Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–17.
Article
PubMed
Google Scholar
Ting AH, McGarvey KM, Baylin SB. The cancer epigenome-components and functional correlates. Genes Dev. 2006;20:3215–31.
Article
CAS
PubMed
Google Scholar
Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer. 2011;11:726–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marmorstein R. Structure of histone acetyltransferases. J Mol Biol. 2001;311:433–44.
Article
CAS
PubMed
Google Scholar
Talbert PB, Henikoff S. Histone variants-ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11:264–75.
Article
CAS
PubMed
Google Scholar
Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12:7–18.
Article
PubMed
Google Scholar
Kevin S. Histone acetylation and transcriptional regulatory mechnisms. Genes Dev. 1998;12:599–606.
Article
Google Scholar
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40.
Article
CAS
PubMed
Google Scholar
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signaling. Nat Rev Mol Cell Biol. 2014;15:536–50.
Article
CAS
PubMed
Google Scholar
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peng L, Seto E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol. 2011;206:39–56.
Article
CAS
PubMed
Google Scholar
Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.
Article
CAS
PubMed
Google Scholar
Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40:897–903.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406:593–9.
Article
CAS
PubMed
Google Scholar
Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vidali G, Gershey EL, Allfrey VG. Chemical studies of histone acetylation. The distribution of ϵ-N-acetyllysine in calf thymus histones. J Biol Chem. 1968;243:6361–6.
CAS
PubMed
Google Scholar
Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct mol Biol. 2013;20:259–66.
Article
CAS
PubMed
Google Scholar
Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009;41:185–98.
Article
CAS
PubMed
Google Scholar
Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000;103:263–71.
Article
CAS
PubMed
Google Scholar
Winston F, Allis CD. The bromodomain: a chromatin-targeting module? Nat Struct Biol. 1999;6:601–4.
Article
CAS
PubMed
Google Scholar
Chi P, Allis CD, Wang GG. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10:457–69.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barratt MJ, Hazzalin CA, Cano E, Mahadevan LC. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. P Natl Acad Sci USA. 1994;91:4781–5.
Article
CAS
Google Scholar
Panagis F, Stefan K. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov. 2014;13:337–56.
Article
Google Scholar
Kraszewska MD, Dawidowska M, Larmonie NS, Kosmalska M, Sedek L, Szczepaniak M, et al. DNA methylation pattern is altered in childhood T cell acute lymphoblastic leukemia patients as compared with normal thymic subsets: insights into CpG island methylator phenotype in T-ALL. Leukemia. 2012;26:367–71.
Article
CAS
PubMed
Google Scholar
Di Croce L. Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet. 2005;14:R77–84.
Article
PubMed
Google Scholar
Pigazzi M, Manara E, Baron E, Basso G. ICER expression inhibits leukemia phenotype and controls tumor progression. Leukemia. 2008;22:2217–25.
Article
CAS
PubMed
Google Scholar
Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120:1165–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Inthal A, Zeitlhofer P, Zeginigg M, Morak M, Grausenburger R, Fronkova E, et al. CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012;26:1797–803.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–39.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kung AL, Rebel VI, Bronson RT, Ch'ng LE, Sieff CA, Livingston DM, et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 2000;14:272–7.
PubMed Central
CAS
PubMed
Google Scholar
Shigeno K, Yoshida H, Pan L, Luo JM, Fujisawa S, Naito K, et al. Disease-related potential of mutations in transcriptional cofactors CREB-binding protein and p300 in leukemias. Cancer Lett. 2004;213:11–20.
Article
CAS
PubMed
Google Scholar
Holmlund T, Lindberg MJ, Grander D, Wallberg AE. GCN5 acetylates and regulates the stability of the oncoprotein E2A-PBX1 in acute lymphoblastic leukemia. Leukemia. 2012;27:578–85.
Article
PubMed
Google Scholar
Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med. 2012;18:298–301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Caravatta L, Sancilio S, di Giacomo V, Rana R, Cataldi A, Di Pietro R. PI3-K/Akt-dependent activation of cAMP-response element-binding (CREB) protein in Jurkat T leukemia cells treated with TRAIL. J Cell Physiol. 2008;214:192–200.
Article
CAS
PubMed
Google Scholar
Moreno DA, Scrideli CA, Cortez MA, de Paula QR, Valera ET, da Silva SV, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150:665–73.
Article
CAS
PubMed
Google Scholar
Tao YF, Pang L, Du XJ, Sun LC, Hu SY, Lu J, et al. Differential mRNA expression levels of human histone-modifying enzymes in normal karyotype B cell pediatric acute lymphoblastic leukemia. Int J Mol Sci. 2013;14:3376–94.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sonnemann J, Gruhn B, Wittig S, Becker S, Beck JF. Increased activity of histone deacetylases in childhood acute lymphoblastic leukaemia and acute myeloid leukaemia: support for histone deacetylase inhibitors as antileukaemic agents. Br J Haematol. 2012;158:664–6.
Article
CAS
PubMed
Google Scholar
Advani AS, Gibson SE, Douglas E, Jin T, Zhao X, Kalaycio M, et al. Histone H4 acetylation by immunohistochemistry and prognosis in newly diagnosed adult acute lymphoblastic leukemia (ALL) patients. BMC Cancer. 2010;10:387.
Article
PubMed Central
PubMed
Google Scholar
Advani AS, Gibson S, Douglas E, Diacovo J, Elson P, Kalaycio M, et al. Histone H4 acetylation by immunohistochemistry and prognosis in relapsed acute lymphocytic leukaemia (ALL). Br J Haematol. 2011;153:504–7.
Article
CAS
PubMed
Google Scholar
Gruhn B, Naumann T, Gruner D, Walther M, Wittig S, Becker S, et al. The expression of histone deacetylase 4 is associated with prednisone poor-response in childhood acute lymphoblastic leukemia. Leuk Res. 2013;37:1200–7.
Article
CAS
PubMed
Google Scholar
Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005;19:1751–9.
Article
CAS
PubMed
Google Scholar
Vernarecci S, Tosi F, Filetici P. Tuning acetylated chromatin with HAT inhibitors: a novel tool for therapy. Epigenetics. 2010;5:105–11.
Article
CAS
PubMed
Google Scholar
Fulda S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr Cancer Drug Targets. 2008;8:132–40.
Article
CAS
PubMed
Google Scholar
Hrebackova J, Hrabeta J, Eckschlager T. Valproic acid in the complex therapy of malignant tumors. Curr Drug Targets. 2010;11:361–79.
Article
CAS
PubMed
Google Scholar
Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 2013;9:1509–26.
Article
CAS
PubMed
Google Scholar
Juengel E, Nowaz S, Makarevi J, Natsheh I, Werner I, Nelson K, et al. HDAC-inhibition counteracts everolimus resistance in renal cell carcinoma in vitro by diminishing cdk2 and cyclin A. Mol Cancer. 2014;13:152.
Article
PubMed Central
PubMed
Google Scholar
Chodurek E, Kulczycka A, Orchel A, Aleksander-Konert E, Dzierzewicz Z. Effect of valproic acid on the proliferation and apoptosis of the human melanoma G-361 cell line. Acta Pol Pharm. 2014;71:917–21.
PubMed
Google Scholar
Banerji U, van Doorn L, Papadatos-Pastos D, Kristeleit R, Debnam P, Tall M, et al. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin Cancer Res. 2012;18:2687–94.
Article
CAS
PubMed
Google Scholar
Dong M, Ning ZQ, Xing PY, Xu JL, Cao HX, Dou GF, et al. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother Pharmacol. 2012;69:1413–22.
Article
CAS
PubMed
Google Scholar
Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog. 2015;20:35–47.
Article
PubMed
Google Scholar
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5:981–9.
Article
CAS
PubMed
Google Scholar
Islam AB, Richter WF, Jacobs LA, Lopez-Bigas N, Benevolenskaya EV. Co-regulation of histone-modifying enzymes in cancer. PLoS One. 2011;6:e24023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim HJ, Bae SC. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3:166–79.
PubMed Central
CAS
PubMed
Google Scholar
Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Campas-Moya C. Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc). 2009;45:787–95.
Article
Google Scholar
Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer. 2002;62:4916–21.
CAS
Google Scholar
Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.
Article
CAS
PubMed
Google Scholar
Dell'Aversana C, Lepore I, Altucci L. HDAC modulation and cell death in the clinic. Exp Cell Res. 2012;318:1229–44.
Article
PubMed
Google Scholar
Richon VM, Garcia-Vargas J, Hardwick JS. Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett. 2009;280:201–10.
Article
CAS
PubMed
Google Scholar
Butler LM, Agus DB, Agus DB. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 2000;60:5165–70.
CAS
PubMed
Google Scholar
Duvic M, Vu J. Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. Expert Opin Investig Drugs. 2007;16:1111–20.
Article
CAS
PubMed
Google Scholar
Batty N, Malouf GG, Issa JPJ. Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett. 2009;280:192–200.
Article
CAS
PubMed
Google Scholar
Vrana JA, Decker RH, Decker RH. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-x(L), c-Jun, and p21(CIP1), but independent of p53. Oncogene. 1999;18:7016–25.
Article
CAS
PubMed
Google Scholar
Einsiedel HG, Kawan L, Eckert C, Witt O, Fichtner I, Henze G, et al. Histone deacetylase inhibitors have antitumor activity in two NOD/SCID mouse models of B-cell precursor childhood acute lymphoblastic leukemia. Leukemia. 2006;20:1435–6.
Article
CAS
PubMed
Google Scholar
Leclerc GJ, Mou C, Leclerc GM, Mian AM, Barredo JC. Histone deacetylase inhibitors induce FPGS mRNA expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: implications for combination therapy. Leukemia. 2010;24:552–62.
Article
CAS
PubMed
Google Scholar
Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood. 2010;116:3013–22.
Article
CAS
PubMed
Google Scholar
Burke MJ. Decitabine, vorinostat, and combination chemotherapy in treating patients with acute lymphoblastic leukemia or lymphoblastic lymphoma that has relapsed or not responded to treatment. http://clinicaltrials.gov/ct2/show/NCT00882206. Access date: Dec 1, 2014.
Burke MJ. A pilot study of decitabine and vorinostat with chemotherapy for relapsed ALL. https://clinicaltrials.gov/ct2/show/NCT01483690. Access date: Dec 1, 2014.
Vilas-Zornoza A, Agirre X, Abizanda G, Moreno C, Segura V, De Martino RA, et al. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia. 2012;26:1517–26.
Article
CAS
PubMed
Google Scholar
Kircher B, Shcumacher P, Petzer A, Hoflehner E, Haun M, Wolf AM, et al. Anti-leukemic activity of valproic acid and imatinib mesylate on human Ph + ALL and CML cells in vitro. Eur J Haematol. 2009;83:48–56.
Article
CAS
PubMed
Google Scholar
Tsapis M, Lieb M, Manzo F, Shankaranarayanan P, Herbrecht R, Lutz P, et al. HDAC inhibitors induce apoptosis in glucocorticoid-resistant acute lymphatic leukemia cells despite a switch from the extrinsic to the intrinsic death pathway. Int J Biochem Cell Biol. 2007;39:1500–9.
Article
CAS
PubMed
Google Scholar
Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, et al. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph-acute lymphoblastic leukemia cells. Blood. 2008;111:5093–100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bastian L, Hof J, Pfau M, Fichtner I, Eckert C, Henze G, et al. Synergistic activity of bortezomib and HDACi in preclinical models of B-cell precursor acute lymphoblastic leukemia via modulation of p53, PI3K/AKT, and NF-kappaB. Clin Cancer Res. 2013;19:1445–57.
Article
CAS
PubMed
Google Scholar
Nguyen T, Dai Y, Attkisson E, Kramer L, Jordan N, Nguyen N, et al. HDAC inhibitors potentiate the activity of the BCR/ ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer. 2011;17:3219–32.
Article
CAS
Google Scholar
Okabe S, Tauchi T, Ohyashiki K. Efficacy of MK-0457 and in combination with vorinostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells. Ann Hematol. 2010;89:1081–7.
Article
CAS
PubMed
Google Scholar
Keshelava N, Houghton PJ, Morton CL, Lock RB, Carol H, Keir ST, et al. Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2009;53:505–8.
Article
PubMed Central
PubMed
Google Scholar
Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res. 2006;12:4628–35.
Article
CAS
PubMed
Google Scholar
Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111:1060–6.
Article
CAS
PubMed
Google Scholar
Lee-Sherick AB, Linger RM, Gore L, Keating AK, Graham DK. Targeting paediatric acute lymphoblastic leukaemia: novel therapies currently in development. Br J Haematol. 2010;151:295–311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee L, Fielding AK. Emerging pharmacotherapies for adult patients with acute lymphoblastic leukemia. Clin Med Insights Oncol. 2012;6:85–100.
PubMed Central
CAS
PubMed
Google Scholar
Romanski A, Bacic B, Bug G, Pfeifer H, Gul H, Remiszewski S, et al. Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica. 2004;89:419–26.
CAS
PubMed
Google Scholar
Gore SD, Weng LJ, Zhai S, Figg WD, Donehower RC, Dover GJ, et al. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res. 2001;7:2330–9.
CAS
PubMed
Google Scholar
Batova A, Shao LE, Diccianni MB, Yu AL, Tanaka T, Rephaeli A, et al. The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood. 2002;100:3319–24.
Article
CAS
PubMed
Google Scholar
Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010:479364.
Article
PubMed Central
PubMed
Google Scholar
Miao M, Du B, Hu R, Yang Y, Yang W, Liao AJ, et al. Effect of valproic acid sodium on proliferation and apoptosis of acute T-lymphoblastic leukemia Jurkat cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21:343–6.
CAS
PubMed
Google Scholar
Sanchez-Gonzalez B, Yang H, Bueso-Ramos C, Hoshino K, Quintas-Cardama A, Richon VM, et al. Antileukemia activity of the combination of an anthracycline with a histone deacetylase inhibitor. Blood. 2006;108:1174–82.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res. 2005;29:739–48.
Article
CAS
PubMed
Google Scholar
Masetti R, Serravalle S, Biagi C, Pession A. The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol. 2011;2011:148046.
Article
PubMed Central
PubMed
Google Scholar
Soriano AO, Yang H, Yang H. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2007;110:2302–8.
Article
CAS
PubMed
Google Scholar
Chateauvieux S, Eifes S, Morceau F, Grigorakaki C, Schnekenburger M, Henry E, et al. Valproic acid perturbs hematopoietic homeostasis by inhibition of erythroid differentiation and activation of the myelo-monocytic pathway. Biochem Pharmacol. 2011;81:498–509.
Article
CAS
PubMed
Google Scholar
Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev Cancer. 2006;6:38–51.
Article
CAS
Google Scholar
Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63:3637–45.
CAS
PubMed
Google Scholar
Gao S, Mobley A, Miller C, Boklan J, Chandra J. Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk Res. 2008;32:771–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maggio SC, Rosato RR, Rosato RR. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res. 2004;64:2590–600.
Article
CAS
PubMed
Google Scholar
Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological disease and immune disorders. Nat Rev Drug Discov. 2014;13:673–91.
Article
CAS
PubMed
Google Scholar
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B, et al. Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev. 2015;263:50–67.
Article
CAS
PubMed
Google Scholar
Campbell RM, Tummino PJ. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest. 2014;124:64–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. BBA-Gene Regul Mech. 1839;2014:1362–72.
Google Scholar
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genetics. 2009;10:295–304.
Article
CAS
PubMed
Google Scholar
Hatzimichael E, Crook T. Cancer epigenetics: new therapies and new challenges. J Drug Deliv. 2013;2013:529312.
Article
PubMed Central
PubMed
Google Scholar