Polanczyk GV, Salum GA, Sugaya LS, Caye A, Rohde LA. Annual research review: a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. J Child Psychol Psychiatry. 2015;56:345–65.
Article
PubMed
Google Scholar
Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1313–23.
Article
CAS
PubMed
Google Scholar
Lesch K-P, Timmesfeld N, Renner TJ, Halperin R, Röser C, Nguyen TT, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm Springer Vienna. 2008;115:1573–85.
Article
CAS
Google Scholar
Neale BM, Su J, Anney R, Franke B, Zhou K, Maller JB, et al. Genome-wide association scan of attention deficit hyperactivity disorder. American journal of medical genetics. Part B, neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics. NIH Public Access. 2008;147B:1337–44.
CAS
Google Scholar
Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd RD, et al. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry. 2010;49:898–905.e3.
Article
Google Scholar
Neale BM, Medland S, Ripke S, Anney RJL, Asherson P, Buitelaar J, et al. Case-control genome-wide association study of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry. 2010;49:906–20.
Article
Google Scholar
Hinney A, Scherag A, Jarick I, Albayrak Ö, Pütter C, Pechlivanis S, et al. Genome-wide association study in German patients with attention deficit/hyperactivity disorder. American journal of medical genetics part B: neuropsychiatric genetics. Wiley Subscription Services, Inc A Wiley Company. 2011;156:888–97.
Google Scholar
Stergiakouli E, Hamshere M, Holmans P, Langley K, Zaharieva I, deCODE Genetics, et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. AJP. 2012;169:186–94.
Article
Google Scholar
Zayats T, Athanasiu L, Sønderby IE, Djurovic S, Westlye LT, Tamnes CK, et al. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. Yao Y-G, editor. PLoS One. Public Library of Science (PLoS); 2015; 10: e0122501.
Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch K-P, et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry. 2010;49:884–97.
Article
Google Scholar
Akutagava-Martins GC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: an update. Expert Review of Neurotherapeutics Taylor & Francis. 2016;16:145–56.
Article
CAS
Google Scholar
Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet; . Elsevier 2016; 387:1240–1250.
van Mil NH, Steegers-Theunissen RPM, Bouwland-Both MI, Verbiest MMPJ, Rijlaarsdam J, Hofman A, et al. DNA methylation profiles at birth and child ADHD symptoms. J Psychiatr Res. 2014;49:51–9.
Article
PubMed
Google Scholar
Xu Y, Chen X-T, Luo M, Tang Y, Zhang G, Wu D, et al. Multiple epigenetic factors predict the attention deficit/hyperactivity disorder among the Chinese Han children. J Psychiatr Res. 2015;64:40–50.
Article
PubMed
Google Scholar
Wilmot B, Fry R, Smeester L, Musser ED, Mill J, Nigg JT. Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J Child Psychol Psychiatry. 2015;57:152–60.
Article
PubMed
PubMed Central
Google Scholar
Park S, Lee JM, Kim JW, Cho DY, Yun HJ, Han DH, et al. Associations between serotonin transporter gene (SLC6A4) methylation and clinical characteristics and cortical thickness in children with ADHD. Psychol Med. 2015;45:3009–17.
Article
CAS
PubMed
Google Scholar
Walton E, Pingault JB, Cecil CAM, Gaunt TR, Relton CL, Mill J, et al. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study. Mol Psychiatry. 2017;2:250–6.
Article
Google Scholar
Liew Z, Ritz B, Rebordosa C, Lee P-C, Olsen J. Acetaminophen use during pregnancy, behavioral problems, and hyperkinetic disorders. JAMA Pediatr. 2014;168:313–20.
Article
PubMed
Google Scholar
Thompson JMD, Waldie KE, Wall CR, Murphy R, Mitchell EA, the ABC study group. Associations between acetaminophen use during pregnancy and ADHD symptoms measured at ages 7 and 11 years. Hashimoto K, editor. PLoS One. 2014;9:e108210.
Article
PubMed
PubMed Central
Google Scholar
Avella-Garcia CB, Julvez J, Fortuny J, Rebordosa C, García-Esteban R, Galán IR, et al. Acetaminophen use in pregnancy and neurodevelopment: attention function and autism spectrum symptoms. Int J Epidemiol; Oxford University Press 2016; 6:1987-1996.
Stergiakouli E, Thapar A, Smith GD. Association of acetaminophen use during pregnancy with behavioral problems in childhood: evidence against confounding. JAMA Pediatr. 2016;10:964–70.
Article
Google Scholar
Brandlistuen RE, Ystrom E, Nulman I, Koren G, Nordeng H. Prenatal paracetamol exposure and child neurodevelopment: a sibling-controlled cohort study. Int J Epidemiol. 2014;42:1702–13.
Article
Google Scholar
Lupattelli A, Spigset O, Twigg MJ, Zagorodnikova K, Mårdby AC, Moretti ME, et al. Medication use in pregnancy: a cross-sectional, multinational web-based study. BMJ Open. 2014;4:e004365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. - PubMed-NCBI. Nat Genet. 2011;44:78–84.
Article
PubMed
PubMed Central
Google Scholar
Kitagishi Y, Minami A, Nakanishi A, Ogura Y, Matsuda S. Neuron membrane trafficking and protein kinases involved in autism and ADHD. International journal of molecular sciences. Multidisciplinary Digital Publishing Institute (MDPI). 2015;16:3095–115.
CAS
Google Scholar
Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell; Elsevier 2005; 121:645–657.
Wakatsuki S, Furuno A, Ohshima M, Araki T. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. J Cell Biol; Rockefeller Univ Press 2015; 211:881–896.
Tam S-Y, Lilla JN, Chen C-C, Kalesnikoff J, Tsai M. RabGEF1/Rabex-5 regulates TrkA-mediated neurite outgrowth and NMDA-induced Signaling activation in NGF-differentiated PC12 cells. Obukhov AG, editor. PLoS One; Public Library of Science 2015; 10: e0142935.
Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron; Elsevier 2010; 66:523–535.
Medrihan L, Cesca F, Raimondi A, Lignani G, Baldelli P, Benfenati F. Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nat Comms. 2013;4:1512.
Article
Google Scholar
Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007;8:766–75.
Article
CAS
PubMed
Google Scholar
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet Frontiers Media SA. 2013;4:76.
Google Scholar
Philippot G, Nyberg F, Gordh T, Fredriksson A, Viberg H. Short-term exposure and long-term consequences of neonatal exposure to Δ9-tetrahydrocannabinol (THC) and ibuprofen in mice. Behav Brain Res. 2016;307:137–44.
Article
CAS
PubMed
Google Scholar
Viberg H, Eriksson P, Gordh T, Fredriksson A. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice. Toxicol Sci; Oxford University Press 2014; 138:139–147.
Mooney MA, McWeeney SK, Faraone SV, Hinney A, Hebebrand J, IMAGE2 Consortium, et al. Pathway analysis in attention deficit hyperactivity disorder: an ensemble approach. Am J Med Genet B Neuropsychiatr Genet. 2016;6:815–26.
Article
Google Scholar
Guney E, Cetin FH, Alisik M, Tunca H, Tas Torun Y, Iseri E, et al. Attention deficit hyperactivity disorder and oxidative stress: a short term follow up study. Psychiatry Res. 2015;229:310–7.
Article
CAS
PubMed
Google Scholar
Archana E, Pai P, Prabhu BK, Shenoy RP, Prabhu K, Rao A. Altered biochemical parameters in saliva of pediatric attention deficit hyperactivity disorder. Neurochem Res Springer US. 2011;37:330–4.
Article
Google Scholar
Ceylan MF, Sener S, Bayraktar AC, Kavutcu M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin Neurosci. 2012;66:220–6.
Article
CAS
PubMed
Google Scholar
Goldani AAS, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in Autism. Frontiers in Psychiatry. Frontiers Media SA; 2014; 5:950.
Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga A-M. ROS and brain diseases: the good, the bad, and the ugly. Oxidative Med Cell Longev. 2013;2013:1–14.
Article
Google Scholar
Masutani H. Oxidative stress and redox imbalance in acetaminophen toxicity. The Pharmacogenomics Journal. 2001;1:165–6.
Article
CAS
PubMed
Google Scholar
Ghanizadeh A, Bahrani M, Miri R, Sahraian A. Smell identification function in children with attention deficit hyperactivity disorder. Psychiatry Investigation Korean Neuropsychiatric Association. 2012;9:150–3.
Google Scholar
Romanos M, Renner TJ, Schecklmann M, Hummel B, Roos M, Mering von C, et al. Improved odor sensitivity in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;64:938–40.
Article
CAS
PubMed
Google Scholar
Weiland R, Macht M, Ellgring H, Groß-Lesch S, Lesch K-P, Pauli P. Olfactory and gustatory sensitivity in adults with attention-deficit/hyperactivity disorder. Atten Defic Hyperact Disord. 2011;3:53–60.
Article
PubMed
Google Scholar
Ystrom E, Vollrath ME, Nordeng H. Effects of personality on use of medications, alcohol, and cigarettes during pregnancy. Eur J Clin Pharmacol; Springer-Verlag 2011; 68:845–851.
Kalda A, Zharkovsky A. Epigenetic mechanisms of Psychostimulant-induced addiction. Int Rev Neurobiol. 2015:85–105.
Gervin K, Page CM, Aass HCD, Jansen MA, Fjeldstad HE, Andreassen BK, et al. Cell type specific DNA methylation in cord blood: a 450K-reference data set and cell count-based validation of estimated cell type composition. Epigenetics. 2016;9:690–8.
Article
Google Scholar
Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort profile update: the Norwegian mother and child cohort study (MoBa). Int J Epidemiol; . Oxford University Press 2016:1-7.
Rønningen KS, Paltiel L, Meltzer HM, Nordhagen R, Lie KK, Hovengen R, et al. The biobank of the Norwegian mother and child cohort study: a resource for the next 100 years. Eur J Epidemiol. 2006;21:619–25.
Article
PubMed
PubMed Central
Google Scholar
Paltiel L, Haugan A, Skjerden T, Harbak K, Bækken S, Stensrud NK, et al. The biobank of the Norwegian mother and child cohort study—present status. Norsk Epidemiologi. 2014;24:29–35.
Taylor E, Schachar R, Thorley G, Wieselberg HM, Everitt B, Rutter M. Which boys respond to stimulant medication? A controlled trial of methylphenidate in boys with disruptive behaviour. Psychol Med; Cambridge University Press 1987; 17:121–143.
Thapar A, Pine DS, Leckman JF, Scott S, Snowling MJ, Taylor E. Rutter’s child and adolescent psychiatry. Chichester, UK: Wiley; 2015.
Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Meth Nature Publishing Group. 2014;11:1138–40.
Article
CAS
Google Scholar
Chen Y-A, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2014;8:203–9.
Article
Google Scholar
Triche TJ, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013;41:e90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–96.
Article
CAS
PubMed
Google Scholar
Houseman E, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.
Article
PubMed
PubMed Central
Google Scholar
Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics BioMed Central. 2010;11:587.
Article
CAS
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y. Discovering the false discovery rate. Journal of the Royal Statistical Society: series B (statistical methodology); Blackwell Publishing Ltd; 2010; 72:405–416.
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics; . Oxford University Press 2012; 28:882–883.