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Maternal epigenetic clocks measured 
during pregnancy do not predict gestational 
age at delivery or offspring birth outcomes: 
a replication study in metropolitan Cebu, 
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Abstract 

Adverse birth outcomes, such as early gestational age and low birth weight, can have lasting effects on morbidity 
and mortality, with impacts that persist into adulthood. Identifying the maternal factors that contribute to adverse 
birth outcomes in the next generation is thus a priority. Epigenetic clocks, which have emerged as powerful tools 
for quantifying biological aging and various dimensions of physiological dysregulation, hold promise for clarifying 
relationships between maternal biology and infant health, including the maternal factors or states that predict birth 
outcomes. Nevertheless, studies exploring the relationship between maternal epigenetic age and birth outcomes 
remain few. Here, we attempt to replicate a series of analyses previously reported in a US-based sample, using a larger 
similarly aged sample (n = 296) of participants of a long-running study in the Philippines. New pregnancies were iden-
tified prospectively, dried blood spot samples were collected during the third trimester, and information was obtained 
on gestational age at delivery and offspring weight after birth. Genome-wide DNA methylation was assessed with 
the Infinium EPIC array. Using a suite of 15 epigenetic clocks, we only found one significant relationship: advanced 
age on the epigenetic clock trained on leptin predicted a significantly earlier gestational age at delivery (β = − 0.15, 
p = 0.009). Of the other 29 relationships tested predicting gestational age and offspring birth weight, none were sta-
tistically significant. In this sample of Filipino women, epigenetic clocks capturing multiple dimensions of biology and 
health do not predict birth outcomes in offspring.
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Introduction
Birth outcomes like birth weight, length, and gesta-
tional age predict both short- and long-term health. For 
example, early gestational age at birth predicts the two 
largest causes of death in premature infants: underde-
velopment of mature organs and bronchopulmonary 
dysplasia, a chronic lung disease that damages alveo-
lar tissue [1, 2]. In addition, the field of the Develop-
mental Origins of Health and Disease (DOHaD) has 
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established that being born early and small for gesta-
tional age also predicts elevated long-term risk for 
developing respiratory conditions like idiopathic lung 
disease and chronic metabolic diseases like hyperten-
sion, diabetes, and other cardiovascular diseases [2–6]. 
Experimental work with animal models shows that 
restricting prenatal nutrition, or imposing acute stress 
during pregnancy, replicates many of these long-term 
outcomes in offspring, showing that gestational condi-
tions can have lasting effects on health in the next gen-
eration [7, 8].

While nutrition has received broadest attention for 
its role in fetal growth, there is growing evidence that 
the mother’s physiology and metabolism, including sys-
tems like stress physiology and inflammation, can impact 
fetal growth and development operating through effects 
on gestational conditions like nutrient delivery, oxida-
tive stress, or exposure to metabolic or other hormones 
[9]. As a result, disturbances in the normal levels and 
amounts of exposure of these biological effectors can 
result in altered function and long-term disease risk [10]. 
As a common example, dysregulation of the hypotha-
lamic–pituitary (HPA) axis during pregnancy is associ-
ated with increased levels of maternal cortisol, which 
elevates risks for premature delivery and low birth 
weight and can cross the placenta to have direct “pro-
gramming” effects on fetal metabolism and physiology 
[11, 12]. Hypertension has been shown to lead to lower 
birth weights, likely operating through factors like altered 
blood flow, along with the common co-occurrence of ele-
vated inflammatory cytokines that can suppress growth 
[13, 14]. Conversely, dysregulated glucose homeostasis, 
as reflected in uncontrolled diabetes during pregnancy, 
increases delivery of glucose across the placenta, and can 
lead to larger than expected newborns with elevated risk 
of developing obesity and diabetes in as adults [15, 16].

A set of tools called epigenetic clocks have recently 
been shown to reflect various domains of physiology 
and metabolism, and thus could be useful for gauging 
the intergenerational impacts of chronic maternal physi-
ological and metabolic dysregulation [17, 18]. Epige-
netic clocks are calculated using predictable age-related 
changes in the epigenome—particularly methylation 
of cytosine-phosphate-guanine (CpG) sites on DNA or 
DNA methylation (DNAm). Although commonly used 
epigenetic clocks are notable for their ability to predict 
one’s chronological age [19, 20], individuals who appear 
epigenetically older than their chronological age, known 
as epigenetic age acceleration, tend to have increased 
risk for future morbidity and shorter life expectancies. 
Other clocks have been trained to predict suites of clini-
cal markers and are particularly powerful predictors of 
life expectancy and the pace of biological aging [21–23].

Since epigenetic clocks can be trained on effectively 
any set of metabolic/physiological processes or states, 
they are powerful tools for characterizing these states 
[18]. For the purposes of clarifying the intergenerational 
determinants of birth outcomes, they provide integra-
tive, summary information on a mother’s metabolic and 
physiological state and thus allow an assessment of the 
impact of these maternal experiences on the next gen-
eration. Despite this promise, to date few studies have 
investigated the relevance of epigenetic clocks, captur-
ing different domains of maternal biology and health, as 
predictors of offspring birth outcomes. One study, con-
ducted among women in California (n = 77), evaluated 
15 epigenetic clocks as predictors of gestational age at 
birth and birth weight, and found mixed evidence that 
advanced maternal epigenetic age predicted early ges-
tational age at birth and low birthweight in offspring, 
suggesting to the authors that epigenetic age may be pre-
dictive of adverse fetal outcomes [24].

In the present paper, we seek to replicate this analy-
sis by examining relationships between the same suite 
of 15 epigenetic clocks, measured in DNA obtained 
from blood during pregnancy, and prospectively meas-
ured birth outcomes in the offspring of those pregnan-
cies. Data come from the Cebu Longitudinal Health and 
Nutrition Survey (CLHNS), a cohort study that has fol-
lowed a large, diverse sample of women and their off-
spring in metropolitan Cebu City, Philippines for nearly 
four decades [25]. The present analyses focus on preg-
nancies of 296 expecting female young adults and their 
newborns born between 2009 and 2014. The 15 pub-
lished epigenetic clocks that we focus on provide com-
plementary information on multiple dimensions of the 
mother’s chronic biological dysregulation, and replicate 
those previously investigated [24]. Clocks included two 
first-generation epigenetic clocks trained on chronologi-
cal age [19, 20], two second-generation clocks trained 
on clinical biomarkers and mortality risk [22, 23] and 11 
clocks trained on clinical biomarkers that are themselves 
linked with morbidity and mortality [23, 26]. We hypoth-
esized that advanced maternal epigenetic age accelera-
tion based upon these indices would predict adverse fetal 
outcomes, as reflected in decreased gestational age and 
measured weight at birth.

Methods
Study sample and design
Data come from the Cebu Longitudinal Health and 
Nutrition Survey (CLHNS), a longitudinal survey of 
3,080 infants and their mothers who were recruited dur-
ing their pregnancies between 1983 and 1984 in Metro-
politan Cebu, Philippines [25]. Out of the 1447 original 
female cohort infants, 823 were interviewed in a later 
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2009 survey (at ages 25–26). This additional survey 
tracked new pregnancies among these women between 
2009 and 14. There were 383 who reported pregnancies 
(28% with 2–3 pregnancies) within the tracking period, 
yielding 507 pregnancies. Women were visited in-home 
during pregnancy for anthropometric and question-
naire assessments, along with collection of a dried blood 
spot (DBS)—capillary whole blood collected on filter 
paper—for DNAm measurement. A second visit was 
arranged soon after delivery to obtain additional infor-
mation from the mothers and to measure anthropometry 
in their newborns. Body weight was measured in-home 
by trained interviewers using standardized procedures 
[27] as soon after birth as possible, with a mean age of 
4 days after data cleaning (described below). All research 
was conducted under conditions of written informed 
consent, and with approval of the Institutional Review 
Boards of Northwestern University (Evanston, Illinois), 
and the Office of Population Studies Foundation (Cebu, 
Philippines).

Variable construction
A composite score of socioeconomic status was meas-
ured as a combination of income, education, and assets. 
Participants reported their annual income from all 
sources, including in-kind services, and the sale of live-
stock or other products by household members dur-
ing the prior year, which were summed to determine 
total household income. Incomes were log-transformed. 
Maternal education (in years) was also reported. Partici-
pants also reported on ten assets (coded 0, 1) that were 
selected to capture population-relevant aspects of social 
class, including electricity, refrigerators, air conditioners, 
color televisions, cable TV, tape recorders, electric fans, 
jeepneys, cars, trucks, and owning their residence. In 
addition, house construction type (i.e., light, mixed, per-
manent structure) was coded as 1, 2, or 3, respectively. 
Thus, asset scores ranged from 0 to 13. A principal com-
ponents analysis was run on log income and assets, along 
with maternal education, at sample collection. The first 
dimension explained 70% of the variation in our compos-
ite SES-score, and individual scores for the top compo-
nent of variation were used as our measure of SES.

Because women were enrolled in the birth outcome 
sub-study after they were pregnant, we used height and 
weight measurements collected during prior surveys to 
estimate pre-pregnancy BMI. We used 2009 BMI when 
available, and then used 2007 and 2005 data as necessary. 
Under the assumption that women will tend to maintain 
a stable position within the population BMI distribution 
even as the population mean increases with age, we con-
verted all BMIs to age-specific within-sample Z-scores 
before pooling into a single pre-pregnancy BMI variable. 

Supporting the validity of this approach, the correlation 
between Z-scores for BMI measured in 2005 and 2009 
was very high (r = 0.84). Offspring gestation age was cal-
culated using the time between the last reported men-
strual period and infant birth date. Days pregnant at 
maternal blood sampling was determined by subtracting 
the time between the blood sample and infant birth date 
from gestation age. Descriptive statistics of anthropo-
metric measurements and other covariates are provided 
in Table 1.

Sample inclusion criteria
DNAm was measured in a total of 334 women and only 
women with complete information for all variables were 
included. For each woman, the last pregnancy during the 
2009–2014 tracking period was used unless inadequate 
DBS sample remained, in which case a blood sample 
from the prior pregnancy was used. Fifteen women were 
missing pre-pregnancy BMI, 2 women were missing data 
on offspring developmental outcomes, and DNAm for 
one woman did not pass quality control; these women 
were therefore excluded. Analyses were further limited to 
women with newborns with gestational ages between 32 
and 44  weeks, which excluded 5 very premature births, 
10 individuals with implausibly late deliveries, and 2 
women for whom gestational age data were missing. To 
minimize impacts of the infant’s environment and growth 
after birth, analyses of infants were also limited to those 
measured within 2 weeks of birth, with postnatal weight 
models adjusting for age at measurement (4 individuals 
measured more than 2 weeks after birth were excluded). 
After all exclusions, the final sample with all necessary 
biological and questionnaire data included 296 women 
singleton births with complete information.

Table 1  Descriptive statistics for mothers in the study

1 Mean (range); n (%)

Characteristic N = 2961

Maternal age at measurement 27.82 (24.99, 30.79)

Days pregnant at measurement 207 (160, 288)

Current smoker? 17 (5.7%)

Grade completed 11.2 (2.0, 22.0)

SES z-score 0.06 (− 3.32, 5.10)

Pre-pregnancy BMI z-score 0.02 (− 1.89, 3.90)

Pregnancy number

1 41 (14%)

2 87 (29%)

3 67 (23%)

4 52 (18%)

5 25 (8.4%)

6 +  23 (8.1%)
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DNA methylation sample processing and epigenetic clock 
calculation
DNA was extracted from 1 to 3 dried blood spots (DBS) 
using a standard protocol; purified DNA was concen-
trated using a Vacufuge Plus vacuum concentrator 
(Eppendorf ), then treated with sodium bisulfite (Zymo 
EZDNA, Zymo Research, Irvine, CA, USA), and quan-
tified by nanodrop, and 160  ng of converted DNA was 
applied to the Illumina Infinium MethylationEPIC 
BeadChip under standard conditions (Illumina Inc., San 
Diego, CA). Technicians were blind to any information 
regarding participant characteristics, and samples were 
randomly assigned to plate, chip, and row. Background 
subtraction and color correction were performed using 
Illumina Genome Studio with default parameters. Data 
were then exported into R for further analysis. Qual-
ity control involved first confirming participant sex and 
replicate status. This was followed by quantile normali-
zation using lumi on all probes including SNP-associated 
and XY multiple binding probes. To maximize the num-
ber of sites available for the epigenetic age calculator, 
probes with detection p values above 0.01 were called NA 
for poor performing samples only and were otherwise 
retained [18].

Epigenetic age for all clocks was calculated using the 
online calculator (http://​labs.​genet​ics.​ucla.​edu/​horva​th/​
dnama​ge/). Background-corrected beta values were pro-
cessed further using the calculator’s internal normalization 
algorithms. Clocks included were: Horvath’s epigenetic 
age (DNAmAge) [20], intrinsic epigenetic age acceleration 
or DNAmIEAA [20, 28], extrinsic epigenetic age accel-
eration or DNAmEEAA [19, 28], DNAmPhenoAge [22], 
DNAmTL [26], senescent T-cell age, DNAmGrimAge [23], 
and the clocks that make up the DNAmGrimAge clock 
(DNAm PAI-1, DNAm ADM, DNAm, B2M, DNAm cys-
tatin C, DNAm GDF, DNAm leptin, DNAm TIMP1, and 
DNAm smoking pack years)[23]. DNAmIEAA examines 
the intrinsic biological age of immune cells but does not 
depend on age-related changes in immune cells in the 
blood [28]. DNAmEEAA captures immune cell biological 
age due to both intrinsic immune cell age and changes in 
immune cell populations in the blood [28]. DNAmPheno-
Age is determined using the Levine Method, which uses 
sites selected due to associations with phenotypic age 
indicators and chronological age [22]. DNAmGrimAge is 
a marker enriched for DNA methylation sites that are sur-
rogate markers for blood plasma proteins related to mor-
tality. These include DNAmPAI1 (Plasminogen Activator 
Inhibitor-1), DNAmADM (Adrenomedullin), DNAmB2M 
(Beta-2-Microglobulin), DNAmCystatinC (Cystatin C), 
DNAm GDF (Growth Differentiation Factor-15), DNAm 
leptin (Leptin), DNAm TIMP1 (TIMP Metallopeptidase 
Inhibitor-1), and DNAm smoking pack years serve as these 

surrogate DNA methylation markers [23]. DNAmTL is 
a surrogate methylation measure of leukocyte telomere 
length. In all cases, maternal epigenetic age acceleration, 
the residual of epigenetic age on chronological age (as well 
as days since conception at the time of blood sample and 
smoking status), was used as predictor of interest.

Statistical analysis
We first ran descriptive statistics before running a 
sequence of multiple linear regression models designed 
to assess relationships between maternal epigenetic age 
acceleration and two fetal outcomes (gestational age and 
measured weight after birth). Models predicting gesta-
tional age adjusted for offspring sex, a composite score 
of socioeconomic status, and pre-pregnancy body mass 
index (BMI) z-scores. Postnatal outcomes were adjusted 
for days after birth of anthropometry measurement and 
gestational age at birth and our composite socioeconomic 
status score. Since we are replicating prior work that did 
not correct for multiple testing, we did not correct for 
multiple comparisons in our main analysis. For trans-
parency, however, we also point out results that differed 
using a Bonferroni adjusted alpha of 0.05/15 = 0.003. 
Furthermore, we ran sensitivity analyses that included 
an additional term for chronological age (beyond that 
residualized in the epigenetic age acceleration measures), 
pregnancy order, cell counts (CD4T, CD8T, monocyte, 
granulocyte, NK cell, B cell), and batch effects (batch, 
plate, chip, row). All statistical analyses were conducted 
using R version 4.0.4.

Results
The women in our study ranged between 25 and 
30.8 years at the time of the study (mean age = 27.8 years 
old). Blood spots for DNAm were taken between 160 and 
288  days into pregnancy, with a mean gestational tim-
ing of 207 days. Education ranged from 2 to 22 years (22 
equivalent to an MD, law degree, or priesthood), and 17 
women smoked. Over 16% of the women in the study 
had experienced 5 or more pregnancies, while 57% had 
experienced at least 3 pregnancies. Descriptive statistics 
of these and other maternal covariates are provided in 
Table 1.

Slightly more infants were categorized as male (52%), 
with a mean gestational age at birth of 277 days. Postna-
tal measurement occurred between 1 and 14  days after 
birth, with the mean age at measurement of roughly 
4 days. Descriptive statistics of infant weight, length, and 
other anthropometric measures are provided in Table 2.

We found very little evidence that any of the 15 
maternal clocks we examined were associated with 
either gestational age or postnatal weight (Table  3, 
Figs.  1 and 2, Additional file  2: Tables S1–S2). Of the 
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relationships investigated, only the DNAmLeptin clock 
was significantly and negatively associated with gesta-
tional age (p = 0.009). This effect was not statistically 
significant using the Bonferroni adjusted threshold of 

0.003. Our results were unchanged in sensitivity analy-
ses, which included an additional term for age (in addi-
tion to that in the epigenetic age acceleration measure) 
and pregnancy order (Additional file  2: Table  S3–S4), 
cell counts (CD4T, CD8T, monocyte, granulocyte, 
NK cell, B cell) (Additional file  2: Table  S5–S6), and 
batch effects (batch, plate, chip, row) (Additional 
file 2: Table S7–S8). A comparison between previously 
reported effects and our findings is provided in Addi-
tional file 1: Fig. S1.

Discussion
In this study of women in metropolitan Cebu, Philip-
pines, a panel of 15 epigenetic clocks chosen to repli-
cate an analysis recently published in this journal, using 

Table 2  Descriptive statistics for infant outcomes

1 n (%); Mean (range)

Characteristic N = 2961

Infant sex

 Female 141 (48%)

 Male 155 (52%)

Gestational age (days) 39.6 (32.4, 44)

Postnatal measurement age (days) 4.0 (1, 14)

Weight (kg) 3.08 (1.68, 4.30)

Table 3  Summary results for regression models predicting gestational age at delivery and offspring birth weight using epigenetic age 
accelerationa

a All models adjust for maternal age (are age acceleration measures), offspring sex, composite socioeconomic score, and the mother’s pre-pregnancy BMI; models 
predicting birth weight also adjust for gestational age at delivery and postnatal age of anthropometry measurement

Outcome Predictor Std. β Std. 95% CI Test statistic P value

Gestational age DNAmAge 0.02 − 0.10–0.13 0.32 0.748

Senescent T-cells 0.04 − 0.08 – 0.15 0.66 0.51

DNAmIEAA 0.02 − 0.09–0.14 0.4 0.687

DNAmEEAA − 0.01 − 0.12–0.11 − 0.12 0.901

DNAmPhenoAge − 0.02 − 0.14–0.09 − 0.35 0.726

DNAmGrimAge − 0.04 − 0.15–0.08 − 0.62 0.539

DNAmADM − 0.08 − 0.20–0.03 − 1.4 0.163

DNAmB2M − 0.03 − 0.14–0.09 − 0.44 0.657

DNAmCystatinC − 0.05 − 0.17–0.06 − 0.88 0.378

DNAmGDF15 0.01 − 0.11–0.12 0.13 0.899

DNAmLeptin − 0.15 − 0.26–− 0.04 − 2.63 0.009

DNAmPackYears − 0.02 − 0.13–0.10 − 0.26 0.797

DNAmPAI1 0.03 − 0.09–0.15 0.46 0.643

DNAmTIMP1 0.00 − 0.11–0.12 0.06 0.951

DNAmTL − 0.05 − 0.16–0.07 − 0.82 0.411

Postnatal weight DNAmAge 0.02 − 0.09–0.12 0.3 0.765

Senescent T-cells 0.05 − 0.06–0.16 0.89 0.375

DNAmIEAA 0.04 − 0.06–0.15 0.82 0.415

DNAmEEAA − 0.07 − 0.18–0.04 − 1.31 0.192

DNAmPhenoAge − 0.03 − 0.14–0.08 − 0.55 0.582

DNAmGrimAge 0.08 − 0.03–0.19 1.42 0.155

DNAmADM 0.09 − 0.02–0.20 1.64 0.102

DNAmB2M − 0.02 − 0.12–0.09 − 0.31 0.757

DNAmCystatinC 0.03 − 0.07–0.14 0.63 0.532

DNAmGDF15 0.01 − 0.10–0.12 0.23 0.819

DNAmLeptin 0.04 − 0.07–0.15 0.74 0.461

DNAmPackYears 0.06 − 0.05–0.17 1.09 0.278

DNAmPAI1 0.01 − 0.11–0.12 0.09 0.929

DNAmTIMP1 0.04 − 0.07–0.15 0.71 0.479

DNAmTL 0.05 − 0.06–0.16 0.96 0.339
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a sample roughly 4 times larger, generally failed to pre-
dict birth outcomes or gestational age at delivery. Only 
a single clock—DNAmLeptin—predicted gestational 
age at delivery, with the other 29 relationships investi-
gated not significant. These findings suggest that epi-
genetic clocks measured in pregnant mothers are not 
strong predictors of offspring birth outcomes, or could 
point to population variation in these relationships.

Of the 30 relationships that we evaluated, only DNAm-
Leptin predicted gestational age at delivery, a finding that 
has not been previously reported but which is direction-
ally consistent with other work [24]. Leptin is a peptide 
hormone secreted from white adipocytes but also fetal 
and placental tissues and is an important regulator of food 
intake and energy expenditure [29] During pregnancy, 

leptin is involved in placentation and in regulation of 
maternal metabolic homeostasis [30]. Late pregnancy is 
associated with leptin resistance and elevated leptin levels, 
which are necessary to help meet the energetic require-
ments of the rapidly growing late-stage fetus. To the extent 
that DNAm leptin is a proxy of circulating leptin levels 
during pregnancy [23], the negative relationship between 
DNAm leptin and gestational age could be a compensa-
tory increase in fetal leptin secretion in response to insuf-
ficient nutrient availability. Although we controlled for 
pre-pregnancy body mass index, higher leptin predicting 
gestational age might be expected to be particularly com-
mon in cases of maternal obesity, where pre-pregnancy 
leptin resistance can elevate baseline leptin levels and 
exacerbate pregnancy-induced leptin resistance.

Fig. 1  Relationships between maternal epigenetic age acceleration during pregnancy for 15 epigenetic clocks and offspring gestational age. 
Epigenetic clock residuals after controlling for maternal chronological age, days post-conception at the time of blood sampling, and smoking status. 
Additional model summary output provided in Table 3 and Additional file 2: Table S1
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To our knowledge, ours is the largest study linking com-
monly used epigenetic clocks with offspring birth outcomes 
to date, and the only one outside of affluent, Western set-
tings where fertility tends to be low and outcomes like low 
birth weight relatively uncommon. For example, contrast-
ing with prior work where primiparous women made up 
61% of the sample [24], only 14% of women in our study 
were primiparous. Furthermore, our sample exhibited a 
great deal of variability in fertility, with more than half of 
the women in our study having been pregnant 3 or more 
times, and over 15% having had 5 or more pregnan-
cies. Variation in fertility and study context are important 
because placentation and corresponding birth outcomes 
are affected by reproductive history [31, 32], and because 
epigenetic age varies across socioecological contexts [33]. 

These findings imply that while measures of maternal phys-
iology, metabolism, and stress do seem to be associated 
with offspring epigenetic age acceleration [34, 35], maternal 
epigenetic age acceleration itself is not a good predictor of 
fetal and infant developmental outcomes.

Our study is not without limitations. We were not able 
to acquire reliable measures of birth weight immediately 
after birth due to the diversity of the sample, birth con-
texts, and geographic spread across the Cebu Metropoli-
tan area. Thus, our measures of weight taken in infants are 
only proxies for outcomes measured at the time of birth. 
We minimized the potential for this to affect our results 
by including on infants measured within 2 weeks of birth, 
with a mean age of measurement of 4 days. This approach 
has the added benefit of all measurements being taken in 

Fig. 2  Relationships between maternal epigenetic age acceleration during pregnancy for 15 epigenetic clocks and offspring postnatal weight. 
Epigenetic clock residuals after controlling for maternal chronological age, days post-conception at the time of blood sampling, and smoking status. 
Additional model summary output provided in Table 3 and Additional file 2: Table S2
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triplicate by experienced staff using the same instruments 
and protocols. Another limitation was that our blood sam-
ples were not taken at the same time during pregnancy for 
each woman. This may be important because prior work 
has demonstrated that DNAm in general and epigenetic 
age specifically, and their relationship with birth outcomes, 
can change during pregnancy [36–38]. Nevertheless, our 
blood sampling occurred within a relatively narrow range 
of 23–41 weeks, and we adjusted all clock measures for ges-
tational age at measurement. Finally, while our sample size 
of 296 is the largest yet to examine the relationship between 
maternal epigenetic clock age and fetal outcomes, a lack of 
statistical power could limit our ability to detect important 
biological relationships. Nevertheless, our power to detect 
previously reported effect sizes [24] given our sample size 
was greater than 0.99, suggesting that we were more than 
adequately powered to replicate previous findings.

In sum, our findings suggest that pregnancy measure-
ment of epigenetic clocks that capture a range of biologi-
cal pathways of pathophysiologic dysregulation and aging 
are not robust predictors of gestational age at delivery or 
offspring birth size. These findings fail to replicate recent 
work using an identical panel of clocks, and either point 
to a lack of consistent findings or population variation in 
these relationships.
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Additional file 1: Fig. S1. Comparison of findings from the current study 
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maternal epigenetic age and gestation age and offspring post-natal 
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