescu NI, Mehta-D’Souza P, Lim YP, Lupu F. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood. 2015;125:2286–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Haeger SM, Yang Y, Dailey KL, Ford JA, Schmidt EP. Circulating heparan sulfate fragments attenuate histone-induced lung injury independently of histone binding. Shock. 2017;48:666–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagano F, Mizuno T, Mizumoto S, Yoshioka K, Takahashi K, Tsuboi N, Maruyama S, Yamada S, Nagamatsu T. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones. Eur J Pharmacol. 2018;826:48–55.
Article
CAS
PubMed
Google Scholar
Abrams ST, Zhang N, Dart C, Wang SS, Thachil J, Guan Y, Wang G, Toh CH. Human CRP defends against the toxicity of circulating histones. J Immunol. 2013;191:2495–502.
Article
CAS
PubMed
Google Scholar
Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1. Circ Res. 2016;118:145–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu B, Mottola G, Schaller M, Upchurch GR Jr, Conte MS. Resolution of vascular injury: specialized lipid mediators and their evolving therapeutic implications. Mol Aspects Med. 2017;58:72–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fichtlscherer S, Breuer S, Schächinger V, Dimmeler S, Zeiher AM. C-reactive protein levels determine systemic nitric oxide bioavailability in patients with coronary artery disease. Eur Heart J. 2004;25:1412–8.
Article
CAS
PubMed
Google Scholar
Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, Pavenstädt H, Brand E, Oberleithner H. C-reactive protein makes human endothelium stiff and tight. Hypertension. 2011;57:231–7.
Article
CAS
PubMed
Google Scholar
Badimon L, Peña E, Arderiu G, Padró T, Slevin M, Vilahur G, Chiva-Blanch G. C-reactive protein in atherothrombosis and angiogenesis. Front Immunol. 2018;9:430.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pleskovič A, Letonja MŠ, Vujkovac AC, Starčević JN, Gazdikova K, Caprnda M, Gaspar L, Kruzliak P, Petrovič D. C-reactive protein as a marker of progression of carotid atherosclerosis in subjects with type 2 diabetes mellitus. Vasa. 2017;46:187–92.
Article
PubMed
Google Scholar
Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, Ent MAVD, Sharifi N, Janssen-Megens EM, Huurne MT, Mandoli A, Schaik TV, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, Meer JWMVD, Joosten LAB, Wijmenga C, Martens JHA, Xavier RJ, Logie C, Netea MG, Stunnenberg HG. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jia S-J, Gao K-Q, Zhao M. Epigenetic regulation in monocyte/macrophage: a key player during atherosclerosis. Cardiovasc Ther. 2017;35: e12262.
Article
Google Scholar
Messemaker TC, Mikkers HMM, Huizinga TW, Toes REM, van der Helm van Mil AHM, Kurreeman F. Inflammatory genes TNFα and IL6 display no signs of increased H3K4me3 in circulating monocytes from untreated rheumatoid arthritis patients. Genes Immun. 2017;18:191–6.
Article
CAS
PubMed
Google Scholar
Domínguez-Andrés J, Fanucchi S, Joosten LAB, Mhlanga MM, Netea MG. Advances in understanding molecular regulation of innate immune memory. Curr Opin Cell Biol. 2020;63:68–75.
Article
PubMed
CAS
Google Scholar
Laudanski K, Zawadka M, Polosak J, Modi J, DiMeglio M, Gutsche J, Szeto WY, Puzianowska-Kuznicka M. Acquired immunological imbalance after surgery with cardiopulmonary bypass due to epigenetic over-activation of PU.1/M-CSF. J Transl Med. 2018;16:143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cleves MA, Sanchez N, Draheim M. Evaluation of two competing methods for calculating Charlson’s comorbidity index when analyzing short-term mortality using administrative data. J Clin Epidemiol. 1997;50:903–8.
Article
CAS
PubMed
Google Scholar
Barie PS, Hydo LJ, Fischer E. Comparison of APACHE II and III scoring systems for mortality prediction in critical surgical illness. Arch Surg. 1995;130:77–82.
Article
CAS
PubMed
Google Scholar
Peres Bota D, Melot C, Lopes Ferreira F, Nguyen Ba V, Vincent JL. The multiple organ dysfunction score (MODS) versus the sequential organ failure assessment (SOFA) score in outcome prediction. Intensive Care Med. 2002;28:1619–24.
Article
PubMed
Google Scholar
Maeder M, Fehr T, Rickli H, Ammann P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest. 2006;129:1349–66.
Article
CAS
PubMed
Google Scholar
Hall C. Essential biochemistry and physiology of (NT-pro)BNP. Eur J Heart Fail. 2004;6:257–60.
Article
CAS
PubMed
Google Scholar
Bäz L, Dannberg G, Grün K, Westphal J, Möbius-Winkler S, Jung C, Pfeil A, Schulze PC, Franz M. Serum biomarkers of cardiovascular remodelling reflect extra-valvular cardiac damage in patients with severe aortic stenosis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21114174.
Article
PubMed
PubMed Central
Google Scholar
McGaffin KR, Sun CK, Rager JJ, Romano LC, Zou B, Mathier MA, O’Doherty RM, McTiernan CF, O’Donnell CP. Leptin signalling reduces the severity of cardiac dysfunction and remodelling after chronic ischaemic injury. Cardiovasc Res. 2008;77:54–63.
Article
CAS
PubMed
Google Scholar
Reddy D, Khade B, Pandya R, Gupta S. A novel method for isolation of histones from serum and its implications in therapeutics and prognosis of solid tumours. Clin Epigenetics. 2017;9:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Masayuki K, Kikuchi T, Sunanaga J, Kitahara K, Okayama N, Moriyama T, Omae T, Kakihana Y, Kanmura Y, Arimura T. Measurement of endotoxin, IL-6, IL-8 and blood lactate after cardiac surgery: re-evaluation of the systemic inflammatory response induced by cardiopulmonary bypass. Crit Care. 2003;7:P040–P040.
Article
PubMed Central
Google Scholar
Park S, Kim GW, Kwon SH, Lee J-S. Broad domains of histone H3 lysine 4 trimethylation in transcriptional regulation and disease. FEBS J. 2020;287:2891–902.
Article
CAS
PubMed
Google Scholar
Hicks PS, Saunero-Nava L, Du Clos TW, Mold C. Serum amyloid P component binds to histones and activates the classical complement pathway. J Immunol. 1992;149:3689–94.
CAS
PubMed
Google Scholar
Daigo K, Takamatsu Y, Hamakubo T. The protective effect against extracellular histones afforded by long-pentraxin PTX3 as a regulator of NETs. Front Immunol. 2016;7:344.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shaw RJ, Abrams ST, Austin J, Taylor JM, Lane S, Dutt T, Downey C, Du M, Turtle L, Baillie JK, Openshaw PJM, Wang G, Semple MG, Toh C-H. Circulating histones play a central role in COVID-19-associated coagulopathy and mortality. Haematologica. 2021;106:2493–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rupprecht S, Finn S, Hoyer D, Guenther A, Witte OW, Schultze T, Schwab M. Association between systemic inflammation, carotid arteriosclerosis, and autonomic dysfunction. Transl Stroke Res. 2020;11:50–9.
Article
CAS
PubMed
Google Scholar
Rasid O, Chevalier C, Camarasa TM, Fitting C, Cavaillon JM, Hamon MA. H3K4me1 supports memory-like NK cells induced by systemic inflammation. Cell Rep. 2019;29(3933–3945): e3.
Google Scholar
Howe FS, Fischl H, Murray SC, Mellor J. Is H3K4me3 instructive for transcription activation? BioEssays. 2017;39:1–12.
Article
CAS
PubMed
Google Scholar
Laudanski K, Wain J. Considerations for cannabinoids in perioperative care by anesthesiologists. J Clin Med. 2022. https://doi.org/10.3390/jcm11030558.
Article
PubMed
PubMed Central
Google Scholar
Lertratanangkoon K, Wu CJ, Savaraj N, Thomas ML. Alterations of DNA methylation by glutathione depletion. Cancer Lett. 1997;120:149–56.
Article
CAS
PubMed
Google Scholar
Eslamimehr S, Jones AD, Anthony TM, Arshad SH, Holloway JW, Ewart S, Luo R, Mukherjee N, Kheirkhah Rahimabad P, Chen S, Karmaus W. Association of prenatal acetaminophen use and acetaminophen metabolites with DNA methylation of newborns: analysis of two consecutive generations of the Isle of Wight birth cohort. Environmental Epigenetics. 2022. https://doi.org/10.1093/eep/dvac002.
Article
PubMed
PubMed Central
Google Scholar
Ohashi N, Kohno T. Analgesic effect of acetaminophen: a review of known and novel mechanisms of action. Front Pharmacol. 2020;11: 580289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aronoff DM, Oates JA, Boutaud O. New insights into the mechanism of action of acetaminophen: its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases. Clin Pharmacol Ther. 2006;79:9–19.
Article
CAS
PubMed
Google Scholar
Yang R, Tonnesseen TI. DAMPs and sterile inflammation in drug hepatotoxicity. Hep Intl. 2019;13:42–50.
Article
Google Scholar
Henderson AJ, Shaheen SO. Acetaminophen and asthma. Paediatr Respir Rev. 2013;14:9–16.
Article
PubMed
Google Scholar
Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. J Immunol. 2012;189:819–31.
Article
CAS
PubMed
Google Scholar
Laudanski K, Hajj J, Riedel C, Da L, Restrepo M, Siddiq M. Long-term effects of critical care insults on lipoprotein metabolism. Trans Periop Pain med. 2021;8:385.
CAS
Google Scholar
Felici N, Liu D, Maret J, Restrepo M, Borovskiy Y, Hajj J, Chung W, Laudanski K: Long-Term Abnormalities of Lipid Profile After a Single Episode of Sepsis. Front Cardiovasc Med 2021; 8
Ideraabdullah FY, Zeisel SH. Dietary modulation of the epigenome. Physiol Rev. 2018;98:667–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phan T, McMillan R, Skiadopoulos L, Walborn A, Hoppensteadt D, Fareed J, Bansal V. Elevated extracellular nucleosomes and their relevance to inflammation in stage 5 chronic kidney disease. Int Angiol. 2018;37:419–26.
Article
PubMed
PubMed Central
Google Scholar