Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–87.
Article
CAS
PubMed
Google Scholar
Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Disc Today. 2004;9:641–51.
Article
CAS
Google Scholar
Fliri AF, Loging WT, Volkmann RA. Drug effects viewed from a signal transduction network perspective. J Med Chem. 2009;52:8038–46.
Article
CAS
PubMed
Google Scholar
Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48:6523–43.
Article
CAS
PubMed
Google Scholar
Meunier B. Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res. 2008;41:69–77.
Article
CAS
PubMed
Google Scholar
Daniel KB, Sullivan ED, Chen Y, Chan JC, Jennings PA, Fierke CA, Cohen SM. Dual-mode HDAC prodrug for covalent modification and subsequent inhibitor release. J Med Chem. 2015;58(11):4812–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Passarella D, Comi D, Vanossi A, Paganini G, Colombo F, Ferrante L, Zuco V, Danieli B, Zunino F. Histone deacetylase and microtubulesas targets for the synthesis of releasable conjugate compounds. Bioorg Med Chem Lett. 2009;19:6358–63.
Article
CAS
PubMed
Google Scholar
Nudelman A, Raphaeli A. Novel mutual prodrugs of retinoic and butyric acids with enhanced anticancer activity. J Med Chem. 2000;43:2962–6.
Article
CAS
PubMed
Google Scholar
Gediya LK, Khandelwal A, Patel J, Belosay A, Sabnis G, Mehta J, Purushottamachar P, Njar VCO. Design, synthesis, and evaluation of novel mutual prodrugs (hybrid drugs) of all-trans-retinoic acid and histone deacetylase inhibitors with enhanced anticancer activities in breast and prostate cancer cells in vitro. J Med Chem. 2008;51(13):3895–904.
Article
CAS
PubMed
Google Scholar
Álvarez R, Gronemeyer H, Altucci L, de Lera AR. Epigenetic multiple modulators. Curr Top Med Chem. 2011;11:2749–87.
Article
PubMed
Google Scholar
Ganesan A. Multitarget drugs: an epigenetic epiphany. ChemMedChem. 2016;11(12):1227–41.
Article
CAS
PubMed
Google Scholar
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.
Article
CAS
PubMed
Google Scholar
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327:1000–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010;327:1004–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchwald M, Krömer OH, Heinzel T. HDACi—targets beyond chromatin. Cancer Lett. 2009;280:160–7.
Article
CAS
PubMed
Google Scholar
Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene. 2007;26:5528–40.
Article
CAS
PubMed
Google Scholar
Zhang Y, Fang H, Jiao J, Wu W. The structure and function of histone deacetylases: the target for anticancer therapy. Curr Med Chem. 2008;15:2840–9.
Article
CAS
PubMed
Google Scholar
Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.
Article
CAS
PubMed
Google Scholar
Grozinger CM, Schreiber SL. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol. 2002;9(1):3–16.
Article
CAS
PubMed
Google Scholar
Corminboeuf C, Hu P, Tuckerman ME, Zhang Y. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J Am Chem Soc. 2006;128(14):4530–1.
Article
CAS
PubMed
Google Scholar
Chen K, Zhang X, Wu Y-D, Wiest O. Inhibition and mechanism of HDAC8 revisited. J Am Chem Soc. 2014;136(33):11636–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P. Histone deacetylase inhibitors. In: Sippl W, Jung M, editors. Epigenetics targets in drug discovery. Weinheim: Wiley-VCH; 2009. p. 185–223.
Chapter
Google Scholar
Zhao K, Harshaw R, Chai X, Marmorstein R. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. Proc Natl Acad Sci U S A. 2004;101(23):8563–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avalos JL, Boeke JD, Wolberger C. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol Cell. 2004;13(5):639–48.
Article
CAS
PubMed
Google Scholar
Smith BC, Hallows WC, Denu JM. Mechanisms and molecular probes of sirtuins. Chem Biol. 2008;15:1002–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawse WF, Hoff KG, Fatkins DG, Daines A, Zubkova OV, Schramm VL, Zheng W, Wolberger C. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure. 2008;16:1368–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu P, Wang S, Zhang Y. Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by Ab initio QM/MM molecular dynamics simulations. J Am Chem Soc. 2008;130:16721–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460:587–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith BC, Denu JM. Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD+ cleavage. J Am Chem Soc. 2007;129:5802–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klimasauskas S, Kumar S, Roberts RJ, Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994;76:357–69.
Article
CAS
PubMed
Google Scholar
Verdine GL. The flip side of DNA methylation. Cell. 1994;76:197.
Article
CAS
PubMed
Google Scholar
Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Disc. 2009;8:724–32.
Article
CAS
Google Scholar
Cheng X, Collins RE, Zhang X. Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Structure. 2005;34(1):267–94.
Article
CAS
Google Scholar
Hu P, Zhang Y. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. J Am Chem Soc. 2006;128:1272–8.
Article
CAS
PubMed
Google Scholar
Poulin MB, Schneck JL, Matico RE, McDevitt PJ, Huddleston MJ, Hou W, Johnson NW, Thrall SH, Meek TD, Schramm VL. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36. Proc Natl Acad Sci U S A. 2016;113(5):1197–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta - Gene Regulatory Mechanisms. 2009;1789:45–57.
Google Scholar
Agger K, Christensen J, Cloos PAC, Helin K. The emerging functions of histone demethylases. Curr Op Gen Dev. 2008;18:159–68.
Article
CAS
Google Scholar
Anand R, Marmorstein R. Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem. 2007;282:35425–9.
Article
CAS
PubMed
Google Scholar
Schneider J, Shilatifard A. Histone demethylation by hydroxylation: chemistry in action. ACS Chem Biol. 2006;1:75–81.
Article
CAS
PubMed
Google Scholar
Culhane JC, Szewczuk LM, Liu X, Da G, Marmorstein R, Cole PA. A mechanism-based inactivator for histone demethylase LSD1. J Am Chem Soc. 2006;128(14):4536–7.
Article
CAS
PubMed
Google Scholar
Yang M, Culhane JC, Szewczuk LM, Gocke CB, Brautigam CA, Tomchick DR, Machius M, Cole PA, Yu H. Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nat Struct Mol Biol. 2007;14:535–9.
Article
CAS
PubMed
Google Scholar
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin‐dependent protein lysine demethylases. Biopolymers (Pept Sci). 2015;104(4):213–46.
Article
CAS
Google Scholar
Couture J-F, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol. 2007;14:689–95.
Article
CAS
PubMed
Google Scholar
Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BMR, Bray JE, Savitsky P, Gileadi O, von Delft F, et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature. 2007;448:87–91.
Article
CAS
PubMed
Google Scholar
Chen Z, Zang J, JKappler J, Hong X, Crawford F, Wang Q, Lan F, Jiang C, Whetstine J, Dai S, et al. Structural basis of the recognition of a methylated histone tail by JMJD2A. Proc Natl Acad Sci U S A. 2007;104:10818–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. Chem Med Chem. 2014;9(3):438–64.
Article
CAS
PubMed
Google Scholar
Bamborough P, Chung CW. Fragments in bromodomain drug discovery. Med Chem Commun. 2015;6(9):1587–604.
Article
CAS
Google Scholar
Zhang G, Smith SG, Zhou M-M. Discovery of chemical inhibitors of human bromodomains. Chem Rev. 2015;115(21):11625–68.
Article
CAS
PubMed
Google Scholar
Issa J-PJ, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res. 2009;15(12):3938–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25(1):84–90.
Article
CAS
PubMed
Google Scholar
Zwergel C, Stazi G, Valente S, Mai A. Histone deacetylase inhibitors: updated studies in various epigenetic-related diseases. J Clin Epigenetics. 2016;2:1–15.
Google Scholar
Dey A, Tergaonkar V, Lane DP. Double-edged swords as cancer therapeutics: simultaneosuly targeting p53 and NF-kB pathways. Nat Rev Drug Disc. 2008;7:1031–40.
Article
CAS
Google Scholar
Geva-Zatorsky N, Dekel E, Cohen AA, Danon T, Cohen L, Alon U. Protein dynamics in drug combinations: a linear superposition of individual-drug responses. Cell. 2010;140:643–51.
Article
CAS
PubMed
Google Scholar
Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotech. 2012;30:1–13.
Article
CAS
Google Scholar
Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, Liu P. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 2013;9(2):255–69.
Article
CAS
PubMed
Google Scholar
Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Gandara DR, et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California cancer consortium study. Clin Cancer Res. 2008;14(21):7138–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol. 2011;7(2):263–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Häussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, et al. Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca2+-de novo ceramide-PP2A-reactive oxygen species‚ dependent signaling pathway. Cancer Res. 2010;70(15):6313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen MC, Chen CH, Wang JC, Tsai AC, Liou JP, Pan SL, Teng CM. The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis. 2013;4:e810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee T-G, Jeong E-H, Kim SY, Kim H-R, Kim CH. The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFRT790M-mutated lung cancer. Int J Cancer. 2015;136(11):2717–29.
Article
CAS
PubMed
Google Scholar
Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl‚ positive human acute leukemia cells. Blood. 2003;101(8):3236–9.
Article
CAS
PubMed
Google Scholar
Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D, Varticovski L, Dent P, Grant S. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res. 2003;63(9):2118–26.
CAS
PubMed
Google Scholar
Bicaku E, Marchion DC, Schmitt ML, Münster PN. Selective inhibition of histone deacetylase 2 silences progesterone receptor‚ mediated signaling. Cancer Res. 2008;68(5):1513–9.
Article
CAS
PubMed
Google Scholar
Chen L, Meng S, Wang H, Bali P, Bai W, Li B, Atadja P, Bhalla KN, Wu J. Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol Cancer Ther. 2005;4(9):1311–9.
Article
CAS
PubMed
Google Scholar
Rokhlin OW, Glover RB, Guseva NV, Taghiyev AF, Kohlgraf KG, Cohen MB. Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor‚ positive prostate cancer cells. Mol Cancer Res. 2006;4(2):113–23.
Article
CAS
PubMed
Google Scholar
Sharma D, Saxena NK, Davidson NE, Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor‚ negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res. 2006;66(12):6370–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011;104(12):1828–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
De los Santos M, Martínez-Iglesias O, Aranda A. Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells. Endocr Rel Cancer. 2007;14(4):1021–8.
Article
CAS
Google Scholar
Pili R, Salumbides B, Zhao M, Altiok S, Qian D, Zwiebel J, Carducci MA, Rudek MA. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer. 2012;106(1):77–84.
Article
CAS
PubMed
Google Scholar
Pitts TM, Morrow M, Kaufman SA, Tentler JJ, Eckhardt SG. Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models. Mol Cancer Ther. 2009;8(2):342–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takhar HS, Singhal N, Gowda R, Penniment M, Takhar P, Brown MP. Phase I study evaluating the safety and efficacy of oral panobinostat in combination with radiotherapy or chemoradiotherapy in patients with inoperable stage III non-small-cell lung cancer. Anti-Cancer Drugs. 2015;26(10):1069–77.
Article
CAS
PubMed
Google Scholar
Bixby D, Talpaz M. Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia. 2011;25(1):7–22.
Article
CAS
PubMed
Google Scholar
Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T, Nephew KP. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 2012;72(9):2197–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirk JS, Schaarschuch K, Dalimov Z, Lasorsa E, Ku S, Ramakrishnan S, Hu Q, Azabdaftari G, Wang J, Pili R, et al. Top2a identifies and provides epigenetic rationale for novel combination therapeutic strategies for aggressive prostate cancer. Oncotarget. 2015;6:3136–46.
Article
PubMed
Google Scholar
Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP, Lin Y-J, Zhang H, Marquez VE, Hammerman PS, Wong K-K, et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature. 2015;520(7546):239–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
K-p K, Park S, Kim J-E, Hong Y, Lee J-L, Bae K-S, Cha H, Kwon S-K, Ro S, Cho J, et al. First-in-human study of the toxicity, pharmacokinetics, and pharmacodynamics of CG200745, a pan-HDAC inhibitor, in patients with refractory solid malignancies. Invest New Drugs. 2015;33(5):1048–57.
Article
CAS
Google Scholar
Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non‚ small cell lung cancer. Cancer Discovery. 2011;1(7):598–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Hasanali ZS, Chen A, Zhang D, Liu X, Wang H-G, Feith DJ, Loughran TP, Xu K. Suberoylanilide hydroxamic acid (SAHA) and cladribine synergistically induce apoptosis in NK-LGL leukaemia. Br J Haematol. 2015;168(3):371–83.
Article
CAS
PubMed
Google Scholar
Sun F, Chan E, Wu Z, Yang X, Marquez VE, Yu Q. Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol Cancer Ther. 2009;8:3191–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Momparler RL, Côté S, Momparler LF, Idaghdour Y. Epigenetic therapy of acute myeloid leukemia using 5-aza-2'-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clinical Epigenetics. 2014;6(1):1–12.
Article
CAS
Google Scholar
Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F, Chandra J. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro-Oncol. 2015;17(11):1463–73.
Article
PubMed
Google Scholar
Dawson MA, Kouzarides T, Huntly BJP. Targeting epigenetic readers in cancer. New Engl J Med. 2012;367:647–57.
Article
CAS
PubMed
Google Scholar
Fong CY, Gilan O, Lam EYN, Rubin AF, Ftouni S, Tyler D, Stanley K, Sinha D, Yeh P, Morison J, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525(7570):538–42.
Article
CAS
PubMed
Google Scholar
Rathert P, Roth M, Neumann T, Muerdter F, Roe J-S, Muhar M, Deswal S, Cerny-Reiterer S, Peter B, Jude J, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525(7570):543–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan W-I, Robson SC, Chung C-w, Hopf C, Savitski MM, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478(7370):529–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mele DA, Salmeron A, Ghosh S, Huang H-R, Bryant BM, Lora JM. BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med. 2013;210(11):2181–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bandukwala HS, Gagnon J, Togher S, Greenbaum JA, Lamperti ED, Parr NJ, Molesworth AMH, Smithers N, Lee K, Witherington J, et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci U S A. 2012;109(36):14532–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–23.
Article
CAS
PubMed
Google Scholar
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, et al. BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure. Cell. 2013;154(3):569–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ, Lofgren SM, Kuschma T, Hahn SA, Vangala D, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21(10):1163–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kokkola T, Suuronen T, Pesonen M, Filippakopoulos P, Salminen A, Jarho EM, Lahtela-Kakkonen M. BET inhibition upregulates SIRT1 and alleviates inflammatory responses. ChemBioChem. 2015;16(14):1997–2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C-W, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R, Doench JG, Xu H, Chu SH, Qi J, et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med. 2015;21(4):335–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daujat S, Bauer UM, Shah V, Turner B, Berger S, Kouzarides T. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol. 2002;12(24):2090–7.
Article
CAS
PubMed
Google Scholar
Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008;659(1-2):40–8.
Article
CAS
PubMed
Google Scholar
Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG, Baylin SB. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006;2(3):e40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Wilson D, Jayaram HN, Pankiewicz KW. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment. J Med Chem. 2007;50(26):6685–91.
Article
CAS
PubMed
Google Scholar
Chen J-B, Chern T-R, Wei T-T, Chen C-C, Lin J-H, Fang J-M. Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme a reductase for cancer treatment. J Med Chem. 2013;56:3645–55.
Article
CAS
PubMed
Google Scholar
Beckers T, Mahboobi S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Maier T, Ciossek T, Baer T, Kelter G, et al. Chimerically designed HDAC- and tyrosine kinase inhibitors. A series of erlotinib hybrids as dual-selective inhibitors of EGFR, HER2 and histone deacetylases. Med Chem Commun. 2012;3(7):829–35.
Article
CAS
Google Scholar
Zuo M, Zheng Y-W, Lu S-M, Li Y, Zhang S-Q. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC‚ EGFR dual inhibitors. Bioorg Med Chem. 2012;20(14):4405–12.
Article
CAS
PubMed
Google Scholar
Mahboobi S, Dove S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T. Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rbeta, and histone deacetylases. J Med Chem. 2009;52:2265–79.
Article
CAS
PubMed
Google Scholar
Mahboobi S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T. Novel chimeric histone deacetylase inhibitors: a series of lapatinib hybrides as potent inhibitors of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and histone deacetylase activity. J Med Chem. 2010;53(24):8546–55.
Article
CAS
PubMed
Google Scholar
Peng F-W, Xuan J, Wu T-T, Xue J-Y, Ren Z-W, Liu D-K, Wang X-Q, Chen X-H, Zhang J-W, Xu Y-G, et al. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur J Med Chem. 2016;109:1–12.
Article
CAS
PubMed
Google Scholar
Patel H, Chuckowree I, Coxhead P, Guille M, Wang M, Zuckermann A, Williams RSB, Librizzi M, Paranal RM, Bradner JE, et al. Synthesis of hybrid anticancer agents based on kinase and histone deacetylase inhibitors. Med Chem Commun. 2014;5(12):1829–33.
Article
CAS
Google Scholar
Galloway TJ, Wirth LJ, Colevas AD, Gilbert J, Bauman JE, Saba NF, Raben D, Mehra R, Ma AW, Atoyan R, et al. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(7):1566–73.
Article
CAS
PubMed
Google Scholar
Cai X, Zhai H-X, Wang J, Forrester J, Qu H, Yin L, Lai C-J, Bao R, Qian C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem. 2010;53:2000–9.
Article
CAS
PubMed
Google Scholar
Qian C, Lai C-J, Bao R, Wang D-G, Wang J, Xu G-X, Atoyan R, Qu H, Yin L, Samson M, et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res. 2012;18(15):4104–13.
Article
CAS
PubMed
Google Scholar
Cuadrado MDMT, Franco RF, García AMO, Oyarzabal JS, Rabal MOG. World patent 2014, WO131855.
Guerrant W, Patil V, Canzoneri JC, Oyelere AK. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J Med Chem. 2012;55(4):1465–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling Y, Wang X, Wang C, Xu C, Zhang W, Zhang Y, Zhang Y. Hybrids from farnesylthiosalicylic acid and hydroxamic acid as dual Ras-related signaling and histone deacetylase (HDAC) inhibitors: design, synthesis and biological evaluation. ChemMedChem. 2015;10(6):971–6.
Article
CAS
PubMed
Google Scholar
Zhao J, Quan H, Xie C, Lou L. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations. Pharmacol Res Perspect. 2014;2(3):e00043.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang C, Li C, Zhang S, Hu Z, Wu J, Dong C, Huang J, Zhou H-B. Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer. J Med Chem. 2015;58(11):4550–72.
Article
CAS
PubMed
Google Scholar
Fischer J, Wang T-T, Kaldre D, Rochel N, Moras D, White JH, Gleason JL. Synthetically accessible non-secosteroidal hybrid molecules combining vitamin D receptor agonism and histone deacetylase inhibition. Chem Biol. 2012;19(8):963–71.
Article
CAS
PubMed
Google Scholar
Chen G-L, Wang L-H, Wang J, Chen K, Zhao M, Sun Z-Z, Wang S, Zheng H-L, Yang J-Y, Wu C-F. Discovery of a small molecular compound simultaneously targeting RXR and HADC: Design, synthesis, molecular docking and bioassay. Bioorg Med Chem Lett. 2013;23:3891–5.
Article
CAS
PubMed
Google Scholar
Gryder BE, Akbashev MJ, Rood MK, Raftery ED, Meyers WM, Dillard P, Khan S, Oyelere AK. Selectively targeting prostate cancer with antiandrogen equipped histone deacetylase inhibitors. ACS Chem Biol. 2013;8:2550–60.
Article
CAS
PubMed
Google Scholar
Liu C, Ding H, Li X, Pallasch CP, Hong L, Guo D, Chen Y, Wang D, Wang W, Wang Y, et al. A DNA/HDAC dual‐targeting drug CY190602 with significantly enhanced anticancer potency. EMBO Mol Med. 2015;7(4):438–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Kong Y, Zhang J, Su M, Zhou Y, Zang Y, Li J, Chen Y, Fang Y, Zhang X, et al. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur J Med Chem. 2015;95:127–35.
Article
CAS
PubMed
Google Scholar
Mai A, Cheng D, Bedford MT, Valente S, Nebbioso A, Perrone A, Brosch G, Sbardella G, De Bellis F, Miceli M, et al. Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. J Med Chem. 2008;51(7):2279–90.
Article
CAS
PubMed
Google Scholar
Pereira R, Benedetti R, Pérez-Rodríguez S, Nebbioso A, García-Rodríguez J, Carafa V, Stuhldreier M, Conte M, Rodríguez-Barrios F, Stunnenberg HG, et al. Indole-derived psammaplin A analogues as epigenetic modulators with multiple inhibitory activities. J Med Chem. 2012;55:9467–91.
Article
CAS
PubMed
Google Scholar
Rotili D, Tomassi S, Conte M, Benedetti R, Tortorici M, Ciossani G, Valente S, Marrocco B, Labella D, Novellino E, et al. Pan-histone demethylase inhibitors simultaneously targeting jumonji C and lysine-specific demethylases display high anticancer activities. J Med Chem. 2014;57(1):42–55.
Article
CAS
PubMed
Google Scholar
Atkinson SJ, Soden PE, Angell DC, Bantscheff M, Chung CW, Giblin KA, Smithers N, Furze RC, Gordon L, Drewes G, et al. The structure based design of dual HDAC/BET inhibitors as novel epigenetic probes. Med Chem Commun. 2014;5(3):342–51.
Article
CAS
Google Scholar
Borretto E, Lazzarato L, Spallotta F, Cencioni C, D'Alessandra Y, Gaetano C, Fruttero R, Gasco A. Synthesis and biological evaluation of the first example of NO-donor histone deacetylase inhibitor. ACS Med Chem Lett. 2013;4(10):994–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler James D, Crew Andrew P, Coleman K, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 2015;22(6):755–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 2015;348(6241):1376–81.
Article
CAS
PubMed
PubMed Central
Google Scholar