Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66(3):589–600.
Article
CAS
PubMed
Google Scholar
Stec R, Plawski A, Synowiec A, Maczewski M, Szczylik C. Colorectal cancer in the course of familial adenomatous polyposis syndrome (“de novo” pathogenic mutation of APC gene): case report, review of the literature and genetic commentary. Arch Med Sci. 2010;6(2):283–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Qin H, Lv W, Luo S, Wang J, Fu C, et al. Novel and reported APC germline mutations in Chinese patients with familial adenomatous polyposis. Gene. 2016;577(2):187–92.
Article
CAS
PubMed
Google Scholar
Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djw332.
Article
PubMed
PubMed Central
Google Scholar
Yang X, Zhong J, Zhang Q, Feng L, Zheng Z, Zhang J, et al. Advances and insights of APC-asef inhibitors for metastatic colorectal cancer therapy. Front Mol Biosci. 2021;8:662579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stefanski CD, Prosperi JR. Wnt-independent and Wnt-dependent effects of APC loss on the chemotherapeutic response. Int J Mol Sci. 2020;21(21):7844.
Article
CAS
PubMed Central
Google Scholar
Zeineldin M, Neufeld KL. More than two decades of Apc modeling in rodents. Biochim Biophys Acta. 2013;1836(1):80–9.
CAS
PubMed
PubMed Central
Google Scholar
Zeineldin M, Neufeld KL. Understanding phenotypic variation in rodent models with germline Apc mutations. Cancer Res. 2013;73(8):2389–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67(20):9721–30.
Article
CAS
PubMed
Google Scholar
Xue Y, Johnson R, Desmet M, Snyder PW, Fleet JC. Generation of a transgenic mouse for colorectal cancer research with intestinal cre expression limited to the large intestine. Mol Cancer Res. 2010;8(8):1095–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seidlitz T, Stange DE. Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med. 2021;53(10):1459–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.
Article
CAS
PubMed
Google Scholar
Devall M, Dampier CH, Eaton S, Ali MW, Díez-Obrero V, Moratalla-Navarro F, et al. Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids. Oncotarget. 2021;12(19):1863.
Article
PubMed
PubMed Central
Google Scholar
Devall M, Jennelle LT, Bryant J, Bien S, Peters U, Powell S, et al. Modeling the effect of prolonged ethanol exposure on global gene expression and chromatin accessibility in normal 3D colon organoids. PLoS ONE. 2020;15(1):e0227116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devall M, Plummer SJ, Bryant J, Jennelle LT, Eaton S, Dampier CH, et al. Ethanol exposure drives colon location specific cell composition changes in a normal colon crypt 3D organoid model. Sci Rep. 2021;11(1):432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devall MAM, Drew DA, Dampier CH, Plummer SJ, Eaton S, Bryant J, et al. Transcriptome-wide in vitro effects of aspirin on patient-derived normal colon organoids. Cancer Prev Res (Phila). 2021;14:1089–100.
Article
CAS
PubMed Central
Google Scholar
Abramowicz M, Zuccotti G, Pflomm JM. A stool DNA test (Cologuard) for colorectal cancer screening. JAMA. 2014;312(23):2566.
Article
Google Scholar
Baharudin R, Ishak M, Muhamad Yusof A, Saidin S, Syafruddin SE, Wan Mohamad Nazarie WF, et al. Epigenome-wide DNA methylation profiling in colorectal cancer and normal adjacent colon using infinium human methylation 450K. Diagnostics (Basel). 2022;12(1):198.
Article
CAS
Google Scholar
Kraiczy J, Nayak KM, Howell KJ, Ross A, Forbester J, Salvestrini C, et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut. 2019;68(1):49–61.
Article
CAS
PubMed
Google Scholar
Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD, van Wijngaarden S, et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells. 2014;32(5):1083–91.
Article
CAS
PubMed
Google Scholar
Kraiczy J, Ross ADB, Forbester JL, Dougan G, Vallier L, Zilbauer M. Genome-wide epigenetic and transcriptomic characterization of human-induced pluripotent stem cell-derived intestinal epithelial organoids. Cell Mol Gastroenterol Hepatol. 2019;7(2):285–8.
Article
PubMed
Google Scholar
Lewis SK, Nachun D, Martin MG, Horvath S, Coppola G, Jones DL. DNA methylation analysis validates organoids as a viable model for studying human intestinal aging. Cell Mol Gastroenterol Hepatol. 2020;9(3):527–41.
Article
PubMed
Google Scholar
Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.
Article
CAS
Google Scholar
Barrow TM, Klett H, Toth R, Bohm J, Gigic B, Habermann N, et al. Smoking is associated with hypermethylation of the APC 1A promoter in colorectal cancer: the ColoCare study. J Pathol. 2017;243(3):366–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teschendorff AE. A comparison of epigenetic mitotic-like clocks for cancer risk prediction. Genome Med. 2020;12(1):56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.
Article
PubMed
PubMed Central
Google Scholar
Mills SJ, Mathers JC, Chapman PD, Burn J, Gunn A. Colonic crypt cell proliferation state assessed by whole crypt microdissection in sporadic neoplasia and familial adenomatous polyposis. Gut. 2001;48(1):41–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene. 1997;15(20):2463–73.
Article
CAS
PubMed
Google Scholar
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76–87.
Article
CAS
PubMed
Google Scholar
Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.
Article
CAS
Google Scholar
Takane K, Fukuyo M, Matsusaka K, Ota S, Rahmutulla B, Matsushita K, et al. The frequency of promoter DNA hypermethylation is decreased in colorectal neoplasms of familial adenomatous polyposis. Oncotarget. 2018;9(66):32653–66.
Article
PubMed
PubMed Central
Google Scholar
Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.
Article
CAS
PubMed
Google Scholar
Bruschi M, Garnier L, Cleroux E, Giordano A, Dumas M, Bardet AF, et al. Loss of Apc rapidly impairs DNA methylation programs and cell fate decisions in Lgr5(+) intestinal stem cells. Cancer Res. 2020;80(11):2101–13.
Article
CAS
PubMed
Google Scholar
Erdmann A, Halby L, Fahy J, Arimondo PB. Targeting DNA methylation with small molecules: what’s next? J Med Chem. 2015;58(6):2569–83.
Article
CAS
PubMed
Google Scholar
Sapozhnikov DM, Szyf M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun. 2021;12(1):5711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol. 2016;36:3–17.
Article
CAS
PubMed
Google Scholar
Chang SC, Hsu W, Su EC, Hung CS, Ding JL. Human FBXL8 is a novel E3 ligase which promotes BRCA metastasis by stimulating pro-tumorigenic cytokines and inhibiting tumor suppressors. Cancers (Basel). 2020;12(8):2210.
Article
CAS
Google Scholar
Jennelle LT, Dampier CH, Tring S, Powell S, Casey G. Colon crypts of subjects with familial adenomatous polyposis show an increased number of LGR5+ ectopic stem cells. Clin Transl Gastroenterol. 2021;12(5):e00353.
Article
PubMed
PubMed Central
Google Scholar
Zhou W, Triche TJ Jr, Laird PW, Shen H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 2018;46(20):e123.
PubMed
PubMed Central
Google Scholar
Tao Y, Kang B, Petkovich DA, Bhandari YR, In J, Stein-O’Brien G, et al. Aging-like spontaneous epigenetic silencing facilitates wnt activation, stemness, and Braf(V600E)-induced tumorigenesis. Cancer Cell. 2019;35(2):315–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campan M, Weisenberger DJ, Trinh B, Laird PW. MethyLight. Methods Mol Biol. 2009;507:325–37.
Article
CAS
PubMed
Google Scholar
Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–99.
Article
CAS
PubMed
Google Scholar
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289–300.
Google Scholar
Haider S, Waggott D, Lalonde E, Fung C, Liu FF, Boutros PC. A bedr way of genomic interval processing. Source Code Biol Med. 2016;11:14.
Article
PubMed
PubMed Central
Google Scholar
Gene OC. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49(D1):D325–34.
Article
CAS
Google Scholar
Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–8.
Article
CAS
PubMed
Google Scholar
Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41.
Article
CAS
PubMed
Google Scholar
Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–30.
Article
CAS
PubMed
Google Scholar
Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33(24):3982–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71.
Article
PubMed
CAS
Google Scholar
Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014;15(12):503.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu Z, Niu L, Li L, Taylor JA. ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res. 2016;44(3):e20.
Article
PubMed
CAS
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Devall M, Sun X, Yuan F, Cooper GS, Willis J, Weisenberger DJ, et al. Racial disparities in epigenetic aging of the right vs left colon. J Natl Cancer Inst. 2020;113:1779–82.
Article
PubMed Central
CAS
Google Scholar
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. https://doi.org/10.1186/s13059-014-0550-8.
Article
PubMed
PubMed Central
Google Scholar
Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93–110.
Article
PubMed
PubMed Central
Google Scholar