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Abstract 

Background:  Epigenetic modifications, including DNA methylation (DNAm), are often related to environmental 
exposures, and are increasingly recognized as key processes in the pathogenesis of chronic lung disease. American 
Indian communities have a high burden of lung disease compared to the national average. The objective of this study 
was to investigate the association of DNAm and lung function in the Strong Heart Study (SHS). We conducted a cross-
sectional study of American Indian adults, 45–74 years of age who participated in the SHS. DNAm was measured 
using the Illumina Infinium Human MethylationEPIC platform at baseline (1989–1991). Lung function was measured 
via spirometry, including forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), at visit 2 (1993–1995). 
Airflow limitation was defined as FEV1 < 70% predicted and FEV1/FVC < 0.7, restriction was defined as FEV1/FVC > 0.7 
and FVC < 80% predicted, and normal spirometry was defined as FEV1/FVC > 0.7, FEV1 > 70% predicted, FVC > 80% 
predicted. We used elastic-net models to select relevant CpGs for lung function and spirometry-defined lung disease. 
We also conducted bioinformatic analyses to evaluate the biological plausibility of the findings.

Results:  Among 1677 participants, 21.2% had spirometry-defined airflow limitation and 13.6% had spirometry-
defined restrictive pattern lung function. Elastic-net models selected 1118 Differentially Methylated Positions (DMPs) 
as predictors of airflow limitation and 1385 for restrictive pattern lung function. A total of 12 DMPs overlapped 
between airflow limitation and restrictive pattern. EGFR, MAPK1 and PRPF8 genes were the most connected nodes in 
the protein–protein interaction network. Many of the DMPs targeted genes with biological roles related to lung func‑
tion such as protein kinases.

Conclusion:  We found multiple differentially methylated CpG sites associated with chronic lung disease. These sig‑
nals could contribute to better understand molecular mechanisms involved in lung disease, as assessed systemically, 
as well as to identify patterns that could be useful for diagnostic purposes. Further experimental and longitudinal 
studies are needed to assess whether DNA methylation has a causal role in lung disease.
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Introduction
Between 1980 and 2014, the mortality rate for chronic 
respiratory disease, including chronic obstructive pulmo-
nary disease (COPD) and interstitial lung disease (ILD), 
increased by 29.7% in the U.S [1]. COPD is defined by 
airflow limitation that is not fully reversible [2], whereas 
ILD is defined by the presence of cellular proliferation, 
infiltration and/or fibrosis of the lung not due to infec-
tion or neoplasia and resembles a restrictive spirometry 
pattern [3]. The development of chronic lung disease is 
associated with both environmental and genetic risk fac-
tors. Although cigarette smoking is one of the main risk 
factors for chronic lung disease development, not every 
smoker will develop chronic lung disease and many 
patients with chronic lung disease have never smoked.

Epigenetic modifications, including DNA methylation 
(DNAm), are often related to environmental exposures, 
and are increasingly recognized as key processes in the 
pathogenesis of chronic lung disease [4–8]. In a system-
atic review examining the association of lung function 
with global, epigenome-wide, and locus-specific DNAm 
in peripheral blood from population-based studies, five 
of the six included studies showed evidence that DNAm 
profiles were differentially associated with lung function, 
including loci associated with the SERPINA1, ORC4, 
WT1, and FXYD1 genes [9]. SERPINA1, for example, 
encodes alpha-1-antitrypsin, and alpha-1-antitrypsin 
deficiency has been shown to cause degenerative pul-
monary disease through unregulated tissue breakdown 
[10]. Evidence suggests that DNAm alterations could play 
a role in the predisposition to or pathogenetic mecha-
nism of lung disease. While there is a growing number of 
studies that evaluate the association of lung disease and 
differential DNAm profiles, epidemiologic studies exam-
ining lung disease-related DNAm profiles of American 
Indian communities are scarce.

The objective of this study was to investigate the asso-
ciation of DNAm with lung function and spirometry-
defined lung disease in the Strong Heart Study (SHS). We 
used elastic-net models to select relevant CpGs, and con-
ducted a bioinformatic analysis to evaluate the biological 
plausibility of the findings.

Methods
Study population
The SHS is a prospective cohort study funded by the 
National Heart, Lung and Blood Institute and the 
National Institute of Environmental Health Sciences to 

investigate cardiovascular disease and its risk factors in 
American Indian adults [11]. In 1989–1991, 4549 men 
and women aged 45–75  years, members of 13 tribes 
based in Arizona, Oklahoma, and North Dakota and 
South Dakota who were free of cardiovascular disease 
enrolled in the study. DNAm was measured in 2351 par-
ticipants at the SHS baseline visit (1989–1991). Details 
regarding inclusion criteria for blood DNAm measure-
ments have been described elsewhere [12]. Among eligi-
ble participants with DNAm data, participants without a 
valid spirometry test at visit 2 (1993–1995) were excluded 
(N = 648), as were individuals missing relevant covariate 
information, leaving a total of 1677 participants in this 
study (Fig. 1).

Participant characteristics
At baseline, trained and certified nurses and medical 
examiners administered a standardized questionnaire 
and physical examination including collecting informa-
tion on sociodemographic (age, sex, study region, edu-
cation level), lifestyle (smoking status), medical history 
(prior tuberculosis infection) and anthropometric (height 
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Fig. 1  Flowchart of included participants. *5 participants missing 
education data, 2 smoking status, 11 BMI, 52 LDL cholesterol, 14 
hypertension treatment, 111 eGFR, 30 diabetes
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and weight) factors. A fasting blood sample was also col-
lected during the physical examination.

Spirometry and self‑reported lung disease
Pre-bronchodilator spirometry testing was conducted 
by centrally trained and certified nurses and techni-
cians. Maneuvers were considered acceptable according 
to then-current American Thoracic Society recommen-
dations [13]. Spirometry reference values for SHS par-
ticipants have been previously derived [14]. Spirometry 
endpoints include absolute measures of forced expiratory 
volume in 1  s (FEV1) and forced vital capacity (FVC), 
FEV1/FVC, and fixed ratio-defined airflow limitation 
(FEV1/FVC < 0.70) and restriction (FVC < 80% predicted, 
FEV1/FVC > 0.70). For fixed-ratio defined lung dis-
ease endpoints, participants with FEV1/FVC > 0.7 and 
FVC > 80% predicted served as the reference group.

Blood DNA methylation determinations
Details of microarray DNAm measurements at the base-
line visit of the SHS have been published elsewhere [12]. 
Briefly, DNAm from white blood cells was measured 
using the Illumina MethylationEPIC BeadChip (850  K). 
CpGs with a p-detection value greater than 0.01 in more 
than 5% of the individuals (6159 CpGs) were removed. 
In addition, cross-hybridizing probes, probes located in 
sex chromosomes and Single Nucleotide Polymorphisms 
(SNPs) with minor allele frequency > 0.05 were excluded. 
Single sample snoob normalization and regression on 
correlated probes normalization were conducted follow-
ing Illumina’s recommendations for preprocessing (minfi 
and Enmix R packages) [15]. Blood cell proportions 
(CD8T, CD4T, NK cells, B cells, monocytes and neutro-
phils) were estimated using the FlowSorted.Blood.EPIC R 
package [16]. Beta  values, which range from 0 to 1 and 
represent the proportion of unconverted cytosines (Cs) 
in bisulfite-converted DNA at specific locations, were 
calculated using the R package minfi. [15] We used all cell 
types except neutrophils (the most common cell type) as 
adjustment variables in regression models. We detected 
and corrected for potential batch effects by sample plate, 
sample row, and DNA isolation time with the combat 
function (sva R package) [17]. We conducted annotation 
of CpGs to the nearest gene according to the Infinium 
MethylationEPIC Manifest File v1.0b4 [18, 19]. CpG sites 
that were not annotated to any gene according to Illu-
mina’s manifest files were annotated to the closest gene 
using the matchGenes function from the bumphunter R 
package. The preprocessing resulted in data from 1677 
individuals and 788,368 CpG sites in our analyses.

Statistical analysis
Differentially methylated positions (DMPs) analysis by elastic 
net
We examined five outcomes: (1) FEV1 (in Liters) as a 
continuous variable, (2) FVC (in Liters) as a continu-
ous variable, (3) FEV1/FVC (%) as a continuous variable, 
(4) airflow limitation versus normal lung function as a 
dichotomous variable, and (5) restrictive versus nor-
mal lung function as a dichotomous variable. Given that 
many smoking-related genes were found to be DMPs 
for airflow limitation, we repeated the analysis among 
never smokers, both as self-reported and as identified by 
the EpiSmokEr tool [20], which predicts smoking status 
using DNAm data. In contrast to traditional one-by-one 
linear regression CpG modeling approaches, which are 
limited in accounting for large numbers of predictors or 
correlated data, we used elastic-net. Elastic-net methods 
have recently become very popular in Epigenome-Wide 
and Genome-Wide Association Studies [21–23] as the 
elastic-net method is robust to limitations of the Lasso 
method such as dealing with  multicollinearity in very 
high-dimensional settings [24, 25]. Specifically, when the 
correlations among predictors are high, the elastic-net 
method exceeds the predictive accuracy of the Lasso [26]. 
Elastic-net has previously shown to be able to select rel-
evant predictors in differential DNAm analysis and has 
been used to construct methylation-based risk-scores 
that have shown great promise for disease prediction 
based in epigenetic data. [21, 27, 28]

We used elastic-net to select DMPs (simultaneously 
modeled independent variables) that were associated 
with lung function and spirometry-defined lung disease 
(dependent variables). Among the DMPs selected by elas-
tic-net, we then ran traditional linear regression models 
(for continuous outcomes) and logistic regression models 
(for dichotomous outcomes) for each CpG separately to 
obtain effect estimates and 95% CI-s.

Elastic-net, linear and logistic models were adjusted 
for smoking status (never, former, current), cumulative 
smoking (cigarette pack-years), age, squared age, sex, 
BMI, study center (Arizona, Oklahoma or North Dakota 
and South Dakota), prior tuberculosis diagnosis [29] and 
cell counts (CD8T, CD4T, NK, B cells and monocytes). 
For continuous, absolute measures of lung function, 
we also adjusted for height. To account for population 
stratification, models were additionally adjusted for five 
genetic principal components (PCs) [30]. Of 2562 geno-
typed SHS participants as part of the CALiCo/PAGE 
Study, we identified 644 unrelated individuals (either 
founders of pedigrees or unrelated spouses of their 
descendants). Of 162,718 autosomal SNPs that passed 
quality control, we selected 15,158 based on the follow-
ing criteria: minor allele frequency ≥ 0.05, minimum 
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physical separation of 1  kb, and pairwise correlation of 
genotype scores ≤ 0.1 within a 100  kb sliding window. 
We performed PC analysis on the genotype scores within 
unrelated individuals using the R function prcomp. The 
first five PCs were kept as adjustment variables, as they 
explained most of the variance. Multiple comparisons 
were accounted separately using the Benjamini and 
Hochberg method for false discovery rates (FDR).

To assess whether results were affected by family 
relatedness, we ran a sensitivity analysis and repeated 
the linear and logistic models for each of the five lung 
function measures restricted to unrelated individuals 
(i.e., selecting only one individual within each family). 
In this sensitivity analysis, we additionally excluded 
individuals with mismatches in reported sex vs sex 
predicted using DNA methylation data as computed by 
the getSex function from the minfi R package. [15]

Protein–protein interaction network
From the DMPs selected in the elastic-net models, we 
created two sets of protein-coding genes. The first set 
represents the airflow limitation phenotype using the 
following 3 outcomes: FEV1, FEV1/FVC, and airflow 
limitation vs. normal lung function. The second set 
represents a restrictive phenotype using the follow-
ing 3 outcomes: FEV1, FVC, and restrictive vs. normal 
lung function. The protein interaction information was 
obtained from the STRING database v11.0 [31]. The 

STRING database provides a confidence score (from 
0 to 1) obtained from the estimated likelihood of each 
annotated interaction between a given pair of proteins 
being biologically meaningful, specific and reproduc-
ible [31]. The protein interaction networks were ana-
lyzed and displayed using the yfiles Organic layout by 
Cytoscape v. 3.7.2 [32]. In the resultant networks, we 
only kept connections obtained from experimental 
studies with a minimum confidence score of 0.4. The 
unconnected nodes were excluded from the network. 
We also conducted PPI network enrichment analysis in 
the resultant networks.

Enrichment analyses
We used the EWAS Toolkit [33] to test for trait enrich-
ment for each of the five lung endpoints. The CpGs 
selected by the elastic-net models were introduced in 
the EWAS Toolkit separately for airflow limitation, 
restrictive pattern, FEV1, FVC and FEV1/FVC. In addi-
tion, we used the ToppCluster tool [34] for comparative 
enrichment among gene clusters selected by elastic-net 
for the five endpoints. CpG sites were annotated to the 
closest gene using the matchGenes function from the 
R package bumphunter, and then were introduced in 
the Toppcluster tool in five clusters (one per endpoint). 
Enriched Gene Ontology terms within and between clus-
ters were checked at a Bonferroni-corrected p-value of 
0.05. In addition, we introduced the top genes selected 
by elastic-net as well as the most connected nodes in 

Table 1  Participant characteristics

IQR Interquartile range, eGFR Estimated glomerular filtration rate, TB Tuberculosis, FEV1 Forced expiratory volume in 1 s, FVC Forced vital capacity

Overall (N = 1677) Airflow limitation (N = 352) Restriction (N = 229) Non-cases (N = 1096)

Female, % 61 51 70 62

Age (years), median (IQR) 55 (49, 61) 59 (52, 65) 56 (49, 61) 53 (48, 60)

Height (cm), median (IQR) 165 (159, 173) 168 (160, 176) 163 (158, 169) 165 (160, 173)

BMI, median (IQR) 29.7 (26.3, 33.8) 27.7 (24.3, 31.5) 31.5 (27.3, 35.7) 29.9 (26.8, 33.8)

Smoking, n (%)

 Never 32 26 37 32

 Former 30 26 28 32

 Current 38 48 35 36

Center, %

 Arizona 14 7 27 14

North Dakota and South Dakota 43 29 47 46

 Oklahoma 43 63 27 40

eGFR, median (IQR) 100.7 (92.1, 107.5) 97.7 (88.3, 105.2) 101.7 (93.4, 107.9) 101.1 (93.1, 108.0)

Education (years), median (IQR) 12 (10, 14) 11 (9, 13) 12 (9, 13) 12 (10, 14)

Prior TB diagnosis, % 13 18 15 12

FEV1 (L), median (IQR) 2.5 (2.0, 3.0) 2.1 (1.6, 2.7) 1.9 (1.6, 2.2) 2.7 (2.3, 3.2)

FVC (L), median (IQR) 3.3 (2.7, 4.0) 3.4 (2.7, 4.4) 2.3 (1.9, 2.8) 3.4 (2.9, 4.1)

FEV1/FVC, median (IQR) 76.5 (71.1, 75.3) 65.2 (59.2, 68.2) 80.3 (75.7, 85.9) 77.8 (74.8, 81.4)
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the protein–protein interaction network into the GWAS 
Catalog [35] to test whether they had been identified in 
previous genome-wide association studies.

Results
1677 participants were included (Fig.  1). Participant’s 
characteristics are presented in Table 1. At baseline (time 
of blood collection), all participants were 44–75  years 
of age (mean 55  years old). 61% of participants were 
female, and 32% had never smoked. The elastic-net 

model selected 838 DMPs for FEV1, 762 DMPs for FVC, 
545 DMPs for FEV1/FVC, 1118 DMPs for airflow limi-
tation and 1385 for restrictive pattern lung function. 328 
of the DMPs selected for FEV1 (38.8%) overlapped with 
selected DMPs for FVC elastic-net models, whereas 26 
DMPs (3.1%) overlapped with FEV1/FVC (Fig.  2). Air-
flow limitation shared 36 DMPs with FEV1 (3.2%), 143 
DMPs with FEV1/FVC (12.7%) and 11 DMPs overlapped 
together with FEV1, FEV1/FVC and airflow limita-
tion (Fig. 2). Restrictive pattern lung function shared 50 

Ratio

FEV1 FVC

524
(29%)

497
(27%)

438
(24%)

20
(1%)

5
(0%)

322
(18%)

6
(0%)

Airflow limitation

FEV1 Ratio

960
(41%)

794
(34%)

397
(17%)

25
(1%)

132
(6%)

15
(1%)

11
(0%)

Restriction

FEV1 FVC

1305
(50%)

499
(19%)

408
(16%)

18
(1%)

35
(1%)

296
(11%)

32
(1%)

Fig. 2  Venn diagram of elastic-net selected DMPs for lung function outcomes, airflow limitation, and restrictive pattern

Table 2  Top five differentially methylated positions for continuous lung function measures (FEV1, FVC, and FEV1/FVC)

Top five DMPs selected by elastic-net models. Mean differences reported from linear models comparing percentile 90 vs percentile 10 of DNA methylation. Models 
were adjusted for age, squared age, height, prior tuberculosis diagnosis, sex, BMI, smoking status (never, former, current), cumulative smoking (pack-years), study 
center (Arizona, Oklahoma, or North and South Dakota), cell counts (CD8T, CD4T, NK, B cells and monocytes) and five genetic PCs

CpG Chr Gene Function Mean difference (95% CI) p value

FEV1

cg25325512 6 PIM1 Serine/Threonine-Protein Kinase Pim-1. Cell proliferation and survival 0.22 (0.15, 0.29) 2.91E−09

cg26058502 1 CERS2 Regulation of cell growth and lipid metabolism 0.18 (0.11, 0.25) 2.79E−07

cg01641754 5 LOC100289230 Uncharacterized 0.18 (0.11, 0.24) 3.46E−07

cg15167811 9 PTBP3 Regulator of cell differentiation 0.16 (0.1, 0.23) 4.85E−07

cg07941411 3 CD80 T-cell proliferation and cytokine production  − 0.15 (− 0.21, − 0.09) 2.00E−06

FVC

cg02203833 7 CDK5 Serine/threonine kinase. Synaptic plasticity and neuronal migration 0.21 (0.12, 0.30) 4.00E−06

cg19265480 1 NBPF8 Associated with developmental and neurogenetic diseases  − 0.19 (− 0.27, − 0.11) 3.00E−06

cg18140268 1 NBPF8 Associated with developmental and neurogenetic diseases  − 0.18 (− 0.26, − 0.11) 5.00E−06

cg07343418 12 GRIN2B Brain development, synaptic plasticity  − 0.19 (− 0.26, − 0.11) 2.00E−06

cg03725414 16 CRISPLD2 Promotes matrix assembly 0.18 (0.10, 0.26) 1.30E−05

FEV1/FVC

cg25001882 14 NRXN3 Cell adhesion in the nervous system, synaptic plasticity 33.0 (21.3, 44.6) 3.32E−08

cg16771344 9 NTRK2 Tyrosine receptor kinase. Phosphorylates itself and members of the 
MAPK signaling pathway

29.9 (18.5, 41.2) 2.99E−07

cg12420787 2 CACNB4 Calcium channel. Plasticity on the brain 21.7 (13.4, 30.1) 3.84E−07

cg03636183 19 F2RL3 Blood coagulation, inflammation and response to pain. Associated 
with smoking and lung cancer

18.1 (11.0, 25.2) 5.80E−07

cg27127773 16 SLX4 Repair of specific types of DNA lesions  − 42.6 (− 59.2, − 25.9) 6.17E−07
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DMPs with FEV1 (2.9%), 67 DMPs with FVC (4.8%) and 
32 DMPs overlapped between FEV1, FVC and restrictive 
pattern lung function (Fig. 2), while 12 DMPs overlapped 
between airflow limitation and restrictive pattern, no 
DMPs overlapped with all 5 outcomes.

Table 2 shows the top five DMPs selected by the elastic-
net models and the mean differences (95% CIs) for con-
tinuous lung function measures (FEV1, FVC, FEV1/FVC) 
comparing percentile 90 to percentile 10 of DNA meth-
ylation calculated using linear regression models. Table 3 
shows the top five DMPs selected by the elastic-net mod-
els and the Odds Ratios (95% CIs) for airflow limitation 
and restrictive pattern comparing percentile 90 to per-
centile 10 of DNA methylation calculated using logistic 
regression models. A list of all DMPs selected by elastic-
net models for each of the five lung function outcomes 
studied are included in Additional file  1: Tables S1–S5. 
Additional file 2: Fig. S1 shows the distribution of DNA 
methylation proportions by lung disease status of the top 
five DMPs for restrictive pattern and the top five DMPs 
for airflow limitation.

Of the 1677 individuals included in this study, 1142 
were from unique families (i.e., unrelated). When com-
paring self-reported sex vs sex predicted using DNA 
methylation, seven additional individuals presented sex 
mismatch and were excluded in sensitivity analysis, leav-
ing 1135 participants. Among those, 155 had restrictive 
pattern disease and 262 had airflow limitation. The OR-s 
and mean differences when excluding sex-mismatched 
and related participants were very similar to those of the 
main analysis (Additional file 1: Tables S1–S5).

In the protein–protein interaction networks, the 
obstructive phenotype network (FEV1, FEV1/FVC and 
airflow limitation vs normal lung function) included 
1965 unique genes associated with 2326 DMPs identi-
fied by elastic-net models. Of these, 1467 non-coding 
RNA genes or unconnected nodes were discarded 
(Fig.  3, network 1). The protein–protein interaction 
network for airflow limitation included 498 nodes and 
829 interactions (Additional file  3: Fig. S2 and Addi-
tional file 1: Tables S6, S7). EGFR, MAPK1 and PRPF8 
were the most connected nodes in the network with 
32, 22 and 19 interactions, respectively. The restric-
tive phenotype network (FEV1, FVC, and restric-
tive pattern vs normal lung function) included 2156 
unique genes associated with 2583 DMPs identified 
by elastic-net models. Of these, 1551 ncRNA genes or 
unconnected nodes were discarded (Fig. 3, network 2). 
The protein–protein interaction network for restric-
tive pattern included 605 nodes and 1101 interactions 
(Additional file  4: Fig. S3 and Additional file  1: Tables 
S8, S9). UBA52, CREBBP, SRC and EGFR were the 
most connected nodes with 38, 34, 29 and 27 inter-
actions, respectively. The PPI network enrichment 
analysis identified a total of 204 and 355 Gene Ontol-
ogy (GO) terms significantly enriched (FDR < 0.05) for 
airflow limitation (network from Additional file 3: Fig. 
S2, Additional file 1: Table S10) and for restrictive pat-
tern (network from Additional file 4: Fig. S3, Additional 
file 1: Table S11), respectively.

Figure  4 shows the top enriched traits for each of 
the five endpoints. Several lung-related traits were 
enriched: lung function for FEV1/FVC and airflow 

Table 3  Top five differentially methylated positions for airflow limitation and restrictive pattern lung function

Top five DMPs selected by elastic-net models. Odds Ratios reported from regression models comparing percentile 90 vs percentile 10 of DNA methylation. Models 
were adjusted for age, squared age, prior tuberculosis diagnosis, sex, BMI, smoking status (never, former, current), cumulative smoking (pack-years), study center 
(Arizona, Oklahoma, or North and South Dakota), cell counts (CD8T, CD4T, NK, B cells and monocytes) and five genetic PCs

CpG Chr Gene Function Odds Ratio (95% CI) p value

Airflow limitation

cg20304857 2 GALNT14 Catalyze transfer of N-acetyl-D-galactosamin to hydroxyl groups on serines and 
threonines

2.8 (1.9, 4.3) E−06

cg07842459 1 CD84 Homophilic adhesion molecule 2.8 (1.8, 4.3) 2E−06

cg17916980 16 CPPED1 Serine/Threonine-Protein Phosphatase. Dephosphorylates AKT family kinase 2.5 (1.7, 3.7) 2E−06

cg03647068 2 FMNL2 Morphogenesis, cytokinesis, cell polarity 3.0 (1.9, 4.8) 2E−06

cg06100532 16 LMF1 Involved in the maturation of specific proteins in the endoplasmic reticulum 2.8 (1.8, 4.3) 3E−06

Restrictive pattern

cg05504535 10 ADARB2 Regulatory role in RNA editing 0.3 (0.2, 0.5) 1.86E−07

cg04890495 11 MCAM Cell adhesion, cohesion of the endothelial monolayer at intercellular junctions in 
vascular tissue

0.3 (0.2, 0.5) 5.92E−07

cg03320255 19 ZNF540 Transcriptional repressor 0.3 (0.2, 0.5) 8.72E−07

cg20024687 8 TOP1MT Role in the modification of DNA topology 0.4 (0.2, 0.5) 3.00E−06

cg19693031 1 TXNIP Protects cells from oxidative stress 0.4 (0.3, 0.6) 4.00E−06
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limitation; smoking, smoking cessation or maternal 
smoking for all five endpoints, and lung carcinoma for 
FEV1/FVC and airflow limitation. Additional file  1: 
Table  S12 shows the results from the Toppcluster 
algorithm. No Gene Ontology terms were commonly 
enriched across all five endpoints. The Gene Ontol-
ogy term “animal organ morphogenesis” was enriched 

for all endpoints except for FEV1/FVC. In addition, 
the terms “head development", “neuron projection 
development", “brain development” and “synaptic 
signaling” were enriched for three endpoints. Other 
95 Gene Ontology terms were enriched at Bonferroni 
0.05 significance level for two or one lung endpoints. 
Among the top genes annotated to DMPs identified 

Fig. 3  Workflow for protein–protein interaction networks
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in our elastic-net models, only the gene EGFR was 
present in the GWAS Catalog, associated with lung 
adenocarcinoma.

Given that several smoking-related genes (AHRR, 
F2RL3, PRSS23, RARA​) were found to be DMPs for air-
flow limitation, we repeated that analysis restricted to 
self-reported never smokers and restricted to those that 
were classified as never-smokers by the EpiSmokEr tool. 
There were N = 531 self-reported never smokers in our 
study, of which 92 presented airflow limitation. Eight 
hundred and sixty-nine CpGs were selected by elastic-
net as DMPs. The elastic-net model selected two CpGs 

annotated to AHRR; however, it did not select any CpG 
annotated to F2RL3, PRSS23 or RARA​ (Additional file 1: 
Table S13). There were N = 848 participants classified by 
EpiSmokEr as never-smokers. Of those, 139 presented 
airflow limitation. 756 CpGs were selected by elastic-
net. No CpGs annotated to any of the smoking-related 
genes were selected (Additional file  1: Table  S14). The 
number of overlapping CpGs between the two never-
smoker models was 90. The number of overlapping CpGs 
between the overall population model and the model 
restricted to never-smokers as classified by EpiSmokEr 
was 136.

Fig. 4  Top enriched traits for FEV1, FVC, FEV1/FVC, airflow limitation and restrictive pattern from the EWAS Toolkit



Page 9 of 13Domingo‑Relloso et al. Clinical Epigenetics           (2022) 14:75 	

For restrictive pattern, the model was only run for 
never-smokers as classified by the EpiSmokEr tool, due 
to lack of power for running it in self-reported never-
smokers. There were 121 restrictive pattern cases. 1070 
CpGs were selected by elastic-net. The number of over-
lapping CpGs between the overall population model 
and the model restricted to never-smokers was 253 
(data not shown). Two of the top CpG sites in the over-
all population model (annotated to genes ADARB2 and 
ZNF540) were also selected for the model restricted to 
never-smokers.

Table 4 shows the effect estimates and p-values of the 
CpGs identified in a meta-analysis [36] that were rep-
licated in the SHS (annotated to genes AHRR, F2RL3, 
ALPPL2, IER3, GPR15, SOCS3, TMEM184B and 
CDKN1B).

Discussion
We conducted an epigenome-wide association study 
investigating the association between DNA methylation 
and lung function and explored common epigenetic sig-
natures between lung function and disease. Using robust 
methods for high-dimensional correlated data, we found 
1118 DMPs associated with airflow limitation and 1385 
associated with restrictive pattern lung function. A total 
of 12 DMPs overlapped between airflow limitation and 
restrictive pattern. The biological functions of the top 
genes, as well as the most connected nodes in the pro-
tein–protein interaction network, were related to biologi-
cal processes associated with lung disease.

Several top genes and highly connected nodes in the 
protein–protein interaction networks for FEV1 (PIM1), 
FVC (CDK5), FEV1/FVC (NTRK2), airflow limitation 

(CPPED1) and restrictive pattern (EGFR, MAPK1) are 
protein kinases. In addition, the GO term “Positive 
regulation of transmembrane receptor protein serine/
threonine kinase signaling pathway” (GO:0090100) was 
found to be significantly enriched (FDR = 0.0119) for the 
restrictive lung function phenotype. Protein kinases play 
a role in many key pulmonary cellular responses, includ-
ing mediating inflammatory signals and airway remod-
eling. Thus, they have been proposed as therapeutic 
targets for several lung diseases such as chronic obstruc-
tive pulmonary disease and asthma [37, 38]. PIM1 and 
CKD5, top genes associated with FEV1 and FVC, respec-
tively, are serine/threonine protein kinases. An animal 
study reported evidence of high-tidal volume ventila-
tion increasing pulmonary fibrosis in acute lung injury 
via the serine/threonine protein kinase B [39]. Also, the 
mitogen-activated protein kinase 1 gene (MAPK1) was 
a highly connected node in the airflow limitation pro-
tein–protein interaction network. Lung endothelial bar-
rier function is regulated by multiple signaling pathways, 
including mitogen-activated protein kinases (MAPK) 
[40]. MAPK kinases might contribute to ameliorate the 
lung endothelial barrier-disruptive effects. [41]

The EGFR gene, which was among the most con-
nected nodes in the protein–protein interaction net-
works for both airflow limitation and restrictive pattern, 
is a protein kinase. It plays an essential role in pulmonary 
physiology by regulating key cellular processes such as 
self-renew, wound-healing, proliferation, survival adhe-
sion, migration and differentiation [42]. EGFR inhibitors 
have been widely used in treatment of non-small cell lung 
cancer, in fact, it was the first biomarker identified as a 
potential therapeutic target for personalized treatment in 

Table 4  Effect estimates and p values of the CpGs identified in the meta-analysis by Imboden et al. that were replicated in the SHS

CpG Chr Gene Lung function 
endpoint in meta-
analysis

Coefficient (SE) in meta-
analysis

p value in meta-analysis Lung 
function 
endpoint in 
the SHS

Coefficient of the 
elastic-net model in 
the SHS

cg05575921 5 AHRR FEV1; FVC; FEV1/FVC 0.78 (0.057); 0.37 (0.064); 
0.12 (0.008)

1.48E−43; 8.79E−09; 
7.22E−50

FEV1/FVC 1.10

cg03636183 19 F2RL3 FEV1; FVC; FEV1/FVC 1.27 (0.098); 0.62 (0.11); 
0.20 (0.015)

4.08E−39; 2.04E−08; 
4.5E−43

FEV1/FVC 1.13

cg21566642 2 ALPPL2 FEV1; FEV1/FVC 0.94 (0.074); 0.15 (0.011) 7.43E−37; 5.02E−43 FEV1/FVC 0.21

cg03329539 2 ALPPL2 FEV1; FEV1/FVC 1.61 (0.15); 0.26 (0.023) 1.46E−26; 5.58E−30 FEV1/FVC 0.76

cg24859433 6 IER3 FEV1/FVC 0.30 (0.034) 2.05E−19 FEV1 0.019

cg19859270 3 GPR15 FEV1; FEV1/FVC 2.74 (0.36); 0.47 (0.06) 1.34E−14; 2.8E−18 FEV1/FVC 2.46

cg18181703 17 SOCS3 FEV1 1.19 (0.16) 3.74E−14 FEV1; FVC 0.093; 0.034

cg01127300 22 TMEM184B FEV1 0.85 (0.12) 1.19E−12 FEV1/FVC 0.057

cg06826457 12 CDKN1B FEV1 1.12 (0.18) 5.35E−10 Airflow 
limitation; 
FEV1/FVC

− 0.028; 0.13
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lung cancer. EGFR was also identified as associated with 
lung adenocarcinoma in the GWAS Catalog [35]. DNA 
methylation in EGFR has been proposed as a predictive 
biomarker for lung adenocarcinoma. Our results suggest 
that DNA methylation levels in EGFR might be predic-
tive of airflow limitation and restrictive pattern as well. 
Prospective studies of DNA methylation changes and 
lung disease are needed to assess the potential predictive 
ability of EGFR in lung disease.

On the other hand, the CRISPLD2 gene, which was a 
DMP associated with both FEV1 and FVC in our study, 
was identified in a whole genome sequencing study in 
children with asthma as associated with FEV1/FVC [43]. 
Many experimental and human studies have highlighted 
the importance of the CRISPLD2 gene in fetal lung reg-
ulation, branching morphogenesis and alveologenesis, 
among other lung function related biological processes 
[44–46]. Other genes identified in our study are also 
associated with biological processes relevant for lung 
function. The Ubiquitin A-52 Residue Ribosomal Pro-
tein Fusion Product 1 gene (UBA52), for instance, was a 
highly connected node in the restrictive pattern protein–
protein interaction network. Ubiquitination regulates the 
proteins that modulate the alveolocapillary barrier and 
the inflammatory response, therefore playing an impor-
tant role in acute lung injury [47]. Also, the Adenosine 
Deaminase RNA Specific B2 gene (ADARB2) was the top 
differentially methylated position for restrictive pattern. 
An animal model showed that adenosine deaminase defi-
ciency might lead to pulmonary fibrosis [48]. Our work 
provides further evidence that these biological processes 
are involved in lung disease and can be measured sys-
temically. However, experimental studies are needed to 
disentangle whether DNAm changes influence these bio-
logical pathways or, conversely, alterations in these path-
ways lead to DNAm dysregulations.

Of note, there was very little overlap between the 
DMPs associated with airflow limitation and with restric-
tive pattern (only 12 CpGs), and there was no overlap 
between the five lung function measures. This fact as well 
as the fact that the top DMPs associated with restrictive 
pattern and with airflow limitation (Table 3) had opposite 
directions of association with DNA methylation, might 
point to different biological pathways being involved in 
airflow limitation and restrictive pattern. Importantly, 
hypomethylation of several smoking-related genes was 
associated with airflow limitation in our study (AHRR, 
F2RL3, PRSS23, RARA​), whereas none of those was asso-
ciated with restriction. Previous literature have pointed 
out that hypomethylation in the gene AHRR, the most 
well known smoking-related gene, might be associated 
with lower lung function and respiratory symptoms [49, 
50]. Also, DNAm dysregulation in AHRR was associated 

with lung function in two multi-cohort epigenome-wide 
association studies in adults [36, 51]. When running 
the airflow limitation analysis only among self-reported 
never smokers, elastic-net selected CpGs annotated 
to the AHRR gene, but not to the other three smoking-
related genes. However, when running the airflow limi-
tation analysis among never-smokers as classified by 
the EpiSmokEr tool, no smoking-related genes were 
selected. Second-hand smoke exposure might be respon-
sible for the effect of AHRR in airflow limitation among 
self-reported never smokers. Further studies are needed 
to investigate the role of the AHRR gene in lung disease 
beyond smoking.

This is, to our knowledge, the first epigenome-wide 
association study with the main focus on lung function 
conducted in a population of American Indians. We 
found four previous epigenome-wide association studies 
of lung function with spirometry measurements in other 
adult populations. One did not report any significant 
associations (N = 1091) [52]. The second one was con-
ducted in a population of female twins in 2012, and only 
found one DMR associated with FEV1 and FVC anno-
tated to the gene WT1, which was not replicated in our 
population [53]. In 2018, another EWAS of lung function 
was conducted in two cohorts. Three CpG sites associ-
ated with lung function were consistently found in the 
two cohorts [51]. Only one (cg05575921, annotated to 
AHRR) was replicated in our study. Last, another EWAS 
was conducted in eight cohorts (three discovery cohorts 
and five replication cohorts) in 2019 [36], our results are 
highly consistent with the findings of this recent EWAS, 
with nine CpGs associated with lung function being rep-
licated in our population (Table 4), and many more at the 
gene level. Although several other epigenome-wide asso-
ciation studies in lung function have been conducted, 
they were conducted in specific populations such as 
children [54], individuals with chronic obstructive pul-
monary disease [55], individuals with HIV [56] or never 
smokers [57]. Findings for these specific populations 
might not be generalizable. Nevertheless, many differen-
tially methylated positions found in these studies over-
lapped with our findings. For instance, eight of the top 
sites found in the never-smokers EWAS of lung function 
were replicated in our population, which might indicate 
that the epigenomic signature of lung function is also sta-
ble across different population groups. A meta-analysis 
was conducted among Mexican American and Puerto 
Rican children [58]. Among the genes identified, only 
the gene TBC1D16 was replicated in our population as 
associated with restrictive pattern. In addition, another 
meta-analysis conducted by Machin et  al. did not find 
any consistent CpG sites across the six articles assessed 
for either chronic obstructive pulmonary disease or lung 
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function, which suggests that part of the epigenomic sig-
nature of lung function might also be specific to popula-
tions. [9]

This work has some limitations. First, only 1677 of the 
SHS participants were included, which might induce 
some bias among those who were excluded due to not 
meeting spirometry quality standards. We were also 
unable to use the lower limit of normal to classify airflow 
limitation and restriction due to sample size contraints. 
In addition, we only have one measure of spirometry and 
we lack other clinical information, therefore, we cannot 
discard potential measurement errors. DNA methylation 
is highly cell-type specific and results from blood cells 
might not be comparable to DNA methylation in other 
tissues such as lung. However, the biological plausibil-
ity of the findings suggests that blood DNA methylation 
might be relevant for chronic lung disease. Longitudinal 
and experimental studies are needed to assess the direc-
tionality of the findings. Strengths of this work include 
using one of the largest methylation arrays currently 
available in microarray technology (the EPIC array), the 
large sample size in an indigenous population, measure-
ment of spirometry-defined lung disease, and innova-
tive statistical methods that allow evaluating the effect of 
methylation sites jointly instead of individually.

In conclusion, we found several differentially methyl-
ated positions for FEV1, FVC, FEV1/FVC, obstructive 
pattern and restrictive pattern, with several genes point-
ing to biological pathways related to lung disease includ-
ing protein kinases, which are therapeutic targets for 
lung disease. Further studies are needed to investigate the 
potential mechanistic role of DNAm in lung disease.
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