Rider CF, Carlsten C. Air pollution and DNA methylation: effects of exposure in humans. Clin Epigenetics. 2019;11:131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hall ES, Kaushik SM, Vanderpool RW, Duvall RM, Beaver MR, Long RW, et al. Integrating sensor monitoring technology into the current air pollution regulatory support paradigm: practical considerations. Am J Environ Eng. 2014;4:147–54.
Google Scholar
Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007;5:169–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Outdoor air pollution measurement methods. Outdoor Air Pollut. International Agency for Research on Cancer; 2016 [cited 2021 Oct 21]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK368020/
Krall JR, Chang HH, Sarnat SE, Peng RD, Waller LA. Current methods and challenges for epidemiological studies of the associations between chemical constituents of particulate matter and health. Curr Environ Health Rep. 2015;2:388–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO, GBD Compare. Burden of disease from ambient air pollution for 2016: Description of method. Seattle, WA: IHME, University of Washington: Institute for Health Metrics and Evaluation (IHME); 2018 May. Available from: https://www.who.int/airpollution/data/AAP_BoD_methods_Apr2018_final.pdf
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet Lond Engl. 2017;389:1907–18.
Article
Google Scholar
Clay K, Muller N. Recent Increases in Air Pollution: Evidence and Implications for Mortality. Cambridge, MA 02138: National Bureau of Economic Research; 2019 Oct. Report No.: w26381. Available from: https://www-nber-org.proxy-ub.rug.nl/system/files/working_papers/w26381/w26381.pdf
Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S. Half the world’s population are exposed to increasing air pollution. Npj Clim Atmospheric Sci. 2020;3:1–5.
Google Scholar
Popovich N. America’s air quality worsens, ending years of gains, study says. N Y Times. 2019 Oct 24 [cited 2021 Oct 21]; Available from: https://www.nytimes.com/interactive/2019/10/24/climate/air-pollution-increase.html
Tong S. Air pollution and disease burden. Lancet Planet Health. 2019;3:e49-50.
Article
PubMed
Google Scholar
de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation. 2004;110:2494–7.
Article
PubMed
Google Scholar
Cook S, Auinger P, Li C, Ford ES. Metabolic syndrome rates in United States adolescents, from the National Health and Nutrition Examination Survey, 1999–2002. J Pediatr. 2008;152:165–70.
Article
PubMed
Google Scholar
Brambilla P, Lissau I, Flodmark C-E, Moreno LA, Widhalm K, Wabitsch M, et al. Metabolic risk-factor clustering estimation in children: to draw a line across pediatric metabolic syndrome. Int J Obes. 2005;2007(31):591–600.
Google Scholar
Wallwork RS, Colicino E, Zhong J, Kloog I, Coull BA, Vokonas P, et al. Ambient fine particulate matter, outdoor temperature, and risk of metabolic syndrome. Am J Epidemiol. 2017;185:30–9.
Article
PubMed
Google Scholar
Flores-Viveros KL, Aguilar-Galarza BA, Ordóñez-Sánchez ML, Anaya-Loyola MA, Moreno-Celis U, Vázquez-Cárdenas P, et al. Contribution of genetic, biochemical and environmental factors on insulin resistance and obesity in Mexican young adults. Obes Res Clin Pract. 2019;13:533–40.
Article
PubMed
Google Scholar
Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS. Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis. 2009;203:311–9.
Article
CAS
PubMed
Google Scholar
Jiang S, Bo L, Gong C, Du X, Kan H, Xie Y, et al. Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. Int Arch Occup Environ Health. 2016;89:911–21.
Article
CAS
PubMed
Google Scholar
Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J Off Publ Fed Am Soc Exp Biol. 2016;30:2115–22.
CAS
Google Scholar
Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: a global review. Curr Environ Health Rep. 2015;2:440–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
European Commission. Directorate General for the Environment., University of the West of England (UWE). Science Communication Unit. Links between noise and air pollution and socioeconomic status. LU: Publications Office; 2016 [cited 2022 Apr 15]. Available from: https://doi.org/10.2779/200217
Jiao K, Xu M, Liu M. Health status and air pollution related socioeconomic concerns in urban China. Int J Equity Health. 2018;17:18.
Article
PubMed
PubMed Central
Google Scholar
Chi GC, Hajat A, Bird CE, Cullen MR, Griffin BA, Miller KA, et al. Individual and neighborhood socioeconomic status and the association between air pollution and cardiovascular disease. Environ Health Perspect Environ Health Perspect. 2016;124:1840–7.
Article
PubMed
Google Scholar
Huang W, Wang L, Li J, Liu M, Xu H, Liu S, et al. Short-term blood pressure responses to ambient fine particulate matter exposures at the extremes of global air pollution concentrations. Am J Hypertens. 2018;31:590–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. The 2016 global and national burden of diabetes mellitus attributable to PM 2·5 air pollution. Lancet Planet Health. 2018;2:e301–12.
Article
PubMed
Google Scholar
Clementi EA, Talusan A, Vaidyanathan S, Veerappan A, Mikhail M, Ostrofsky D, et al. Metabolic syndrome and air pollution: a narrative review of their cardiopulmonary effects. Toxics. 2019 [cited 2021 Apr 25];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468691/
Eze IC, Schaffner E, Foraster M, Imboden M, von Eckardstein A, Gerbase MW, et al. Long-term exposure to ambient air pollution and metabolic syndrome in adults. PLoS ONE. 2015;10: e0130337.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brook RD, Sun Z, Brook JR, Zhao X, Ruan Y, Yan J, et al. Extreme air pollution conditions adversely affect blood pressure and insulin resistance: the air pollution and cardiometabolic disease study. Hypertens Dallas Tex. 1979;2016(67):77–85.
Google Scholar
Poursafa P, Mansourian M, Motlagh M-E, Ardalan G, Kelishadi R. Is air quality index associated with cardiometabolic risk factors in adolescents? The CASPIAN-III Study. Environ Res. 2014;134:105–9.
Article
CAS
PubMed
Google Scholar
Poursafa P, Dadvand P, Amin MM, Hajizadeh Y, Ebrahimpour K, Mansourian M, et al. Association of polycyclic aromatic hydrocarbons with cardiometabolic risk factors and obesity in children. Environ Int. 2018;118:203–10.
Article
CAS
PubMed
Google Scholar
Kapiotis S, Holzer G, Schaller G, Haumer M, Widhalm H, Weghuber D, et al. A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes. Arterioscler Thromb Vasc Biol. 2006;26:2541–6.
Article
CAS
PubMed
Google Scholar
Poursafa P, Kelishadi R, Lahijanzadeh A, Modaresi M, Javanmard SH, Assari R, et al. The relationship of air pollution and surrogate markers of endothelial dysfunction in a population-based sample of children. BMC Public Health. 2011;11:115.
Article
PubMed
PubMed Central
Google Scholar
Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F. Cardiovascular effects of air pollution. Arch Cardiovasc Dis. 2017;110:634–42.
Article
PubMed
PubMed Central
Google Scholar
Pope CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res. 2016;119:1204–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelishadi R, Hashemi M, Javanmard SH, Mansourian M, Afshani M, Poursafa P, et al. Effect of particulate air pollution and passive smoking on surrogate biomarkers of endothelial dysfunction in healthy children. Paediatr Int Child Health. 2014;34:165–9.
Article
PubMed
Google Scholar
Poursafa P, Baradaran-Mahdavi S, Moradi B, Haghjooy Javanmard S, Tajadini M, Mehrabian F, et al. The relationship of exposure to air pollutants in pregnancy with surrogate markers of endothelial dysfunction in umbilical cord. Environ Res. 2016;146:154–60.
Article
CAS
PubMed
Google Scholar
Xu M-X, Ge C-X, Qin Y-T, Gu T-T, Lou D-S, Li Q, et al. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic Biol Med. United States; 2019;130:542–56.
Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int J Mol Sci. 2020;21:E4306.
Article
PubMed
CAS
Google Scholar
Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.
Article
CAS
PubMed
Google Scholar
Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes. 2005;2008(32 Suppl 7):S62-71.
Google Scholar
Bell JT, Spector TD. A twin approach to unraveling epigenetics. Trends Genet TIG. 2011;27:116–25.
Article
CAS
PubMed
Google Scholar
Yara S, Lavoie J-C, Levy E. Oxidative stress and DNA methylation regulation in the metabolic syndrome. Epigenomics. 2015;7:283–300.
Article
CAS
PubMed
Google Scholar
Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab TEM. 2000;11:142–8.
Article
CAS
PubMed
Google Scholar
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.
Article
CAS
PubMed
Google Scholar
Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009;10:184–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics. 2009;1:177–200.
Article
CAS
PubMed
Google Scholar
Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8:389–99.
Article
CAS
PubMed
Google Scholar
van Vliet-Ostaptchouk JV, Snieder H, Lagou V. Gene-lifestyle interactions in obesity. Curr Nutr Rep. 2012;1:184–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarado-Cruz I, Alegría-Torres JA, Montes-Castro N, Jiménez-Garza O, Quintanilla-Vega B. Environmental epigenetic changes, as risk factors for the development of diseases in children: a systematic review. Ann Glob Health. 2018;84:212–24.
Article
PubMed
PubMed Central
Google Scholar
Cantone L, Iodice S, Tarantini L, Albetti B, Restelli I, Vigna L, et al. Particulate matter exposure is associated with inflammatory gene methylation in obese subjects. Environ Res. 2017;152:478–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouidir M, Mendola P, Buck Louis GM, Kannan K, Zhang C, Tekola-Ayele F. Concentrations of persistent organic pollutants in maternal plasma and epigenome-wide placental DNA methylation. Clin Epigenetics. 2020;12:103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics. 2019;11:32.
Article
PubMed
PubMed Central
Google Scholar
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics. 2019;11:82.
Article
PubMed
PubMed Central
Google Scholar
Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics. 2020;12:65.
Article
PubMed
PubMed Central
Google Scholar
Bind M-A, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, et al. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiol Camb Mass. 2012;23:332–40.
Article
Google Scholar
Bind M-AC, Coull BA, Peters A, Baccarelli AA, Tarantini L, Cantone L, et al. Beyond the mean: quantile regression to explore the association of air pollution with gene-specific methylation in the normative aging study. Environ Health Perspect. 2015;123:759–65.
Ding R, Jin Y, Liu X, Ye H, Zhu Z, Zhang Y, et al. Dose- and time- effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution. Sci Rep. 2017;7:43737.
Article
PubMed
PubMed Central
Google Scholar
Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2012;41:79–105.
Article
PubMed
Google Scholar
Chi GC, Liu Y, MacDonald JW, Barr RG, Donohue KM, Hensley MD, et al. Long-term outdoor air pollution and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Glob Access Sci Source. 2016;15:119.
Google Scholar
Plusquin M, Chadeau-Hyam M, Ghantous A, Alfano R, Bustamante M, Chatzi L, et al. DNA methylome marks of exposure to particulate matter at three time points in early life. Environ Sci Technol. 2018;52:5427–37.
Article
CAS
PubMed
Google Scholar
Sayols-Baixeras S, Fernández-Sanlés A, Prats-Uribe A, Subirana I, Plusquin M, Künzli N, et al. Association between long-term air pollution exposure and DNA methylation: the REGICOR study. Environ Res. 2019;176: 108550.
Article
CAS
PubMed
Google Scholar
Gondalia R, Baldassari A, Holliday KM, Justice AE, Méndez-Giráldez R, Stewart JD, et al. Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation. Environ Int. 2019;132:104723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, et al. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics. 2019;11:124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossnerova A, Tulupova E, Tabashidze N, Schmuczerova J, Dostal M, Rossner P, et al. Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res. 2013;741–742:18–26.
Article
PubMed
CAS
Google Scholar
Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, et al. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiol Camb Mass. 2010;21:819–28.
Article
Google Scholar
Bellavia A, Urch B, Speck M, Brook RD, Scott JA, Albetti B, et al. DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. J Am Heart Assoc. 2013;2:e000212.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen R, Meng X, Zhao A, Wang C, Yang C, Li H, et al. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ Int. 2016;94:614–9.
Article
CAS
PubMed
Google Scholar
Peng C, Bind M-AC, Colicino E, Kloog I, Byun H-M, Cantone L, et al. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the normative aging study, 2000–2011. Environ Health Perspect. 2016;124:1715–21.
Wang X, Falkner B, Zhu H, Shi H, Su S, Xu X, et al. A genome-wide methylation study on essential hypertension in young African American males. PLoS ONE. 2013;8:e53938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, et al. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIRONAGE cohort. Environ Health Perspect. 2017;125:262–8.
Article
CAS
PubMed
Google Scholar
Ferrari L, Carugno M, Bollati V. Particulate matter exposure shapes DNA methylation through the lifespan. Clin Epigenetics. 2019;11:129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salam MT, Byun H-M, Lurmann F, Breton CV, Wang X, Eckel SP, et al. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol. 2012;129:232–9.
Article
CAS
PubMed
Google Scholar
Tarantini L, Bonzini M, Tripodi A, Angelici L, Nordio F, Cantone L, et al. Blood hypomethylation of inflammatory genes mediates the effects of metal-rich airborne pollutants on blood coagulation. Occup Environ Med. 2013;70:418–25.
Article
CAS
PubMed
Google Scholar
Bind M-A, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA, et al. Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis. Epigenetics. 2014;9:448–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen R, Qiao L, Li H, Zhao Y, Zhang Y, Xu W, et al. Fine Particulate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide. Environ Sci Technol. 2015;49:11859–65.
Article
CAS
PubMed
Google Scholar
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, et al. PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 2019;650:908–21.
Tantoh DM, Wu M-C, Chuang C-C, Chen P-H, Tyan YS, Nfor ON, et al. AHRR cg05575921 methylation in relation to smoking and PM2.5 exposure among Taiwanese men and women. Clin Epigenetics. 2020;12:117.
Panni T, Aj M, Jd S, Aa B, Ac J, K W, et al. Genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the normative aging study. environ health perspect. environ health perspect; 2016 [cited 2021 Oct 21];124. Available from: http://pubmed.ncbi.nlm.nih.gov/26731791/
Dai L, Mehta A, Mordukhovich I, Just AC, Shen J, Hou L, et al. Differential DNA methylation and PM2.5 species in a 450K epigenome-wide association study. Epigenetics. 2017;12:139–48.
Lee MK, Xu C-J, Carnes MU, Nichols CE, Ward JM, BIOS consortium, et al. Genome-wide DNA methylation and long-term ambient air pollution exposure in Korean adults. Clin Epigenetics. 2019;11:37.
De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, et al. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int. 2013;59:418–24.
Article
PubMed
CAS
Google Scholar
Xia Y, Niu Y, Cai J, Lin Z, Liu C, Li H, et al. Effects of personal short-term exposure to ambient ozone on blood pressure and vascular endothelial function: a mechanistic study based on DNA methylation and metabolomics. Environ Sci Technol. 2018;52:12774–82.
Article
CAS
PubMed
Google Scholar
Fiorito G, Vlaanderen J, Polidoro S, Gulliver J, Galassi C, Ranzi A, et al. Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: a prospective study in nonsmokers. Environ Mol Mutagen. 2018;59:234–46.
Article
CAS
PubMed
Google Scholar
Jiang Y, Niu Y, Xia Y, Liu C, Lin Z, Wang W, et al. Effects of personal nitrogen dioxide exposure on airway inflammation and lung function. Environ Res. 2019;177:108620.
Article
CAS
PubMed
Google Scholar
Gruzieva O, Xu C-J, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect. 2017;125:104–10.
Article
CAS
PubMed
Google Scholar
de F C Lichtenfels AJ, van der Plaat DA, de Jong K, van Diemen CC, Postma DS, Nedeljkovic I, et al. Long-term air pollution exposure, genome-wide DNA methylation and lung function in the lifelines cohort study. Environ Health Perspect. 2018;126:027004.
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int. 2018;118:334–47.
Article
CAS
PubMed
Google Scholar
Scinicariello F, Buser MC. Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001–2006). Environ Health Perspect. 2014;122:299–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alegría-Torres JA, Barretta F, Batres-Esquivel LE, Carrizales-Yáñez L, Pérez-Maldonado IN, Baccarelli A, et al. Epigenetic markers of exposure to polycyclic aromatic hydrocarbons in Mexican brickmakers: a pilot study. Chemosphere. 2013;91:475–80.
Article
PubMed
CAS
Google Scholar
Alvarado-Cruz I, Sánchez-Guerra M, Hernández-Cadena L, De Vizcaya-Ruiz A, Mugica V, Pelallo-Martínez NA, et al. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment. Mutat Res Genet Toxicol Environ Mutagen. 2017;813:27–36.
Article
CAS
PubMed
Google Scholar
Herbstman J, D T, D Z, L Q, A S, Z L, et al. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect. Environ Health Perspect; 2012 [cited 2021 Oct 22];120. Available from: http://pubmed.ncbi.nlm.nih.gov/22256332/
Kim YH, Lee YS, Lee DH, Kim DS. Polycyclic aromatic hydrocarbons are associated with insulin receptor substrate 2 methylation in adipose tissues of Korean women. Environ Res. 2016;150:47–51.
Article
CAS
PubMed
Google Scholar
Lin S, Ren A, Wang L, Santos C, Huang Y, Jin L, et al. Aberrant methylation of Pax3 gene and neural tube defects in association with exposure to polycyclic aromatic hydrocarbons. Clin Epigenetics. 2019;11:13.
Article
PubMed
PubMed Central
Google Scholar
Li J, Zhu X, Yu K, Jiang H, Zhang Y, Wang B, et al. Exposure to polycyclic aromatic hydrocarbons and accelerated DNA methylation aging. Environ Health Perspect. 2018;126:067005.
Article
PubMed
PubMed Central
Google Scholar
Latini G, De Mitri B, Del Vecchio A, Chitano G, De Felice C, Zetterström R. Foetal growth of kidneys, liver and spleen in intrauterine growth restriction: “programming” causing “metabolic syndrome” in adult age. Acta Paediatr Oslo Nor. 1992;2004(93):1635–9.
Google Scholar
Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27:358–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xita N, Tsatsoulis A. Fetal origins of the metabolic syndrome. Ann N Y Acad Sci. 2010;1205:148–55.
Article
PubMed
Google Scholar
Saffery R, Novakovic B. Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence? Acta Obstet Gynecol Scand. 2014;93:1090–8.
Article
PubMed
Google Scholar
Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int J Epidemiol. 2018;47:22–23u.
Article
PubMed
Google Scholar
Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Küpers LK, Monnereau C, Sharp GC, Yousefi P, Salas LA, Ghantous A, et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun. 2019;10:1893.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams L, Seki Y, Delahaye F, Cheng A, Fuloria M, Hughes Einstein F, et al. DNA hypermethylation of CD3(+) T cells from cord blood of infants exposed to intrauterine growth restriction. Diabetologia. 2016;59:1714–23.
Article
CAS
PubMed
Google Scholar
Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, et al. Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract. 2013;7:e106–15.
Article
PubMed
Google Scholar
Lopes LL, Bressan J, Peluzio M do CG, Hermsdorff HHM. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J Am Coll Nutr. 2019;38:478–84.
Akinyemiju T, Do AN, Patki A, Aslibekyan S, Zhi D, Hidalgo B, et al. Epigenome-wide association study of metabolic syndrome in African-American adults. Clin Epigenetics. 2018;10:49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das M, Sha J, Hidalgo B, Aslibekyan S, Do AN, Zhi D, et al. Association of DNA methylation at CPT1A locus with metabolic syndrome in the genetics of lipid lowering drugs and diet network (GOLDN) study. PLoS ONE. 2016;11:e0145789.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes. 2014;63:801–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW, Göring HHH, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet. 2015;24:5330–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, et al. DNA methylation analysis identifies loci for blood pressure regulation. Am J Hum Genet. 2017;101:888–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Ollikainen M, Muniandy M, Zhang T, van Dongen J, Hao G, et al. Identification, heritability, and relation with gene expression of novel DNA methylation loci for blood pressure. Hypertens Dallas Tex. 1979;2020(76):195–205.
Google Scholar
Walaszczyk E, Luijten M, Spijkerman AMW, Bonder MJ, Lutgers HL, Snieder H, et al. DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels: a systematic review and replication in a case-control sample of the Lifelines study. Diabetologia. 2018;61:354–68.
Article
CAS
PubMed
Google Scholar
Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou Y-H, et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet. 2015;24:4464–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali O, Cerjak D, Kent JW, James R, Blangero J, Carless MA, et al. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics. 2016;11:699–707.
Article
PubMed
PubMed Central
Google Scholar
Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81–6.
Article
CAS
PubMed
Google Scholar
Wang X, Pan Y, Zhu H, Hao G, Huang Y, Barnes V, et al. An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin Epigenetics. 2018;10:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carson C, Lawson HA. Epigenetics of metabolic syndrome. Physiol Genomics. 2018;50:947–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes. 2017;18:167–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang M. Epigenetic mechanisms and hypertension. Hypertens Dallas Tex. 1979;2018(72):1244–54.
Google Scholar
Mostafavi N, Vlaanderen J, Portengen L, Chadeau-Hyam M, Modig L, Palli D, et al. Associations between genome-wide gene expression and ambient nitrogen oxides. Epidemiol Camb Mass. 2017;28:320–8.
Article
Google Scholar
Raftopoulos L, Katsi V, Makris T, Tousoulis D, Stefanadis C, Kallikazaros I. Epigenetics, the missing link in hypertension. Life Sci. 2015;129:22–6.
Article
CAS
PubMed
Google Scholar
Küpers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van GS, Scholtens S, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol. 2015;44:1224–37.
Article
PubMed
PubMed Central
Google Scholar
Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, et al. Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and Alu methylation and childhood blood pressure and carotid intima-media thickness in the children’s health study. Environ Health Perspect. 2016;124:1905–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei H, Liang F, Meng G, Nie Z, Zhou R, Cheng W, et al. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells. Sci Rep. 2016;6:33402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma. 2016;54:1.30.1–1.30.33.
Battram T, Yousefi P, Crawford G, Prince C, Babei MS, Sharp G, et al. The EWAS Catalog: a database of epigenome-wide association studies. OSF Preprints; 2021 [cited 2021 May 5]. Available from: https://osf.io/837wn/
Zou L, Yan S, Guan X, Pan Y, Qu X. Hypermethylation of the PRKCZ gene in type 2 diabetes mellitus. J Diabetes Res. 2013;2013: 721493.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. Cardiovasc Res. 2002;53:688–708.
Article
CAS
PubMed
Google Scholar
Hughes GS, Mathur RS, Margolius HS. Sex steroid hormones are altered in essential hypertension. J Hypertens. 1989;7:181–7.
Article
CAS
PubMed
Google Scholar
Reckelhoff JF. Androgens and blood pressure control: sex differences and mechanisms. Mayo Clin Proc Elsevier. 2019;94:536–43.
CAS
Google Scholar
Relton CL, Davey SG. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med. 2010;7:e1000356.
Article
PubMed
PubMed Central
Google Scholar
Epigenetics. Wikipedia. 2022 [cited 2022 Apr 14]. Available from: https://en.wikipedia.org/w/index.php?title=Epigenetics&oldid=1082239772
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and metabolic syndrome: a comprehensive review. Int J Mol Sci. 2021;22:5047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suhaimi NF, Jalaludin J, Abu BS. The influence of traffic-related air pollution (TRAP) in primary schools and residential proximity to traffic sources on histone H3 level in selected Malaysian children. Int J Environ Res Public Health. 2021;18:7995.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, et al. Traffic-derived particulate matter exposure and histone H3 modification: a repeated measures study. Environ Res. 2017;153:112–9.
Article
CAS
PubMed
Google Scholar
Kresovich JK, Zhang Z, Fang F, Zheng Y, Sanchez-Guerra M, Joyce BT, et al. Histone 3 modifications and blood pressure in the Beijing Truck Driver Air Pollution Study. Biomark Biochem Indic Expo Response Susceptibility Chem. 2017;22:584–93.
CAS
Google Scholar
Buitrago D, Labrador M, Arcon JP, Lema R, Flores O, Esteve-Codina A, et al. Impact of DNA methylation on 3D genome structure. Nat Commun. Nature Publishing Group; 2021;12:3243.
US EPA R 01. Actions You Can Take to Reduce Air Pollution | Ground-level Ozone | New England | US EPA. [cited 2022 Feb 5]. Available from: https://www3.epa.gov/region1/airquality/reducepollution.html
Household air pollution and health. [cited 2022 Feb 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
10 things you can do to help reduce air pollution today. Sustrans. [cited 2022 Feb 5]. Available from: https://www.sustrans.org.uk/our-blog/get-active/2020/in-your-community/10-things-you-can-do-to-help-reduce-air-pollution-today
Campagna MP, Xavier A, Lechner-Scott J, Maltby V, Scott RJ, Butzkueven H, et al. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clin Epigenetics. 2021;13:214.
Article
CAS
PubMed
PubMed Central
Google Scholar