Zhou P, Yang X-L, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitworth J. COVID-19: a fast evolving pandemic. Trans R Soc Trop Med Hyg. 2020;114(4):241–8.
Article
PubMed
CAS
Google Scholar
Rampal L, Liew BS. Coronavirus disease (COVID-19) spreads situation reports. WHO. 2020;75:95–7.
Google Scholar
Qing E, Gallagher T. SARS coronavirus redux. Trends Immunol. 2020;41:271–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol. 2020;92:455–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1,590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J. 2020;55:2001227.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109:531–8.
Article
CAS
PubMed
Google Scholar
Mueller AL, Mcnamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020;12:9959–81.
Article
Google Scholar
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salimi S, Hamlyn JM. COVID-19 and crosstalk with the hallmarks of aging. J Gerontol A Biol Sci Med Sci. 2020. https://doi.org/10.1093/gerona/glaa149.
Article
PubMed
PubMed Central
Google Scholar
Lu L, Zhong W, Bian Z, Li Z, Zhang K, Liang B. A comparison of mortality-related risk factors of COVID-19, SARS, and MERS: a systematic review and meta-analysis. J Infect. 2020;81(4):e18–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mori H, Obinata H, Murakami W, Tatsuya K, Sasaki H, Miyake Y, et al. Comparison of COVID-19 disease between young and elderly patients: hidden viral shedding of COVID-19. J Infect Chemother. 2020. https://doi.org/10.1016/j.jiac.2020.09.003.
Article
PubMed
PubMed Central
Google Scholar
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92:418–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol. 2020;92(6):660–6.
Article
CAS
PubMed
Google Scholar
Schäfer A, Baric RS. Epigenetic landscape during coronavirus infection. Pathogens. 2017;6:8.
Article
PubMed Central
CAS
Google Scholar
Hulswit RJG, de Haan CAM, Bosch B-J. Coronavirus spike protein and tropism changes. Adv Virus Res. 2016;96:29–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Risco C, Antón IM, Enjuanes L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol. 1996;70:4773–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses. 2012;4:363–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174:11–22.
Article
CAS
PubMed
Google Scholar
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–9.
Article
CAS
PubMed
Google Scholar
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;81(2):271–80.
Article
CAS
Google Scholar
Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24:1634–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park YJ, Walls AC, Wang Z, Sauer MM, Li W, Tortorici MA, et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol. 2019;26:1151–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, Indig FE, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017;31:1529–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9:601–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strollo R, Pozzilli P. DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab Res Rev. 2020. https://doi.org/10.1002/dmrr.3330.
Article
PubMed
PubMed Central
Google Scholar
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Z, Liu Y. DNA methylation in human diseases. Genes Dis. 2018;5:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.
Article
CAS
PubMed
Google Scholar
Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res. 2015;116:715–36.
Article
CAS
PubMed
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.
Article
CAS
PubMed
Google Scholar
Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156:45–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
Article
CAS
Google Scholar
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997;389:251–60.
Article
CAS
PubMed
Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beermann J, Piccoli M-T, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96:1297–325.
Article
CAS
PubMed
Google Scholar
De Majo F, Calore M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Non-coding RNA Res. 2018;3:20–8.
Article
CAS
Google Scholar
Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs from clinical genetics to therapeutic targets? J Am Coll Cardiol. 2016;67:1214–26.
Article
CAS
PubMed
Google Scholar
Xiong X, Li X, Yi C. N1-methyladenosine methylome in messenger RNA and non-coding RNA. Curr Opin Chem Biol. 2018;45:179–86.
Article
CAS
PubMed
Google Scholar
Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, et al. m 6 A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018;20:1074–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mongelli A, Atlante S, Bachetti T, Martelli F, Farsetti A, Gaetano C. Epigenetic signaling and RNA regulation in cardiovascular diseases. Int J Mol Sci. 2020;21:509.
Article
CAS
PubMed Central
Google Scholar
Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N 6-formyladenosine in mammalian RNA. Nat Commun. 2013;4:2–9.
Google Scholar
Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, et al. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol. 2017;14:1108–23.
Article
PubMed
Google Scholar
Brzezicha B, Schmidt M, Makałowska I, Jarmołowski A, Pieńkowska J, Szweykowska-Kulińska Z. Identification of human tRNA: m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA(CAA)Leu. Nucleic Acids Res. 2006;34:6034–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351:282–5.
Article
CAS
PubMed
Google Scholar
Leulliot N, Chaillet M, Durand D, Ulryck N, Blondeau K, van Tilbeurgh H. Structure of the yeast tRNA m7G methylation complex. Structure. 2008;16:52–61.
Article
CAS
PubMed
Google Scholar
Trotman JB, Giltmier AJ, Mukherjee C, Schoenberg DR. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs. Nucleic Acids Res. 2017;45:10726–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul DS, Beck S. Advances in epigenome-wide association studies for common diseases. Trends Mol Med. 2014;20:541–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smale ST, Tarakhovsky A, Natoli G. Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol. 2014;32:489–511.
Article
CAS
PubMed
Google Scholar
Lieberman PM. Epigenetics and genetics of viral latency. Cell Host Microbe. 2016;19:619–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marazzi I, Garcia-Sastre A. Interference of viral effector proteins with chromatin, transcription, and the epigenome. Curr Opin Microbiol. 2015;26:123–9.
Article
CAS
PubMed
Google Scholar
Ferrari R, Gou D, Jawdekar G, Johnson SA, Nava M, Su T, et al. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor RB to repress select host genes and promote productive virus infection. Cell Host Microbe. 2014;16:663–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo YL, Heo S, Jang KL. Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. J Gen Virol. 2015;96:822–32.
Article
CAS
PubMed
Google Scholar
Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S, et al. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. MBio. 2014;5:1–11.
Article
CAS
Google Scholar
Menachery VD, Schäfer A, Burnum-Johnson KE, Mitchell HD, Eisfeld AJ, Walters KB, et al. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A. 2018;115:E1012–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Lint C, Emiliani S, Ott M, Verdin E. Transcriptional activation and chromatin remodeling of the HIV-I promoter in response to histone acetylation. Chemtracts. 1997;10:773–8.
Google Scholar
Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM. Inhibition of the histone demethylase LSD1 blocks α-herpesvirus lytic replication and reactivation from latency. Nat Med. 2009;15:1312–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivashkiv LB, Donlin LT. Regulation of type i interferon responses. Nat Rev Immunol. 2014;14:36–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Sastre A, Biron CA. Type 1 interferons and the virus-host relationship: a lesson in détente. Science. 2006;312:879–82.
Article
PubMed
CAS
Google Scholar
Fang TC, Schaefer U, Mecklenbrauker I, Stienen A, Dewell S, Chen MS, et al. Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J Exp Med. 2012;209:661–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aevermann BD, Pickett BE, Kumar S, Klem EB, Agnihothram S, Askovich PS, et al. A comprehensive collection of systems biology data characterizing the host response to viral infection. Sci Data. 2014;1:1–21.
Article
CAS
Google Scholar
Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90:430–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V, Wang Y, et al. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol. 2016;1:16011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kennedy EM, Bogerd HP, Kornepati AVR, Kang D, Ghoshal D, Marshall JB, et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe. 2016;19:675–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imam H, Khan M, Gokhale NS, McIntyre ABR, Kim GW, Jang JY, et al. N6-methyladenosine modification of hepatitis b virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci U S A. 2018;115:8829–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan B, Gao SJ. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N6-methyladenosine (m6A). Rev Med Virol. 2018;28:1–11.
Article
Google Scholar
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, et al. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 2019;29:1545–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.
Article
CAS
PubMed
Google Scholar
Obata Y, Furusawa Y, Hase K. Epigenetic modifications of the immune system in health and disease. Immunol Cell Biol. 2015;93:226–32.
Article
CAS
PubMed
Google Scholar
Busslinger M, Tarakhovsky A. Epigenetic control of immunity. Cold Spring Harb Perspect Biol. 2014;6:a019307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vavougios GD. A data-driven hypothesis on the epigenetic dysregulation of host metabolism by SARS coronaviral infection: potential implications for the SARS-CoV-2 modus operandi. Med Hypotheses. 2020;140:109759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt N, Neumann J, McNeil J, Cheng A. Implications of COVID-19 in an ageing population. Med J Aust. 2020;382:2081–90.
Google Scholar
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92:479–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19:149–50.
Article
PubMed
CAS
Google Scholar
El Baba R, Herbein G. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin Epigenet. 2020;12:118.
Article
CAS
Google Scholar
Paniri A, Mahdi M, Rasoulinejad A. Molecular effects and retinopathy induced by hydroxychloroquine during SARS-CoV-2 therapy: role of CYP450 isoforms and epigenetic modulations. Eur J Pharmacol. 2020. https://doi.org/10.1016/j.ejphar.2020.173454.
Article
PubMed
PubMed Central
Google Scholar
Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetic-targeted therapy. Clin Epigenet. 2019;11:1–17.
Article
Google Scholar
Cole J, Morris P, Dickman MJ, Dockrell DH. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther. 2016;167:85–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2020. https://doi.org/10.1080/15592294.2020.1796896.
Article
PubMed
PubMed Central
Google Scholar
Chai P, Yu J, Ge S, Jia R, Fan X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. J Hematol Oncol. 2020;13:1–5.
Article
CAS
Google Scholar
Dekker FJ, Van Den Bosch T, Martin NI. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today. 2014;19:654–60.
Article
CAS
PubMed
Google Scholar
Van Dam PA, Huizing M, Mestach G, Dierckxsens S, Tjalma W, Trinh XB, et al. SARS-CoV-2 and cancer: are they really partners in crime? Cancer Treat Rev. 2020;89:102068.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ayaz S, Crea F. Targeting SARS-CoV-2 using polycomb inhibitors as antiviral agents. Epigenomics. 2020;12:811–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, et al. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181:969–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerboua KE. The perplexing question of trained immunity versus adaptive memory in COVID-19. J Med Virol. 2020;92:1858–63.
Article
CAS
PubMed
Google Scholar
Geller A, Yan J. Could the induction of trained immunity by β-glucan serve as a defense against COVID-19? Front Immunol. 2020;11:1–11.
Article
Google Scholar
Singh V. Can vitamins, as epigenetic modifiers, enhance immunity in COVID-19 patients with non-communicable disease? Curr Nutr Rep. 2020;9:202–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vyas N, Kurian SJ, Bagchi D, Manu MK, Saravu K, Unnikrishnan MK, et al. Vitamin D in prevention and treatment of COVID-19: current perspective and future prospects. J Am Coll Nutr. 2020. https://doi.org/10.1080/07315724.2020.1806758.
Article
PubMed
Google Scholar
Fang Y, Yang C, Yu Z, Li X, Mu Q, Liao G, et al. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm Sin B. 2020. https://doi.org/10.1016/j.apsb.2020.06.007.
Article
PubMed
PubMed Central
Google Scholar
Pruimboom L. Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. Front Cell Infect Microbiol. 2020;10:1–5.
Article
Google Scholar
Wu C-J, Chan Y-L. Antiviral applications of RNAi for coronavirus. Expert Opin Investig Drugs. 2006;15:89–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levanova A, Poranen MM. RNA interference as a prospective tool for the control of human viral infections. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.02151.
Article
PubMed
PubMed Central
Google Scholar
Baldassarre A, Paolini A, Bruno SP, Felli C, Tozzi AE, Masotti A. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5’UTR of SARS-CoV-2. Epigenomics. 2020. https://doi.org/10.2217/epi-2020-0162.
Article
PubMed
Google Scholar
Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, et al. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett. 2004;560:141–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng BJ, Guan Y, Tang O, Cheng D, Xie FY, He ML, et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir Ther. 2004;9:365–74.
CAS
PubMed
Google Scholar
Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94.
Article
CAS
PubMed
Google Scholar
Verma NK, Fazil MHUT, Duggan SP, Kelleher D. Combination therapy using inhalable GapmeR and recombinant ACE2 for COVID-19. Front Mol Biosci. 2020;7:1–5.
Article
Google Scholar
Thornbrough JM, Jha BK, Yount B, Goldstein SA, Li Y, Elliott R, et al. Middle east respiratory syndrome coronavirus. Work Heal Saf. 2016;64:184–6.
Article
Google Scholar
Rabouw HH, Langereis MA, Knaap RCM, Dalebout TJ, Canton J, Sola I, et al. Middle east respiratory coronavirus accessory protein 4a inhibits pkr-mediated antiviral stress responses. PLoS Pathog. 2016;12:1–26.
Article
CAS
Google Scholar