Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91. https://doi.org/10.1136/gutjnl-2015-310912.
Article
PubMed
Google Scholar
Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002;196(1):1–7. https://doi.org/10.1002/path.1024.
Article
CAS
PubMed
Google Scholar
Schnekenburger M, Florean C, Dicato M, Diederich M. Epigenetic alterations as a universal feature of cancer hallmarks and a promising target for personalized treatments. Curr Top Med Chem. 2016;16(7):745–76.
Article
CAS
Google Scholar
Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(12):686-700. https://doi.org/10.1038/nrgastro.2011.173.
Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015;149(5):1204–25. https://doi.org/10.1053/j.gastro.2015.07.011.
Article
CAS
PubMed
Google Scholar
Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985;228(4696):187–90.
Article
CAS
Google Scholar
Chang E, Park DI, Kim YJ, Kim BK, Park JH, Kim HJ, et al. Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: a preliminary report in Korean patients. Hepato-Gastroenterology. 2010;57(101):720–7.
CAS
PubMed
Google Scholar
Ng JM, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci. 2015;16(2):2472–96. https://doi.org/10.3390/ijms16022472.
Article
CAS
PubMed
Google Scholar
Li X, Yao X, Wang Y, Hu F, Wang F, Jiang L, et al. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. Plos One. 2013;8(3):e59064. https://doi.org/10.1371/journal.pone.0059064.
Article
CAS
PubMed
Google Scholar
Kalmar A, Peterfia B, Hollosi P, Galamb O, Spisak S, Wichmann B, et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. Bmc Cancer. 2015;15:736. https://doi.org/10.1186/s12885-015-1687-x.
Article
PubMed
Google Scholar
Beggs AD, Jones A, El-Bahrawy M, Abulafi M, Hodgson SV, Tomlinson IP. Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol. 2013;229(5):697–704. https://doi.org/10.1002/path.4132.
Article
CAS
PubMed
Google Scholar
Teschendorff AE, Gao Y, Jones A, Ruebner M, Beckmann MW, Wachter DL, et al. DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat Commun. 2016;7:10478. https://doi.org/10.1038/ncomms10478.
Article
CAS
PubMed
Google Scholar
van Houten VM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, van den Brekel MW, et al. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin Cancer Res. 2004;10(11):3614–20. https://doi.org/10.1158/1078-0432.CCR-03-0631.
Article
PubMed
Google Scholar
Giovannucci E, Ogino S. DNA methylation, field effects, and colorectal cancer. J Natl Cancer Inst. 2005;97(18):1317–9. https://doi.org/10.1093/jnci/dji305.
Article
PubMed
Google Scholar
Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer Am Cancer Soc. 1953;6(5):963–8.
CAS
Google Scholar
Belshaw NJ, Elliott GO, Foxall RJ, Dainty JR, Pal N, Coupe A, et al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer. 2008;99(1):136–42. https://doi.org/10.1038/sj.bjc.6604432.
Article
CAS
PubMed
Google Scholar
Belshaw NJ, Pal N, Tapp HS, Dainty JR, Lewis MP, Williams MR, et al. Patterns of DNA methylation in individual colonic crypts reveal aging and cancer-related field defects in the morphologically normal mucosa. Carcinogenesis. 2010;31(6):1158–63. https://doi.org/10.1093/carcin/bgq077.
Article
CAS
PubMed
Google Scholar
Alonso S, Dai Y, Yamashita K, Horiuchi S, Dai T, Matsunaga A, et al. Methylation of MGMT and ADAMTS14 in normal colon mucosa: Biomarkers of a field defect for cancerization preferentially targeting elder African-Americans. Oncotarget. 2015;6(5):3420–31. https://doi.org/10.18632/oncotarget.2852.
Article
PubMed
Google Scholar
Chan AO, Broaddus RR, Houlihan PS, Issa JP, Hamilton SR, Rashid A. CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol. 2002;160(5):1823–30. https://doi.org/10.1016/S0002-9440(10)61128-5.
Article
CAS
PubMed
Google Scholar
Li H, Myeroff L, Smiraglia D, Romero MF, Pretlow TP, Kasturi L, et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci U S A. 2003;100(14):8412–7. https://doi.org/10.1073/pnas.1430846100.
Article
CAS
PubMed
Google Scholar
Rashid A, Shen L, Morris JS, Issa JP, Hamilton SR. CpG island methylation in colorectal adenomas. Am J Pathol. 2001;159(3):1129–35. https://doi.org/10.1016/S0002-9440(10)61789-0.
Article
CAS
PubMed
Google Scholar
Jin M, Gu S, Ye D, Li Y, Jing F, Li Q, et al. Association between genetic variants in the promoter region of a novel antisense long noncoding RNA RP11-392P7.6 and colorectal cancer risk. Environ Mol Mutagen. 2017;58(6):434–42. https://doi.org/10.1002/em.22100.
Article
CAS
PubMed
Google Scholar
Ye D, Hu Y, Jing F, Li Y, Gu S, Jiang X, et al. A novel SNP in promoter region of RP11-3N2.1 is associated with reduced risk of colorectal cancer. J Hum Genet. 2018;63(1):47–54. https://doi.org/10.1038/s10038-017-0361-3.
Article
CAS
PubMed
Google Scholar
Liu J, Siegmund KD. An evaluation of processing methods for HumanMethylation450 BeadChip data. BMC Genomics. 2016;17:469. https://doi.org/10.1186/s12864-016-2819-7.
Article
CAS
PubMed
Google Scholar
Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96. https://doi.org/10.1093/bioinformatics/bts680.
Article
CAS
PubMed
Google Scholar
Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, et al. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 2015;75(18):3728–37.
Article
CAS
Google Scholar
Xu X, Zhang Y, Williams J, Antoniou E, Mccombie WR, Wu S, et al. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. Bmc Bioinformatics. 2013;14(S9):S1.
Article
Google Scholar
Rampal R, Alshahrour F, Abdelwahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):123–33.
Article
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
McDermott J. Requirements for diagnostic tests to improve field investigations into the epidemiology and control of trypanosomiasis. In: Morzaria S, Masake R, Rowlands J, Musoke T, editors. Antigen ELISAS for trypanosomes. Nairobi: ILRI; 1996.
Google Scholar
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92. https://doi.org/10.1016/j.cell.2007.01.029.
Article
CAS
PubMed
Google Scholar
Shi YX, Wang Y, Li X, Zhang W, Zhou HH, Yin JY, et al. Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. Bmc Genomics. 2017;18(1):901. https://doi.org/10.1186/s12864-017-4223-3.
Article
CAS
PubMed
Google Scholar
Zheng Y, Huang Q, Ding Z, Liu T, Xue C, Sang X, et al. Genome-wide DNA methylation analysis identifies candidate epigenetic markers and drivers of hepatocellular carcinoma. Brief Bioinform. 2018;19(1):101–8. https://doi.org/10.1093/bib/bbw094.
Article
PubMed
Google Scholar
McInnes T, Zou D, Rao DS, Munro FM, Phillips VL, JL MC, et al. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer. Bmc Cancer. 2017;17(1):228. https://doi.org/10.1186/s12885-017-3226-4.
Article
CAS
PubMed
Google Scholar
Kok-Sin T, Mokhtar NM, Ali HN, Sagap I, Mohamed RI, Harun R, et al. Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data. Oncol Rep. 2015;34(1):22–32. https://doi.org/10.3892/or.2015.3993.
Article
CAS
PubMed
Google Scholar
Vymetalkova V, Vodicka P, Pardini B, Rosa F, Levy M, Schneiderova M, et al. Epigenome-wide analysis of DNA methylation reveals a rectal cancer-specific epigenomic signature. Epigenomics-Uk. 2016;8(9):1193–207. https://doi.org/10.2217/epi-2016-0044.
Article
CAS
Google Scholar
Naumov VA, Generozov EV, Zaharjevskaya NB, Matushkina DS, Larin AK, Chernyshov SV, et al. Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics-Us. 2013;8(9):921–34. https://doi.org/10.4161/epi.25577.
Article
CAS
Google Scholar
Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet. 2010;70:277–308. https://doi.org/10.1016/B978-0-12-380866-0.60010-1.
Article
CAS
PubMed
Google Scholar
Liguori L, Andolfo I, de Antonellis P, Aglio V, di Dato V, Marino Net al. The metallophosphodiesterase Mpped2 impairs tumorigenesis in neuroblastoma. Cell Cycle. 2012;11(3):569-81. https://doi.org/10.4161/cc.11.3.19063.
Shen L, Liu L, Ge L, Xie L, Liu S, Sang Let al. MiR-448 downregulates MPPED2 to promote cancer proliferation and inhibit apoptosis in oral squamous cell carcinoma. Exp Ther Med. 2016;12(4):2747-52. https://doi.org/10.3892/etm.2016.3659.
Sepe R, Pellecchia S, Serra P, D'Angelo D, Federico A, Raia Met al. The long Non-Coding RNA RP5-1024C24.1 and its Associated-Gene MPPED2 are Down-Regulated in human thyroid neoplasias and act as tumour suppressors. Cancers (Basel). 2018;10(5) https://doi.org/10.3390/cancers10050146.
Zhang R, Shen C, Zhao L, Wang J, McCrae M, Chen Xet al. Dysregulation of host cellular genes targeted by human papillomavirus (HPV) integration contributes to HPV-related cervical carcinogenesis. Int J Cancer. 2016;138(5):1163-74. https://doi.org/10.1002/ijc.29872.
Rahmatpanah FB, Carstens S, Hooshmand SI, Welsh EC, Sjahputera O, Taylor KHet al. Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics-Uk. 2009;1(1):39-61. https://doi.org/10.2217/epi.09.10.
Zuo S, Dai G, Ren X. Identification of a 6-gene signature predicting prognosis for colorectal cancer. Cancer Cell Int. 2019;19:6. https://doi.org/10.1186/s12935-018-0724-7.
Article
PubMed
Google Scholar
Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, et al. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem. 2004;50(3):490–9. https://doi.org/10.1373/clinchem.2003.026849.
Article
CAS
PubMed
Google Scholar
Spivey KA, Banyard J, Solis LM, Wistuba II, Barletta JA, Gandhi L, et al. Collagen XXIII: a potential biomarker for the detection of primary and recurrent non-small cell lung cancer. Cancer Epidemiol Biomark Prev. 2010;19(5):1362–72. https://doi.org/10.1158/1055-9965.EPI-09-1095.
Article
CAS
Google Scholar
J. Banyard, L. Bao, M. D. Hofer, D. Zurakowski, K. A. Spivey, A. S. Feldman, L. M. Hutchinson, R. Kuefer, M. A. Rubin, B. R. Zetter, (2007) Collagen XXIII Expression Is Associated with Prostate Cancer Recurrence and Distant Metastases. Clinical Cancer Research. 13(9):2634-42..
Marke R, Havinga J, Cloos J, Demkes M, Poelmans G, Yuniati Let al. Tumor suppressor IKZF1 mediates glucocorticoid resistance in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2016;30(7):1599-603. https://doi.org/10.1038/leu.2015.359.
Scheijen B, Boer JM, Marke R, Tijchon E, van Ingen SD, Waanders Eet al. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica. 2017;102(3):541-51. https://doi.org/10.3324/haematol.2016.153023.
Jedi M, Young GP, Pedersen SK, Symonds EL. Methylation and gene expression of BCAT1 and IKZF1 in colorectal cancer tissues. Clin Med Insights Oncol. 2018;12: 2014496488. https://doi.org/10.1177/1179554918775064.
Rahmani M, Talebi M, Hagh MF, Feizi A, Solali S. Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother. 2018;97:1493-500.https://doi.org/10.1016/j.biopha.2017.11.033.
Wang Y, Liu Q, Huang S, Yuan B. Learning a structural and functional representation for gene expressions: To systematically dissect complex cancer phenotypes. IEEE/ACM Trans Comput Biol Bioinform. 2017; https://doi.org/10.1109/TCBB.2017.2702161.
Sugai T, Yoshida M, Eizuka M, Uesugii N, Habano W, Otsuka Ket al. Analysis of the DNA methylation level of cancer-related genes in colorectal cancer and the surrounding normal mucosa. Clin Epigenetics. 2017;9:55. https://doi.org/10.1186/s13148-017-0352-4.
Cesaroni M, Powell J, Sapienza C. Validation of methylation biomarkers that distinguish normal colon mucosa of cancer patients from normal colon mucosa of patients without cancer. Cancer Prev Res (Phila). 2014;7(7):717-26. https://doi.org/10.1158/1940-6207.CAPR-13-0407.
Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TIet al. Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res. 2000;60(18):5021-6.
Tamura G. Promoter methylation status of tumor suppressor and tumor-related genes in neoplastic and non-neoplastic gastric epithelia. Histol Histopathol. 2004;19(1):221-8. https://doi.org/10.14670/HH-19.221.
Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61(9):3573-7.
A. E. K. Ibrahim, M. J. Arends, A.-L. Silva, A. H. Wyllie, L. Greger, Y. Ito, S. L. Vowler, T. H.-M. Huang, S. Tavare, A. Murrell, J. D. Brenton, Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut 2011;60(4):499-508
Ruth Pidsley, Elena Zotenko, Timothy J. Peters, Mitchell G. Lawrence, Gail P. Risbridger, Peter Molloy, Susan Van Djik, Beverly Muhlhausler, Clare Stirzaker, Susan J. Clark, Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology 2016;17(1)
Olivia Solomon, Julie MacIsaac, Hong Quach, Gwen Tindula, Michael S. Kobor, Karen Huen, Michael J. Meaney, Brenda Eskenazi, Lisa F. Barcellos, Nina Holland, Comparison of DNA methylation measured by Illumina 450K and EPIC BeadChips in blood of newborns and 14-year-old children. Epigenetics 2018;13(6):655-64
Teresia Kling, Anna Wenger, Stephan Beck, Helena Carén, Validation of the MethylationEPIC BeadChip for fresh-frozen and formalin-fixed paraffin-embedded tumours. Clinical Epigenetics 2017;9(1)
Thomas R. Pisanic, Leslie M. Cope, Shiou-Fu Lin, Ting-Tai Yen, Pornpat Athamanolap, Ryoichi Asaka, Kentaro Nakayama, Amanda N. Fader, Tza-Huei Wang, Ie-Ming Shih, Tian-Li Wang, Methylomic Analysis of Ovarian Cancers Identifies Tumor-Specific Alterations Readily Detectable in Early Precursor Lesions. Clinical Cancer Research 2018;24(24):6536-47