Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120:437–47.
Article
CAS
PubMed
Google Scholar
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weismann IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.
Article
CAS
PubMed
Google Scholar
Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317:807–10.
Article
CAS
PubMed
Google Scholar
Villeda SA, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruckh JM, Zhao JW, Shadrach JL, Van Wijngaarden P, Rao TN, Wagers J, Franklin RJ. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell. 2012;10:96–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loffredo FS, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha M, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie XS, Longo FM, Wyss-Coray T. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith LK, He Y, Park JS, Bieri G, Snethlage CE, Lin K, Gontier G, Wabl R, Plambeck KE, Udeochu J, Wheatley EG, Bouchard J, Eggel A, Narasimha R, Grant JL, Luo J, Wyss-Coray T, Villeda SA. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21:932–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, Wei Q, Alman BA. Exposure to a youthful circulaton rejuvenates bone repair through modulation of β-catenin. Nat Commun. 2015;6:1–10.
Google Scholar
Baker DJ, Wijshake T, Tchkonia T, Lebrasseur NK, Childs BG, Van De Sluis B, Kirkland JL, Van Deursen JM. Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong JA, Saltness R, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, Van Deursen JM. Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature. 2016;530:184–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, et al. The achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 2015;14:644–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21–8.
Article
PubMed
PubMed Central
Google Scholar
Mahmoudi S, Xu L, Brunet A. Turning back time with emerging rejuvenation strategies. Nat Cell Biol. 2019;21:32–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr. 1935;10:63–79.
Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986;116:641–6541.
Article
CAS
PubMed
Google Scholar
Weindruch R, Naylor PH, Goldstein AL, Walford RL. Influences of aging and dietary restriction on serum thymosinαl levels in mice. J Gerontol. 1988;43:B40–2.
Article
CAS
PubMed
Google Scholar
Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299:572–4.
Article
PubMed
CAS
Google Scholar
Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182–7.
Article
CAS
PubMed
Google Scholar
Opalach K, Rangaraju S, Madorsky I, Leeuwenburgh C, Notterpek L. Life-long calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res. 2010;13:65–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson SC, Rabinovitch PS, Kaeberlein M. MTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim CH, Lee EK, Choi YJ, An HJ, Jeong HO, Park D, Kim BC, Yu BP, Bhak J, Chung HY. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell. 2016;15:1074–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraus WE, Bhapkar M, Huffman KM, Pieper CF, Krupa Das S, Redman LM, Villareal DT, Rochon J, Roberts SB, Ravussin E, Holloszy JO, Fontana L. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7:673–83.
Article
PubMed
PubMed Central
Google Scholar
Pearson KJ, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8:157–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Liu Y, Liu Y, Zheng P. MTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2:75.
CAS
Google Scholar
Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, De Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol Ser A Biol Sci Med Sci. 2011;66:191–201.
Article
CAS
Google Scholar
Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko V, Tyndyk ML, Yurova MN, Rosenfeld SV, Blagosklonny MV. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle. 2011;10:4230–6.
Article
CAS
PubMed
Google Scholar
Neff F, et al. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Investig. 2013;123:1–2.
Article
CAS
Google Scholar
Cuervo AM. Autophagy and aging: keeping that old broom working. Trends Genet. 2008;24:604–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh PP, Demmitt BA, Nath RD, Brunet A. Leading edge the genetics of aging: a vertebrate perspective. Cell. 2019;177:200–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB. Mitochondrial rejuvenation after induced pluripotency. PLoS ONE. 2010;5:e14095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Iii JY, Belmonte JCI. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472:221–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aıt-Hamou N, Leschik J, Pellestor F, Ramirez J-M, De Vos J, Lehmann S, Lemaitre J-M. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011;25:2248–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013;13:691–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.
Article
CAS
PubMed
Google Scholar
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17:183–93.
Article
CAS
PubMed
Google Scholar
Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: Evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2:198–210.
Article
PubMed
Google Scholar
Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T, Ors I, Graña O, Megías D, Domínguez O, Martínez D, Manzanares M, Ortega S, Serrano M. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:340–5.
Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, Soejima H, Moriwaki H, Yamanaka S, Woltjen K, Yamada Y. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 2014;156:663–77.
Article
CAS
PubMed
Google Scholar
Moradi S, Mahdizadeh H, Sarić T, Kim J, Harati J, Shahsavarani H, Greber B, Moore JB. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Therapy. 2019;10:1–13.
Article
Google Scholar
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84.
Horvath S, Erhart W, Brosch M, Ammerpohl O, Von Schönfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Röcken C, Schafmayer C, Hampe J. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A. 2014;111:15538–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic Clock. J Infect Dis. 2015;212:1563–73.
Article
PubMed
PubMed Central
Google Scholar
Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW. Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging. 2016;8:1485–512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marioni RE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen BH, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8:1844–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpkin AJ, Hemani G, Suderman M, Gaunt TR, Lyttleton O, Mcardle WL, Ring SM, Sharp GC, Tilling K, Horvath S, Kunze S, Peters A, Waldenberger M, Ward-Caviness C, Nohr EA, Sørensen TI, Relton CL, Smith GD. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Human Mol Genet. 2016;25:191–201.
Article
CAS
Google Scholar
Maierhofer A, Flunkert J, Oshima J, Martin GM, Haaf T, Horvath S. Accelerated epigenetic aging in Werner syndrome. Aging. 2017;9:1143–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath S, et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging. 2018;10:1758–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11:303–27.
Martin-Herranz DE, Aref-Eshghi E, Jan Bonder M, Stubbs TM, Stegle O, Sadikovic B, Reik W, Thornton JM, Bonder MJ, Stubbs TM, Choufani S, Weksberg R, Stegle O, Sadikovic B, Reik W, Thornton JM. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol. 2019;20:1–19.
Article
CAS
Google Scholar
Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenet. 2019;11:183.
Article
Google Scholar
Higgins-Chen AT, Boks MP, Vinkers CH, Kahn RS, Levine ME. Schizophrenia and epigenetic aging biomarkers: increased mortality, reduced cancer risk, and unique clozapine effects. Biol Psychiat. 2020;88:224–35.
Article
CAS
PubMed
Google Scholar
Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-Borg HM, Adams PD, Ideker T. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 2017;18:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in human muscle. Physiol Genomics. 2003;14:149–59.
Article
CAS
PubMed
Google Scholar
Rodwell GE, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L, Xiao W, Mindrinos M, Crane E, Segal E, Myers BD, Brooks JD, Davis RW, Higgins J, Owen AB, Kim SK. A transcriptional profile of aging in the human kidney. PLoS Biol. 2004;2:427.
Article
CAS
Google Scholar
Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429:883–91.
Article
CAS
PubMed
Google Scholar
De Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009;25:875–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM, Yaghootkar H, Dutta A, Murray A, Frayling TM, Guralnik JM, Bandinelli S, Singleton A, Ferrucci L, Melzer D. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10:868–78.
Article
CAS
PubMed
Google Scholar
Holly AC, Melzer D, Pilling LC, Henley W, Hernandez DG, Singleton B, Bandinelli S, Guralnik JM, Ferrucci L, Harries LW. Towards a gene expression biomarker set for human biological age. Aging Cell. 2013;12:324–6.
Article
CAS
PubMed
Google Scholar
Glass D, et al. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013;14:R75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peters MJ, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:1–14.
Article
CAS
Google Scholar
Bryois J, Buil A, Ferreira PG, Panousis NI, Brown AA, Viñuela A, Planchon A, Bielser D, Small K, Spector T, Dermitzakis ET. Time-dependent genetic effects on gene expression implicate aging processes. Genome Res. 2017;27:545–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, Fraifeld VE, De Magalhães JP. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 2018;46:D1083–90.
Article
CAS
PubMed
Google Scholar
Fleischer JG, Schulte R, Tsai HH, Tyagi S, Ibarra A, Shokhirev MN, Huang L, Hetzer MW, Navlakha S. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol. 2018;19:221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren, X. & Kuan, P. F. RNAAgeCalc: A multi-tissue transcriptional age calculator. PLOS ONE (2020).
Gill D, Parry A, Santos F, Hernando-Herraez I, Stubbs TM, Milagre I, Reik W. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. https://www.biorxiv.org/content/10.1101/2021.01.15.426786v1 (2021).
Ocampo A, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167:1719–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waddington CH. The strategy of the genes: a discussion of some aspects of theoretical biology ISBN: 9781317657552 (1957).
Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958;182:64–5.
Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10:622–40.
CAS
PubMed
Google Scholar
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable off-spring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.
Marión RM, Blasco MA. Telomere rejuvenation during nuclear reprogramming. Curr Opin Genet Dev. 2010;20:190–6.
Article
PubMed
CAS
Google Scholar
Sinclair KD, Corr SA, Gutierrez CG, Fisher PA, Lee JH, Rathbone J, Choi I, Campbell KH, Gardner DS. Healthy ageing of cloned sheep. Nat Commun. 2016;7:1–10.
Google Scholar
Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63:417–25.
Article
CAS
PubMed
Google Scholar
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.
Article
CAS
PubMed
Google Scholar
Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–8.
Article
CAS
PubMed
Google Scholar
Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ. In vivo loss of telomeric repeats with age in humans. Mutation Res DNAging. 1991;256:45–8.
Article
CAS
Google Scholar
Frenck RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA. 1998;95:5607–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A, Schnieke AE. Analysis of telomere lengths in cloned sheep [9]. Nature. 1999;399:316–7.
Article
CAS
PubMed
Google Scholar
Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ, Ogura A, Tanemura K, Tachibana M, Perry AC, Colgan DF, Mom-baerts P, Yanagimachi R. Cloning of mice to six generations. Nature. 2000;407:318–19.
Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM, Mak J, Schertzer M, Chavez EA, Sawyer N, Lansdorp PM, West MD. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science. 2000;288:665–69.
Tian XC, Xu J, Yang X. Normal telomere lengths found in cloned cattle. Nat Genet. 2000;26:272–73.
Betts DH. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci. 2001;98:1077–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark AJ, Ferrier P, Aslam S, Burl S, Denning C, Wylie D, Ross A, De Sousa P, Wilmut I, Cui W. Proliferative lifespan is conserved after nuclear transfer. Nat Cell Biol. 2003;5:535–38.
Sung LY, Chang WF, Zhang Q, Liu CC, Liou JY, Chang CC, Ou-Yang H, Guo R, Fu H, Cheng WT, Ding ST, Chen CM, Okuka M, Keefe DL, Chen YE, Liu L, Xu J. Telomere elongation and naive pluripotent stem cells achieved from telomerase haplo-insufficient cells by somatic cell nuclear transfer. Cell Rep. 2014;9:1603–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
Article
CAS
PubMed
Google Scholar
Singh PB, Zacouto F. Nuclear reprogramming and epigenetic rejuvenation. J Biosci. 2010;35:315–9.
Article
PubMed
Google Scholar
Koche RP, Smith ZD, Adli M, Gu H, Ku MM, Gnirke A, Bernstein BE, Meissner A. Reprogramming factor expression induces rapid and widespread targeted chromatin remodeling. Cell Stem Cell. 2011;8:96–105.
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:651–4.
Article
CAS
PubMed
Google Scholar
Ye J, Ge J, Zhang X, Cheng L, Zhang Z, He S, Wang Y, Lin H, Yang W, Liu J, Zhao Y, Deng H. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res. 2015;26(1):34–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med. 2020;52(2):213–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol. 2015;3:2.
Article
PubMed
PubMed Central
Google Scholar
Manukyan M, Singh PB. Epigenetic rejuvenation. Genes Cells. 2012;17:337–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115.
Dundes CE, Loh KM. Bridging naϊve and primed pluripotency. Nat Cell Biol. 2020;22:513–5.
Article
CAS
PubMed
Google Scholar
Kerepesi C, Zhang B, Lee S-G, Trapp A, Gladyshev VN. Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging. Sci Adv. 2021;7:eabg6082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4:141–54.
Article
CAS
PubMed
Google Scholar
Lee J, Bignone PA, Coles LS, Liu Y, Snyder E, Larocca D. Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells: induced pluripotent stem cells from a 114-year-old Supercentenarian. Biochem Biophys Res Commun. 2020;525:563–9.
Article
CAS
PubMed
Google Scholar
Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321:699–702.
Article
CAS
PubMed
Google Scholar
Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133:250–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M, Boué S, Belmonte JCI. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26:1276–84.
Article
CAS
PubMed
Google Scholar
Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr Biol. 2008;18:890–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet. 2009;41:968–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Lengner CJ, Kirak O, Hanna J, Cassady JP, Lodato MA, Wu S, Faddah DA, Steine EJ, Gao Q, Fu D, Dawlaty M, Jaenisch R. Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors. Stem Cells (Dayton, Ohio). 2011;29:992.
Article
CAS
Google Scholar
Yao Y, Wang C (2020) Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. npj Regener Med. 5, 1–11
Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science (New York, N Y). 2012;338:1080.
Article
CAS
Google Scholar
Schwitalla S, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.
Article
CAS
PubMed
Google Scholar
Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014;15:244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148:46–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanabe K, Nakamura M, Narita M, Takahashi K, Yamanaka S. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proc Natl Acad Sci USA. 2013;110:12172–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olova N, Simpson DJ, Marioni RE, Chandra T. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell. 2018;18:e12877.
Manukyan M, Singh PB. Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep. 2014;4:4789.
Article
PubMed
PubMed Central
Google Scholar
Singh PB, Newman AG. Age reprogramming and epigenetic rejuvenation. Epigenet Chromatin. 2018;11:73.
Article
CAS
Google Scholar
Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol. 2020;21:137–50.
Article
CAS
PubMed
Google Scholar
De Lima Camillo LP, Quinlan RB. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience. 2021;43:463–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ohnuki M, Tanabe K, Sutou K, Teramoto I, Sawamura Y, Narita M, Naka mura M, Tokunaga Y, Nakamura M, Watanabe A, Yamanaka S, Takahashi K, . Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc Natl Acad Sci U S A. 2014;111:12426–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh PB, Laktionov PP, Newman AG. Deconstructing age reprogramming. J Biosci. 44 (2019).
Sarkar TJ, Quarta M, Mukherjee S, Colville A, Paine P, Doan L, Tran CM, Chu CR, Horvath S, Qi LS, Bhutani N, Rando TA, Sebastiano V. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun. 2020;11:1–12.
Article
CAS
Google Scholar
Boroni M, Zonari A, Reis De Oliveira C, Alkatib K, Ochoa Cruz EA, Brace LE, Lott De Carvalho J. Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clin Epigenet. 2020;12.
Lu Y, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588:124–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofmann JW, et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015;160:477–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alle Q, Le Borgne E, Bensadoun P, Lemey C, Béchir, N, Gabanou M, Estermann F, Bertrand-Gaday C, Pessemesse L, Toupet K, Vialaret J, Hirtz C Noël D, Jorgensen C, Casas F, Milhavet O, Lemaitre J-M. A single short reprogramming early in life improves fitness and increases lifespan in old age. bioRxiv, 2021.05.13.443979 (2021).
Roux A, Zhang C, Paw J, Zavala-Solorio J, Vijay T, Kolumam G, Kenyon C, Kimmel JC. Partial reprogramming restores youthful gene expression through transient suppression of cell identity. bioRxiv, 2021.05.21.444556 (2021).
Mahmoudi S, Brunet A. Aging and reprogramming: a two-way street. Curr Opin Cell Biol. 2012;24:744–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu K. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev. 2014;23:1285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klawitter S, et al. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun. 2016;7(1):1–14.
Article
CAS
Google Scholar
Kirschner K, Chandra T, Kiselev V, Flores-Santa Cruz D, Macaulay IC, Park HJ, Li J, Kent DG, Kumar R, Pask DC, Hamilton TL, Hemberg M, Reik W, Green AR. Proliferation drives aging-related functional decline in a subpopulation of the hematopoietic stem cell compartment. Cell Rep. 2017;19:1503–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol. 2018;19:594–610.
Article
CAS
PubMed
Google Scholar
Kurosawa S, Iwama A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm Regener. 2020;40:1–10.
Article
CAS
Google Scholar