Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10 Suppl 1:S2.
Article
PubMed
PubMed Central
Google Scholar
Barker DJ, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG. The early origins of chronic heart failure: Impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail. 2010;12(8):819–25.
Article
PubMed
Google Scholar
Koupil I, Leon DA, Lithell HO. Length of gestation is associated with mortality from cerebrovascular disease. J Epidemiol Community Health. 2005;59(6):473–4.
Article
PubMed
PubMed Central
Google Scholar
O’Connor AR, Wilson CM, Fielder AR. Opthalmological problems associated with preterm birth. Eye (Lond). 2007;21(10):1254–60.
Article
Google Scholar
O’Reilly M, Sozo F, Harding R. Impact of preterm birth and bronchopulmonary dysplasia on the developing lung: long-term consequences for respiratory health. Clin Exp Pharmacol Physiol. 2013;40(11):765–73.
Article
PubMed
Google Scholar
Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–9.
Article
PubMed
Google Scholar
Lavoie PM, Lavoie JC, Watson C, Rouleau T, Chang BA, Chessex P. Inflammatory response in preterm infants is induced early in life by oxygen and modulated by total parenteral nutrition. Pediatr Res. 2010;68(3):248–51.
Article
CAS
PubMed
Google Scholar
Strunk T, Currie A, Richmond P, Simmer K, Burgner D. Innate immunity in human newborn infants: prematurity means more than immaturity. J Matern Fetal Neonatal Med. 2011;24(1):25–31.
Article
PubMed
Google Scholar
Takala TI, Makela E, Suominen P, Matomaki J, Lapinleimu H, Lehtonen L, et al. Blood cell and iron status analytes of preterm and full-term infants from 20 weeks onwards during the first year of life. Clin Chem Lab Med. 2010;48(9):1295–301.
Article
CAS
PubMed
Google Scholar
Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol. 2014;35(7):299–310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kan B, Razzaghian HR, Lavoie PM. An immunological perspective on neonatal sepsis. Trends Mol Med. 2016;22(4):290–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma AA, Jen R, Butler A, Lavoie PM. The developing human preterm neonatal immune system: a case for more research in this area. Clin Immunol. 2012;145(1):61–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cedar H, Bergman Y. Epigenetics of haematopoietic cell development. Nat Rev Immunol. 2011;11(7):478–88.
Article
CAS
PubMed
Google Scholar
Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467(7313):338–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruickshank MN, Oshlack A, Theda C, Davis PG, Martino D, Sheehan P, et al. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med. 2013;5(10):96.
Article
PubMed
PubMed Central
Google Scholar
Fernando F, Keijser R, Henneman P, van der Kevie-Kersemaekers AMF, Mannens MM, van der Post JAM, et al. The idiopathic preterm delivery methylation profile in umbilical cord blood DNA. BMC Genomics. 2015;16:736.
Article
PubMed
PubMed Central
Google Scholar
Parets SE, Conneely KN, Kilaru V, Fortunato SJ, Syed TA, Saade G, et al. Fetal DNA methylation associates with early spontaneous preterm birth and gestational age. PLoS One. 2013;8(6), e67489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A. 2012;109 Suppl 2:17253–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7), e41361.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Goede OM, Razzaghian HR, Price EM, Jones MJ, Kobor MS, Robinson WP, et al. Nucleated red blood cells impact DNA methylation and expression analyses of cord blood hematopoietic cells. Clin Epigenetics. 2015;7(1):95.
Article
PubMed
PubMed Central
Google Scholar
Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547–8.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: the R Foundation for Statistical Computing; 2014.
Google Scholar
Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44. -2012-13-6-r44.
Article
PubMed
PubMed Central
Google Scholar
Knight AK, Craig JM, Theda C, Bækvad-Hansen M, Bybjerg-Grauholm J, Hansen CS, et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016;17:206.
Article
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Google Scholar
Gillis J, Mistry M, Pavlidis P. Gene function analysis in complex data sets using ErmineJ. Nat Protoc. 2010;5(6):1148–59.
Article
CAS
PubMed
Google Scholar
Lessard S, Beaudoin M, Benkirane K, Lettre G. Comparison of DNA methylation profiles in human fetal and adult red blood cell progenitors. Genome Med. 2015;7(1):1. -014-0122-2 . eCollection 2015.
Article
PubMed
PubMed Central
Google Scholar
Shearstone JR, Pop R, Bock C, Boyle P, Meissner A, Socolovsky M. Global DNA demethylation during mouse erythropoiesis in vivo. Science. 2011;334(6057):799–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Y, Mo Y, Ebenezer D, Bhattacharyya S, Liu H, Sundaravel S, et al. High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem. 2013;288(13):8805–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2015;15(1):7–17.
Article
CAS
PubMed
Google Scholar
de Goede OM, Lavoie PM, Robinson WR. Characterizing the hypomethylated DNA methylation profile of nucleated red blood cells from cord blood. Epigenomics. 2016;8(11):1481–94.
Article
PubMed
Google Scholar
Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, McKenney S L, et al. DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics. 2016;11(5):354–62.
Article
PubMed
PubMed Central
Google Scholar
Schroeder JW, Conneely KN, Cubells JC, Kilaru V, Newport DJ, Knight BT, et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics. 2011;6(12):1498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.
Article
PubMed
PubMed Central
Google Scholar
Holt PG, Jones CA. The development of the immune system during pregnancy and early life. Allergy. 2000;55(8):688–97.
Article
CAS
PubMed
Google Scholar
Sharma AA, Jen R, Kan B, Sharma A, Marchant E, Tang A, et al. Impaired NLRP3 inflammasome activity during fetal development regulates IL-1beta production in human monocytes. Eur J Immunol. 2015;45(1):238–49.
Article
CAS
PubMed
Google Scholar
Weatherstone KB, Rich EA. Tumor necrosis factor/cachectin and interleukin-1 secretion by cord blood monocytes from premature and term neonates. Pediatr Res. 1989;25(4):342–6.
Article
CAS
PubMed
Google Scholar
Strunk T, Prosser A, Levy O, Philbin V, Simmer K, Doherty D, et al. Responsiveness of human monocytes to the commensal bacterium Staphylococcus epidermidis develops late in gestation. Pediatr Res. 2012;72(1):10–8.
Article
CAS
PubMed
Google Scholar
Lavoie PM, Huang Q, Jolette E, Whalen M, Nuyt AM, Audibert F, et al. Profound lack of interleukin (IL)-12/IL-23p40 in neonates born early in gestation is associated with an increased risk of sepsis. J Infect Dis. 2010;202(11):1754–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Currie AJ, Curtis S, Strunk T, Riley K, Liyanage K, Prescott S, et al. Preterm infants have deficient monocyte and lymphocyte cytokine responses to group B streptococcus. Infect Immun. 2011;79(4):1588–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melville JM, Moss TJ. The immune consequences of preterm birth. Front Neurosci. 2013;7:79.
Article
PubMed
PubMed Central
Google Scholar
Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, et al. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12.
Article
PubMed
PubMed Central
Google Scholar
Hirota Y, Cha J, Dey SK. Prematurity and the puzzle of progesterone resistance. Nat Med. 2010;16(5):529–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Sooranna SR, Terzidou V, Christian M, Brosens J, Huhtinen K, et al. Interactions between inflammatory signals and the progesterone receptor in regulating gene expression in pregnant human uterine myocytes. J Cell Mol Med. 2012;16(10):2487–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zangiacomi V, Balon N, Maddens S, Tiberghien P, Versaux-Botteri C, Deschaseaux F. Human cord blood-derived hematopoietic and neural-like stem/progenitor cells are attracted by the neurotransmitter GABA. Stem Cells Dev. 2009;18(9):1369–78.
Article
CAS
PubMed
Google Scholar
Tortorella C, Stella I, Piazzolla G, Simone O, Cappiello V, Antonaci S. Role of defective ERK phosphorylation in the impaired GM-CSF-induced oxidative response of neutrophils in elderly humans. Mech Ageing Dev. 2004;125(8):539–46.
Article
CAS
PubMed
Google Scholar
Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–7.
Article
CAS
PubMed
Google Scholar
Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peden DB, VanDyke K, Ardekani A, Mullett MD, Myerberg DZ, VanDyke C. Diminished chemiluminescent responses of polymorphonuclear leukocytes in severely and moderately preterm neonates. J Pediatr. 1987;111(6 Pt 1):904–6.
Article
CAS
PubMed
Google Scholar
Yuen RK, Avila L, Penaherrera MS, von Dadelszen P, Lefebvre L, Kobor MS, et al. Human placental-specific epipolymorphism and its association with adverse pregnancy outcomes. PLoS One. 2009;4(10), e7389.
Article
PubMed
PubMed Central
Google Scholar
Spiegler J, Hartel C, Schulz L, von Wurmb-Schwark N, Hoehn T, Kribs A, et al. Causes of delivery and outcomes of very preterm twins stratified by zygosity. Twin Res Hum Genet. 2012;15(4):532–6.
Article
PubMed
Google Scholar
Aquilano G, Capretti MG, Nanni F, Corvaglia L, Aceti A, Gabrielli L, et al. Altered intracellular ATP production by activated CD4+ T-cells in very preterm infants. J Immunol Res. 2016;2016:8374328.
Article
PubMed
PubMed Central
Google Scholar
Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 2012;22(8):1395–406.
Article
CAS
PubMed
PubMed Central
Google Scholar