Hankey S, Marshall JD. Urban form, air pollution, and health. Curr Environ Health Rep. 2017;4(4):491–503.
Article
CAS
PubMed
Google Scholar
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet (London, England). 2017;389(10082):1907–18.
Article
Google Scholar
Checa Vizcaíno MA, González-Comadran M, Jacquemin B. Outdoor air pollution and human infertility: a systematic review. Fertil Steril. 2016;106(4):897-904.e891.
Article
PubMed
CAS
Google Scholar
Xue T, Guan T, Geng G, Zhang Q, Zhao Y, Zhu T. Estimation of pregnancy losses attributable to exposure to ambient fine particles in south Asia: an epidemiological case-control study. Lancet Planetary Health. 2021;5(1):e15–24.
Article
PubMed
Google Scholar
Wang B, Hong W, Sheng Q, Wu Z, Li L, Li X. Nitrogen dioxide exposure during pregnancy and risk of spontaneous abortion: a case-control study in China. J Matern Fetal Neonatal Med. 2020;1–7.
Gaskins AJ, Hart JE, Chavarro JE, Missmer SA, Rich-Edwards JW, Laden F, Mahalingaiah S. Air pollution exposure and risk of spontaneous abortion in the Nurses’ Health Study II. Hum Reprod (Oxford, England). 2019;34(9):1809–17.
Article
CAS
Google Scholar
Moridi M, Ziaei S, Kazemnejad A. Exposure to ambient air pollutants and spontaneous abortion. J Obstet Gynaecol Res. 2014;40(3):743–8.
Article
CAS
PubMed
Google Scholar
Wang H, Li J, Liu H, Guo F, Xue T, Guan T, Li J. Association of maternal exposure to ambient particulate pollution with incident spontaneous pregnancy loss. Ecotoxicol Environ Saf. 2021;224: 112653.
Article
CAS
PubMed
Google Scholar
Rich DQ, Liu K, Zhang J, Thurston SW, Stevens TP, Pan Y, Kane C, Weinberger B, Ohman-Strickland P, Woodruff TJ, et al. Differences in birth weight associated with the 2008 Beijing olympics air pollution reduction: results from a natural experiment. Environ Health Perspect. 2015;123(9):880–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Tan Y, Mei H, Wang F, Li N, Zhao J, Zhang Y, Qian Z, Chang JJ, Syberg KM, et al. Ambient air pollution the risk of stillbirth: a prospective birth cohort study in Wuhan, China. Int J Hyg Environ Health. 2018;221(3):502–9.
Article
CAS
PubMed
Google Scholar
Zhou W, Ming X, Chen Q, Liu X, Yin P. The acute effect and lag effect analysis between exposures to ambient air pollutants and spontaneous abortion: a case-crossover study in China, 2017–2019. Environ Sci Pollut Res Int 2 022.
Zhang B, Gong X, Han B, Chu M, Gong C, Yang J, Chen L, Wang J, Bai Z, Zhang Y. Ambient PM(25) exposures and systemic inflammation in women with early pregnancy. Sci Total Environ. 2022;829:154564.
Article
CAS
PubMed
Google Scholar
Rai R, Regan L. Recurrent miscarriage. Lancet (London, England). 2006;368(9535):601–11.
Article
Google Scholar
Tur-Torres MH, Garrido-Gimenez C, Alijotas-Reig J. Genetics of recurrent miscarriage and fetal loss. Best Pract Res Clin Obstet Gynaecol. 2017;42:11–25.
Article
CAS
PubMed
Google Scholar
Guo C, Cai P, Jin L, Sha Q, Yu Q, Zhang W, Jiang C, Liu Q, Zong D, Li K, et al. Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss. Cell Discov. 2021;7(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Jia W, Fan M, Shao X, Li Z, Liu Y, Ma Y, Li YX, Li R, Tu Q, et al. Single-cell immune landscape of human recurrent miscarriage. Genom Proteomics Bioinform. 2021;19(2):208–22.
Article
Google Scholar
Huang C, Zeng Y, Tu W. Single-cell RNA sequencing deciphers immune landscape of human recurrent miscarriage. Genom Proteomics Bioinform. 2021;19(2):169–71.
Article
Google Scholar
Lieberman B, Kusi M, Hung CN, Chou CW, He N, Ho YY, Taverna JA, Huang THM, Chen CL. Toward uncharted territory of cellular heterogeneity: advances and applications of single-cell RNA-seq. J Transl Genet Genom. 2021;5:1–21.
CAS
PubMed
PubMed Central
Google Scholar
Huang SK, Tripathi P, Koneva LA, Cavalcante RG, Craig N, Scruggs AM, Sartor MA, Deng F, Chen Y. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. Environ Epigenet. 2021;7(1):dvaa022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang Y, Li J, Ren F, Ji C, Aniagu S, Chen T. PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environ Pollut. 2019;255(3):113331.
Article
CAS
PubMed
Google Scholar
Yue H, Ji X, Zhang Y, Li G, Sang N. Gestational exposure to PM(2.5) impairs vascularization of the placenta. Sci Total Environ. 2019;665:153–61.
Article
CAS
PubMed
Google Scholar
Nawrot TS, Saenen ND, Schenk J, Janssen BG, Motta V, Tarantini L, Cox B, Lefebvre W, Vanpoucke C, Maggioni C, et al. Placental circadian pathway methylation and in utero exposure to fine particle air pollution. Environ Int. 2018;114:231–41.
Article
CAS
PubMed
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.
Article
CAS
PubMed
Google Scholar
Almomani SN, Alsaleh AA, Weeks RJ, Chatterjee A, Day RC, Honda I, Homma H, Fukuzawa R, Slatter TL, Hung NA, et al. Identification and validation of DNA methylation changes in pre-eclampsia. Placenta. 2021;110:16–23.
Article
CAS
PubMed
Google Scholar
Wang XM, Tian FY, Fan LJ, Xie CB, Niu ZZ, Chen WQ. Comparison of DNA methylation profiles associated with spontaneous preterm birth in placenta and cord blood. BMC Med Genom. 2019;12(1):1.
Article
Google Scholar
Rong C, Cui X, Chen J, Qian Y, Jia R, Hu Y. DNA methylation profiles in placenta and its association with gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2015;123(5):282–8.
Article
CAS
PubMed
Google Scholar
Kingsley SL, Eliot MN, Whitsel EA, Huang YT, Kelsey KT, Marsit CJ, Wellenius GA. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int. 2016;92–93:43–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H, Zhang Y. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 2017;607–608:1103–8.
Article
PubMed
CAS
Google Scholar
Engström K, Mandakh Y, Garmire L, Masoumi Z, Isaxon C, Malmqvist E, Erlandsson L, Hansson SR. Early pregnancy exposure to ambient air pollution among late-onset preeclamptic cases is associated with placental dna hypomethylation of specific genes and slower placental maturation. Toxics. 2021;9(12):338.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vasconcelos S, Ramalho C, Marques CJ, Doria S. Altered expression of epigenetic regulators and imprinted genes in human placenta and fetal tissues from second trimester spontaneous pregnancy losses. Epigenetics. 2019;14(12):1234–44.
Article
PubMed
PubMed Central
Google Scholar
Zhou L, Pu Y, Zhou Y, Wang B, Chen Y, Bai Y, He S. Genome wide methylation analysis to uncover genes related to recurrent pregnancy loss. Genes Genom. 2021;43(4):361–9.
Article
CAS
Google Scholar
Fatima N, Ahmed SH, Chauhan SS, Mohammad O, Rehman SMF. Structural equation modelling analysis determining causal role among methyltransferases, methylation, and apoptosis during human pregnancy and abortion. Sci Rep. 2020;10(1):12408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du L, Deng W, Zeng S, Xu P, Huang L, Liang Y, Wang Y, Xu H, Tang J, Bi S, et al. Single-cell transcriptome analysis reveals defective decidua stromal niche attributes to recurrent spontaneous abortion. Cell Prolif. 2021;54(11): e13125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou W, Chen C, Lei L, Fu P, Sun Y. Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China. Environ Pollut. 2021;272:116031.
Article
CAS
PubMed
Google Scholar
Du G, Yu M, Xu Q, Huang Z, Huang X, Han L, Fan Y, Zhang Y, Wang R, Xu S, et al. Hypomethylation of PRDM1 is associated with recurrent pregnancy loss. J Cell Mol Med. 2020;24(12):7072–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu M, Du G, Xu Q, Huang Z, Huang X, Qin Y, Han L, Fan Y, Zhang Y, Han X, et al. Integrated analysis of DNA methylome and transcriptome identified CREB5 as a novel risk gene contributing to recurrent pregnancy loss. EBioMedicine. 2018;35:334–44.
Article
PubMed
PubMed Central
Google Scholar
Galaziou A, Filidou E, Spathakis M, Arvanitidis K, Arzou BC, Galazios G, Koutlaki N, Nikolettos N, Kolios G. Imbalance of growth factors mRNA expression associated with oxidative stress in the early pregnancy loss. J Matern Fetal Neonatal Med. 2021;1–7.
Shim SH, Jeon HJ, Ryu HJ, Kim SH, Min SG, Kang MK, Park HJ, Cha DH. Prenatal serum sFlt-1/PlGF ratio predicts the adverse neonatal outcomes among small-for-gestational-age fetuses in normotensive pregnant women: a prospective cohort study. Medicine. 2021;100(8): e24681.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hettfleisch K, Carvalho MA, Hoshida MS, Pastro LDM, Saldiva S, Vieira SE, Francisco RPV, Saldiva PHN, Bernardes LS. Individual exposure to urban air pollution and its correlation with placental angiogenic markers in the first trimester of pregnancy, in São Paulo, Brazil. Environ Sci Pollut Res Int. 2021;28(22):28658–65.
Article
CAS
PubMed
Google Scholar
Miese-Looy G, Van den Heuvel MJ, Edwards AK, Lamarre J, Tayade C. Expression of insulin-like growth factor (IGF) family members in porcine pregnancy. J Reprod Dev. 2012;58(1):51–60.
Article
CAS
PubMed
Google Scholar
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng TG, Lu X, Guo L, Hou GM, Ma XS, Li QN, Huang L, Fan LH, Zhao ZH, Ou XH, et al. Mettl14 is required for mouse postimplantation development by facilitating epiblast maturation. FASEB J. 2019;33(1):1179–87.
Article
CAS
PubMed
Google Scholar
Zhao S, Lu J, Chen Y, Wang Z, Cao J, Dong Y. Exploration of the potential roles of m6A regulators in the uterus in pregnancy and infertility. J Reprod Immunol. 2021;146: 103341.
Article
CAS
PubMed
Google Scholar
Qiu W, Zhou Y, Wu H, Lv X, Yang L, Ren Z, Tian H, Yu Q, Li J, Lin W, et al. RNA demethylase FTO mediated RNA m(6)A modification is involved in maintaining maternal-fetal interface in spontaneous abortion. Front Cell Dev Biol. 2021;9: 617172.
Article
PubMed
PubMed Central
Google Scholar
Herrera-Uribe J, Wiarda JE, Sivasankaran SK, Daharsh L, Liu H, Byrne KA, Smith TPL, Lunney JK, Loving CL, Tuggle CK. Reference transcriptomes of porcine peripheral immune cells created through bulk and single-cell RNA sequencing. Front Genet. 2021;12: 689406.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Azzamy H, Dambaeva SV, Katukurundage D, Salazar Garcia MD, Skariah A, Hussein Y, Germain A, Fernandez E, Gilman-Sachs A, Beaman KD, et al. Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses. Am J Reprod Immunol. 2018;80(4):e13024.
Article
PubMed
CAS
Google Scholar
Tsao FY, Wu MY, Chang YL, Wu CT, Ho HN. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions. J Formos Med Assoc. 2018;117(3):204–11.
Article
CAS
PubMed
Google Scholar
Lindau R, Vondra S, Spreckels J, Solders M, Svensson-Arvelund J, Berg G, Pollheimer J, Kaipe H, Jenmalm MC, Ernerudh J. Decidual stromal cells support tolerance at the human foetal-maternal interface by inducing regulatory M2 macrophages and regulatory T-cells. J Reprod Immunol. 2021;146: 103330.
Article
CAS
PubMed
Google Scholar
Bogan M, Al B, Kul S, Zengin S, Oktay M, Sabak M, Gümüşboğa H, Bayram H. The effects of desert dust storms, air pollution, and temperature on morbidity due to spontaneous abortions and toxemia of pregnancy: 5-year analysis. Int J Biometeorol. 2021.
Quenby S, Gallos ID, Dhillon-Smith RK, Podesek M, Stephenson MD, Fisher J, Brosens JJ, Brewin J, Ramhorst R, Lucas ES, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet (London, England). 2021;397(10285):1658–67.
Article
CAS
Google Scholar
Enkhmaa D, Warburton N, Javzandulam B, Uyanga J, Khishigsuren Y, Lodoysamba S, Enkhtur S, Warburton D. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia. BMC Pregnancy Childbirth. 2014;14:146.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xue T, Geng G, Han Y, Wang H, Li J, Li HT, Zhou Y, Zhu T. Open fire exposure increases the risk of pregnancy loss in South Asia. Nat Commun. 2021;12(1):3205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Z, Xu C, Liang S, Cai TJ, Yang N, Li SD, Wang WT, Li YF, Wang D, Ji AL, et al. Short-term ambient nitrogen dioxide exposure is associated with increased risk of spontaneous abortion: a hospital-based study. Ecotoxicol Environ Saf. 2021;224: 112633.
Article
CAS
PubMed
Google Scholar
Li Z, Tang Y, Song X, Lazar L, Li Z, Zhao J. Impact of ambient PM(25) on adverse birth outcome and potential molecular mechanism. Ecotoxicol Environ Saf. 2019;169:248–54.
Article
CAS
PubMed
Google Scholar
Conforti A, Mascia M, Cioffi G, De Angelis C, Coppola G, De Rosa P, Pivonello R, Alviggi C, De Placido G. Air pollution and female fertility: a systematic review of literature. Reprod Biol Endocrinol RB&E. 2018;16(1):117.
Article
CAS
Google Scholar
Isaevska E, Moccia C, Asta F, Cibella F, Gagliardi L, Ronfani L, Rusconi F, Stazi MA, Richiardi L. Exposure to ambient air pollution in the first 1000 days of life and alterations in the DNA methylome and telomere length in children: a systematic review. Environ Res. 2021;193: 110504.
Article
CAS
PubMed
Google Scholar
Janssen BG, Godderis L, Pieters N, Poels K, Kiciński M, Cuypers A, Fierens F, Penders J, Plusquin M, Gyselaers W, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10:22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues VS, de ValleJúnior RF, SanchesFernandes LF, Pacheco FAL. The assessment of water erosion using partial least squares-path modeling: a study in a legally protected area with environmental land use conflicts. Sci Total Environ. 2019;691:1225–41.
Article
CAS
PubMed
Google Scholar
Vinzi VE, Trinchera L, Amato S. PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. In: Esposito Vinzi V, Chin WW, Henseler J, Wang H, editors. Handbook of partial least squares: concepts, methods and applications. Berlin: Springer; 2010. p. 47–82.
Chapter
Google Scholar
Mostafavi N, Jeong A, Vlaanderen J, Imboden M, Vineis P, Jarvis D, Kogevinas M, Probst-Hensch N, Vermeulen R. The mediating effect of immune markers on the association between ambient air pollution and adult-onset asthma. Sci Rep. 2019;9(1):8818.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang W, Yang Y, Liu Y, Zhou L, Yang Y, Pan L, Ba Y, Wang R, Huo Y, Ren X et al. Associations between congenital heart disease and air pollutants at different gestational weeks: a time-series analysis. Environ Geochem Health. 2022.
Wheater ENW, Galdi P, McCartney DL, Blesa M, Sullivan G, Stoye DQ, Lamb G, Sparrow S, Murphy L, Wrobel N, et al. DNA methylation in relation to gestational age and brain dysmaturation in preterm infants. Brain Commun. 2022;4(2):56.
Article
CAS
Google Scholar
Luo R, Mukherjee N, Chen S, Jiang Y, Arshad SH, Holloway JW, Hedman A, Gruzieva O, Andolf E, Pershagen G, et al. Paternal DNA methylation may be associated with gestational age at birth. Epigenet Insights. 2020;13:2516865720930701.
Article
PubMed
PubMed Central
Google Scholar
Barua S, Junaid MA. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015;7(1):85–102.
Article
CAS
PubMed
Google Scholar
McCullough LE, Miller EE, Calderwood LE, Shivappa N, Steck SE, Forman MR, Mendez AM, Maguire R, Fuemmeler BF, Kollins SH, et al. Maternal inflammatory diet and adverse pregnancy outcomes: circulating cytokines and genomic imprinting as potential regulators? Epigenetics. 2017;12(8):688–97.
Article
PubMed
PubMed Central
Google Scholar
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.
Article
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell–cell communication using Cell Chat. Nat Commun. 2021;12(1):1088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Shen Y, Liu J, Fei X, Zhang Z, Li M, Chen X, Xu J, Zhu Q, Zhou W, et al. Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus. J Cell Mol Med. 2020;24(23):13899–912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Csala A, Zwinderman AH, Hof MH. Multiset sparse partial least squares path modeling for high dimensional omics data analysis. BMC Bioinform. 2020;21(1):9.
Article
Google Scholar
Hayat AA, Kohoulat N, Amini M, Faghihi SAA. The predictive role of personality traits on academic performance of medical students: the mediating role of self-efficacy. Med J Islam Repub Iran. 2020;34:77.
PubMed
PubMed Central
Google Scholar