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Genome‑wide promoter methylation 
profiling in a cellular model of melanoma 
progression reveals markers of malignancy 
and metastasis that predict melanoma survival
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Abstract 

The epigenetic changes associated with melanoma progression to advanced and metastatic stages are still poorly 
understood. To shed light on the CpG methylation dynamics during melanoma development, we analyzed the 
methylome profiles of a four-stage cell line model of melanoma progression: non-tumorigenic melanocytes (melan-
a), premalignant melanocytes (4C), non-metastatic melanoma cells (4C11−), and metastatic melanoma cells (4C11+). 
We identified 540 hypo- and 37 hypermethylated gene promoters that together characterized a malignancy sig-
nature, and 646 hypo- and 520 hypermethylated promoters that distinguished a metastasis signature. Differentially 
methylated genes from these signatures were correlated with overall survival using TCGA-SKCM methylation data. 
Moreover, multivariate Cox analyses with LASSO regularization identified panels of 33 and 31 CpGs, respectively, from 
the malignancy and metastasis signatures that predicted poor survival. We found a concordant relationship between 
DNA methylation and transcriptional levels for genes from the malignancy (Pyroxd2 and Ptgfrn) and metastasis (Arnt2, 
Igfbp4 and Ptprf) signatures, which were both also correlated with melanoma prognosis. Altogether, this study reveals 
novel CpGs methylation markers associated with malignancy and metastasis that collectively could improve the sur-
vival prediction of melanoma patients.
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Introduction
Cutaneous melanoma is a type of skin cancer arising from 
the malignant transformation of melanocytes. According 
to the World Health Organization, the worldwide inci-
dence of melanoma surpasses 132,000 cases per year. 
Despite melanoma having a low incidence compared to 
other types of skin cancer, its aggressive behavior and 

potential to develop metastasis results in a high incidence 
of deaths when detected in later stages [1, 2].

DNA methylation is a well-studied epigenetic mark 
characterized by the incorporation of a methyl group 
to cytosines by DNA methyltransferases (DNMTs). In 
cancer cells, abnormal methylation patterns can lead to 
genome instability, oncogene expression, and silencing of 
tumor suppressor genes. While cancer cells are charac-
terized by global DNA hypomethylation, the hypermeth-
ylation of gene promoters has an essential role in gene 
silencing and impaired cell proliferation [6]. In mela-
noma, epigenetic abnormalities occur along with genetic 
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alterations. Changes in methylation patterns have already 
been described, including hypermethylation of tumor 
suppressor genes such as PTEN and RAR-b2, and hypo-
methylation of repetitive elements and oncogenes, such 
as MAGE and GAGE families of cancer-testis genes [7–
9]. Besides the existing DNA methylation data in mela-
noma, the dynamics of those alterations along tumoral 
progression is still widely unknown.

Studies using melanoma tumor samples have the 
downside of including stromal and infiltrating immune 
cells along with melanoma cells, which can mask the dis-
covery of specific cancer cell biomarkers [12, 13]. Even 
studies conducted in recent years using single-cell tech-
nology have not yet achieved a good resolution and scala-
bility to detect genome alterations that could be achieved 
only by using bulk methods [14]. To get insights into the 
dynamic alterations of DNA methylation occurring along 
with melanoma progression, we have studied epigenetic 
changes using a four-stage cellular model developed by 
our group [15, 16]. This model comprises different cell 
lines representing the main steps of melanoma progres-
sion: non-tumorigenic melanocytes (melan-a), prema-
lignant melanocytes (4C), non-metastatic (4C11−), and 
metastatic (4C11+) melanoma cells. The in  vitro char-
acterization of the model has found that the 4C cell line 
resembles premalignant melanocytes (i.e., non-trans-
formed, mesenchymal-like and undifferentiated cells), 
whereas 4C11− are non-metastatic, mesenchymal-like 
and undifferentiated melanoma cells, and 4C11+ as 
metastatic, highly proliferative and differentiated mela-
noma cells [17–22, summarized information may be 
found in the Table  S8 in [16]]. A progressive global 
DNA hypomethylation was observed during melan-a 
malignant transformation, and both protein level and 
mRNA expression of DNMTs were previously shown to 
be altered among cell lines [21]. These results show that 
epigenetic marks are involved in the malignant transfor-
mation of melanocytes in this model [16]. Corroborating 
our findings, Preston-Alp and colleagues revealed DNA 
methylation as a key molecular mechanism of mela-
nomagenesis induced by UV radiation (UVR) [23]. The 
authors showed that UVR directly causes stable changes 
in the DNA methylome and transcriptome, which affect 
signaling pathways with role in melanocyte biology. More 
importantly, these alterations correlate to methylation 
changes observed in melanoma.

Considering the potential of this melanoma progres-
sion model to better understand the malignant transfor-
mation of melanocytes up to intermediate and metastatic 
stages, we analyzed here the genome-wide methylation 
patterns of CpG-rich areas of the four cell lines using the 
method of Enhanced Reduced Representation Bisulfite 
Sequencing (ERRBS) [24]. Then, we evaluated CpG sites 

in promoter regions to discover epigenetically regulated 
genes associated with malignancy and metastasis. To 
identify these alterations, we have taken two approaches: 
first, we compared the CpG methylation profile of melan-
a cells with those of 4C, 4C11− and 4C11+ to identify 
genes altered during the malignant transformation of 
melanocytes (malignancy signature). Second, we iden-
tified CpG markers and genes that could be specifically 
related to the aggressive features of metastatic cell line 
4C11+ (metastasis signature). Using these signatures, 
we have conducted a multivariate survival analysis using 
the TCGA-SKCM cohort and found 140 genes present-
ing at least 2 CpGs as potential methylation biomark-
ers for melanoma patients’ prognosis. Furthermore, we 
discovered CpG methylation panels which provide risk 
scores with prognostic value for melanoma malignancy 
and metastasization. In summary, we have identified 
potential genes regulated by CpG methylation and, more 
importantly, CpG methylation signatures with potential 
prognostic value by providing risk scores associated with 
melanoma malignancy and metastasis.

Results
DNA methylation profiling of cell lines corresponding 
to different stages of melanoma progression
The DNA methylation profiling of the cell lines in the 
model—melan-a, non-tumorigenic melanocytes [25]; 4C, 
premalignant melanocytes; 4C11−, non-metastatic mela-
noma cells; and 4C11+, metastatic melanoma cells [15, 
16, 20]—was performed using ERRBS [24], a technique 
developed to obtain the methylation status of CpGs at 
base-pair level, with a focus in CpG islands and shores. 
An average of 1,406,315 cytosines (with a standard devia-
tion of 31,656) in CpG context at minimum 10X cover-
age was uncovered for each sample. The mapping to the 
bisulfite converted mouse genome (mm10 assembly) 
using Bismark [26] had an efficiency of 71% on average. 
As expected, a bimodal distribution of the methylation 
status was observed for all cell lines, with peaks in 0 and 
100% methylation (Additional file 7: Figure S1).

A methylation average of 47.4% was obtained among 
CpGs for melan-a melanocytes, whereas 35.8% for 4C, 
34.2% for 4C11−, and 36.8% for 4C11+ cell lines. A 
similar pattern was obtained when analyzing the global 
content of 5-methylcytosines by HPLC, as shown in 
Fig. 1A. Methylated cytosines are averaged in 4% of the 
genome for melan-a lineage and 3.8% for the other cell 
lines (ANOVA test F = 1.273, p-value = 0.38). The princi-
pal component analysis of these data (Fig. 1B) effectively 
clustered the biological replicates from the same cell 
lines. Also, it revealed that the DNA methylation status 
discriminates each cell line from our model, with pre-
malignant 4C and malignant non-metastatic 4C11− cell 
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lines displaying similar overall methylation values. This 
could also be observed by the patterns shown in the heat-
map (Fig. 1C), which also include an unsupervised hier-
archical clustering that clear stratifies the samples based 
on their respective cell lines, and also clusters together 
4C and 4C11− cells, the two cell lines with similar undif-
ferentiated/mesenchymal phenotype [21].

The distribution of CpG methylation across the genome 
in different stages of melanoma progression
The differential methylation analysis was conducted 
using the package methylKit [27] in the R environment 
[28], with multiple hypotheses testing correction by 
the SLIM method [29]. CpGs with a q-value less than 

0.01 and percentage of differential methylation higher 
than 25% were selected. An overview of the compara-
tive results between the four cell lines from the model 
can be seen in Fig.  2 and Additional file  8: Figure S2. 
Additional file  8: Figure S2 contains the heatmaps for 
pairwise comparisons between the cell lines. A scheme 
of melanoma model progression can be seen in Fig. 2A, 
depicting the stepwise transformation of the cells start-
ing from the non-tumorigenic melanocytes melan-a. 
The comparison between 4C, the premalignant mel-
anocyte lineage and melan-a, the non-tumorigenic 
parental melanocyte lineage, showed more hypometh-
ylated (51,563) than hypermethylated CpGs (9,190) 
(Fig. 2B), both equally distributed between CpG islands 

Fig. 1  Distinct methylation patterns characterize cell lines representing melanoma progression. A. Global DNA methylation content analyzed 
by HPLC shows the percentage of 5-methylcytosine in the genome for two biological replicates from the cell lines melan-a, 4C, 4C11−, 4C11+. 
B. Principal component analysis of DNA methylation data from three biological samples of the melan-a, 4C, 4C11− and 4C11+ cell lines shows 
close values of Principal Components 1 and 2 for samples from the same cell line. C. A heatmap represented with light yellow for regions with 
low methylation and dark blue for regions with high methylation shows the top most variant regions of 1,000 bp for each sample. Unsupervised 
hierarchical clustering in the upper part of the heatmap groups 4C and 4C11− in a common branch closer to 4C11 + than melan-a melanocytes. 
melan-a: non-tumorigenic melanocyte lineage; 4C: premalignant melanocyte lineage; 4C11−: non-metastatic melanoma cell line; 4C11 + : 
metastatic melanoma cell line
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Fig. 2  The pattern of differentially methylated CpGs distributed across genomic features and transcription features. A Cell lines used in this study 
that represent different stages of melanoma progression. B Number of hypermethylated (red) and hypomethylated (blue) individual cytosines 
in CpG context per pairwise comparison among all the four cell lines. DMCs according to their location in islands, shores, and other regions are 
represented in C, D, and E, respectively. Annotation of all hypomethylated (F) and hypermethylated (G) CpGs by region related to transcription: 
promoter (salmon), exon (blue), intron (green) and intergenic (purple) for each pairwise comparison
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and other regions, and less among CpG shores (Fig. 2C, 
D, E, respectively). In parallel, the comparison between 
the intermediate stages of the model, i.e., between 
non-metastatic melanoma 4C11− and premalignant 
4C cell lines, which display epithelial-to-mesenchymal 
transition features, had the lowest number of differen-
tially methylated cytosines (DMCs) (18,549) (Fig.  2B). 
DMCs in other regions of the genome not including 
CpG islands and shores were more frequent seen in 
this comparison (Fig.  2C, D, E). Finally, the pairwise 
comparison between the metastatic 4C11+ and the 
non-metastatic 4C11− melanoma cell lines revealed 
the highest number of DMCs (131,202) (Fig. 2B). More 
than half of the hypermethylated cytosines (41,912) 
were located in CpG islands (Fig. 2C, D, E).

The comparison between melan-a and 4C11+ cells 
displayed 22.4% of differentially hypermethylated CpGs 
(21,092) (Fig.  2B), most of them located in CpG islands 
(14,592) (Fig. 2C, D, E). The comparison between 4 and 
4C11+ cells showed similar results to those obtained in 
the comparison between 4C11− and 4C11+ (140,261 
DMCs). An even distribution between CpGs that gained 
or lost methylation was observed in this comparison, 
with the hypermethylated CpGs concentrated in CpG 
islands (Fig.  2C, D, E E). Last, the pairwise comparison 
between the 4C11− cell line and melan-a cells revealed 
a similar pattern to the one found between melan-a and 
4C cells. Most differentially methylated CpGs found were 
hypomethylated in 4C11− cells (Fig. 2B) and only ~ 11% 
were located in shores (Fig. 2C, D, E).

We also categorized DMCs according to their tran-
script annotation (promoter, exon, intron or intergenic). 
The sum of the percentages shown in Figs.  2F (hypo-
methylated CpGs) and 2G (hypermethylated CpGs) does 
not total 100% because there is an overlap between tran-
scriptional regions annotated in the genome (for exam-
ple, between first exons and promoters).

For hypomethylated CpGs, we observed a similar distri-
bution of differential CpGs in the promoter, exon, intron, 
and intergenic regions across all comparisons, except for 
the comparison between 4C11− and 4C (Fig.  2F). All 
comparisons showed a higher frequency of differential 
CpGs in the promoter regions (41–43%), except for the 
comparison between 4C11− and 4C, in which they were 
more located at intergenic regions. For the hypermethyl-
ated CpGs, there was a more heterogeneous distribution 
of CpGs across the transcript annotations, with the most 
considerable portion of CpGs annotated to promoter 
regions in all comparisons against the metastasis-prone 
4C11 + cell line. In particular, the pairwise comparison 
between melan-a and 4C11 + cells exhibited the most 
extensive annotation of differentially methylated CpGs 
is in promoter (59%) and exon regions (41%). These exon 

regions probably comprise the first exons of the related 
transcripts, which also include promoter regions.

Genes characterized by differential CpG promoter 
methylation during melanoma progression
We next decided to identify potential genes associated 
with melanoma progression that could be epigenetically 
regulated by CpG methylation in promoter regions. The 
CpGs located in the region from -500 to 500 nucleotides 
surrounding the TSS (transcription start site) and genes 
with more than three differentially methylated CpGs 
were considered in the selection of the relevant genes. 
The genes with differentially methylated CpGs in their 
promoter regions are referred hereafter as differentially 
methylated genes. The complete list of identified genes 
and CpG sites can be found in Additional file 1: Table S1.

The number of hypermethylated and hypomethyl-
ated genes in each pairwise comparison is indicated in 
Fig.  3A; these numbers have followed the same pattern 
observed in Fig.  2A across the same pairwise compari-
sons. In addition, the distribution of the number of CpGs 
in each annotated gene at each pairwise comparison can 
be seen in Fig. 3B. All pairwise comparisons containing 
the metastatic 4C11 + cell had few genes with more than 
100 CpGs hyper- or hypomethylated.

Gene signatures associated with DNA methylation 
changes occurring in early and late stages of melanoma 
progression
We sought to identify gene signatures associated with 
promoter methylation alterations occurring early in 
malignant transformation (4C pre-malignant cells) and 
lasting until late stages of melanoma progression (4C11− 
and 4C11 + melanoma cells). To accomplish that, we 
conducted an intersection analysis of the differentially 
methylated genes identified in the pairwise comparisons 
against melan-a to identify a malignant transformation 
signature. Five hundred and forty hypomethylated genes 
and 37 hypermethylated common genes were identified 
in this analysis (Fig. 4A, B). Functional enrichment analy-
ses were conducted using the software clusterProfiler 
[30] and the database Gene Ontology (Biological Pro-
cess), and significantly enriched functions were selected 
based on FDR corrected p-values. Among the hypometh-
ylated genes, the most significantly enriched functions 
were related to negative regulation of cell development, 
nervous system development, and neurogenesis (Fig. 4C), 
which indicate the role of epigenetic regulation in cell 
dedifferentiation that occurs along melanoma progres-
sion. Moreover, the most significantly enriched func-
tions among the hypermethylated genes were involved in 
ossification, cartilage development and cyclic nucleotide 
metabolic process (Fig. 4D).
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In parallel, we decided to investigate hyper- and hypo-
methylated genes in the metastatic 4C11 + cell line 
compared to the other three non-metastatic cell lines 
(melan-a, 4C and 4C11−), in the attempt to find genes 
potentially related to metastasis acquisition (metastasis 
signature). Six hundred and forty-six hypomethylated 
(Fig. 5A) and 520 hypermethylated (Fig. 5B) genes were 
found in common between the comparisons 4C11− vs. 
4C11 + , melan-a vs. 4C11 + and 4C vs. 4C11 + . Inde-
pendent functional enrichment analyses were also 
conducted for the hypomethylated (Fig.  5C) and hyper-
methylated (Fig. 5D) genes. Among the hypermethylated 

genes, significantly enriched GO terms were associated 
with nervous system development: axon development, 
axonogenesis, axon guidance, neuron projection guid-
ance, and neuron fate commitment. Conversely, the 
hypomethylated genes in the metastasis signature were 
related to cell–matrix adhesion, as well as to the negative 
regulation of nervous system development.

DNA methylation alterations as independent prognostic 
markers for melanoma survival
To further investigate the relationships between the 
DMCs and their potentially regulated genes identified in 
the murine model with melanoma patient data, we per-
formed overall survival analyses using cutaneous mela-
noma data from TCGA (TCGA-SKCM). Additional file 6: 
Table  S6 contains a list of all ERRBS CpGs annotated 
to mouse genes and the ortholog human gene with the 
respective Infinium 450 k CpG probes. Using the meth-
Surv tool, we obtained Hazard Ratios (HR) and respec-
tive p-values for all the TCGA-SKCM’s CpGs annotated 
to the ortholog genes to the hyper- and hypomethylated 
genes in the malignancy and metastasis signatures. We 
obtained statistically significant CpGs (adjusted p-val-
ues ≤ 0.01) associated with overall survival, resulting in 
19 hyper- and 224 hypomethylated CpGs in the malig-
nancy signature, and 330 hyper- and 253 hypomethylated 
CpGs in the metastasis signature (Fig. 6A, and Additional 
file 2: Table S2).We next analyzed the statistically signifi-
cant CpGs according to their location in islands, shores, 
shelves and open seas. Interestingly, the number of 
hypermethylated CpGs correlating with patients’ survival 
in the metastasis signature were concentrated in islands 
(167 CpGs), followed by open seas (70 CpGs) and N- (53 
CpGs) and S-shores. This same pattern was seen among 
the hypomethylated CpGs with prognostic value from 
the metastasis signature; which were also found enriched 
in islands (94 CpGs), followed by open seas (71 CpGs), 
and N- (45 CpGs) and S-shores (31 CpGs). In the malig-
nancy signature, open seas and islands sites hosted the 
most hypermethylated CpGs (7 CpGs each). In contrast, 
more hypomethylated CpGs correlating with survival 
were found in islands (85 CpGs), open seas (65 CpGs) 
and N- (29 CpGs) and S-shores (33 CpGs) (Fig.  6A). 
Nevertheless, the differences between regions in each 
signature were not significant (Fisher test, malignancy: 
p-value = 0.944, and metastasis p-value = 0.3571).

We also verified if the CpGs with prognostic value 
would be enriched in specific genomic locations. Inter-
estingly, in both malignancy and metastasis signatures, 
the hyper- and hypomethylated CpGs significantly corre-
lated with good prognosis were located mainly in islands, 
whereas those correlating with poor survival were pre-
dominantly in open seas (Fisher test, hypermethylated 

Fig. 3  Genes and CpG sites annotated as differentially methylated 
in each pairwise comparison. A Number of hypermethylated and 
hypomethylated genes per pairwise comparison. Differentially 
methylated genes were considered as those with differentially 
methylated CpG sites between 500 bp up and downstream of the 
TSS, and a minimum of three differentially methylated CpGs. B 
Frequencies of CpG count per gene for each pairwise comparison, 
with peaks around five cytosines having the greatest number of 
differentially methylated genes



Page 7 of 20Rius et al. Clinical Epigenetics           (2022) 14:68 	

Fig. 4  DNA methylation signature associated with melanocyte malignant transformation (malignancy signature). Venn diagram of hypomethylated 
(A) and hypermethylated (B) genes in common between pairwise comparisons of 4C, 4C11− and 4C11 + versus melan-a cell line. Enrichment plots 
showing the pathways enriched in Gene Ontology: Biological Process for hypomethylated (C) and hypermethylated (D) genes
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Fig. 5  DNA methylation signature associated with metastasis (metastasis signature). Venn diagrams of hypomethylated (A) and hypermethylated 
(B) genes only in the metastatic 4C11 + melanoma cell line compared to non-metastatic melan-a, 4C and 4C11− cell lines. Enrichment plots 
showing the pathways enriched in Gene Ontology: Biological Process for hypomethylated (C) and hypermethylated (D) genes
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in malignancy: p-value = 0.1837, hypomethylated in 
malignancy: p-value = 6.243–12, hypermethylated in 
metastasis: p-value = 0.0004998, and hypomethylated in 
metastasis: p-value = 2.333–5) (Fig. 6B).

We also explored the genes whose CpG methylation 
patterns were related to survival in each signature; a 
subset of genes containing at least 2 CpGs with signifi-
cant Cox proportional-hazards models was selected in 
each signature (Fig. 6C). There were 140 (77 hyper- and 
63 hypomethylated) genes identified in the metastasis 
signature and 55 (5 hyper- and 50 hypomethylated) 
genes identified in the malignancy signature (Addi-
tional file  3: Table  S3). Then, only those differentially 
methylated genes present in similar signatures (malig-
nancy or metastasis) based on gene expression lev-
els (Additional file  5: Tables S5 and Additional file  6: 

Table  S6 from [16]) and with an inverse relationship 
between expression and DNA methylation patterns 
were chosen for further evaluation. Finally, the analy-
sis of the prognostic value of these genes based on 
expression levels was also used to guide gene selection 
using previous information from the Leeds Melanoma 
Cohort (Table  S8 from [16]; European Genome-Phe-
nome Archive accession number EGAS00001002922), 
which consists of molecular date from 703 treatment-
naïve primary melanoma patients.

Based on the above criteria, TBC1D9 was selected from 
the hypermethylated subset, and four genes (P2RX7, 
PRDM1, PTGFRN and PYROXD2) were selected from 
the hypomethylated group in the malignancy signa-
ture. In the metastatic signature, six genes were selected 
from those hypermethylated (FAM107B, LMX1B, MKX, 
MYH10, PTPRF and ZBTB16), and eight (ADSSL1, 

Fig. 6  Distribution of hyper- and hypomethylated CpGs correlated with melanoma patients’ outcomes according to their genome location 
and number of associated genes. A The number of hyper- and hypomethylated CpGs correlated with overall survival is shown according 
to their location in islands, shores, shelves and open sea regions, for malignancy and metastasis signatures. B The distribution of hyper- and 
hypomethylated CpGs along genomic regions is shown according to their correlation with a good or poor prognosis for malignancy and metastasis 
signatures. C. The number of genes from both signatures containing at least two CpGs correlating with melanoma patient outcome is shown
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ARNT2, CHN2, DIXDC1, IGFBP4, LMX1B, PCDHGB2 
and TBX15) from those hypomethylated..

No genes from the malignancy signature, both from 
hypo- or hypermethylation subsets, presented expres-
sion levels associated with prognostic value. However, 
for the metastatic signature, the hypermethylated genes 
FAM107B, PTPRF and ZBTB16 had their low expres-
sion correlated with poor overall survival, and the hypo-
methylated genes ARNT2, IGFBP4 and CHN2 had their 
expression levels related to prognostic value. Although 
no gene from the malignancy signature had its expres-
sion correlated with patient survival, we decided to select 
PYROXD2 and PTGFRN for additional analysis (Fig. 7).

Among the genes in the malignancy signature, we have 
confirmed that Pyrodx2 and Ptgfrn have increased gene 
expression in all cell lines compared to melan-a (Fig. 7A), 
which is in line with the hypomethylation of individual 
CpGs in their promoter regions in all cell lines compared 
to melan-a (Fig.  7B). In order to evaluate the effect of 
DNA methylation on gene expression, the cell lines were 
treated with the demethylating agent, 5-aza-2’-deoxy-
cytydine (5azaCdR). These genes, highly expressed and 
hypomethylated in 4C, 4C11− and 4C11− cells com-
pared to melan-a melanocytes, were not derepressed in 
melan-a cells after 5azaCdR treatment (Additional file 3: 
Figure S3).

The survival analyses of two CpGs located in the first 
exons of these genes can be seen in Fig.  7C. Methyla-
tion of the PYRODX2 CpGs identified by the probe IDs 
cg22752023 and cg08397758 independently classify a 
group of patients with better survival. The same good 
prognosis profile is seen for the hypomethylation of PTG-
FRN CpGs cg12406825 and cg03752628, located, respec-
tively, at a distance of 1500  bp from the TSS, in a CpG 
island, and in the gene body, in a south shore.

In the metastasis signature, Arnt2 and Igfbp4 genes, 
highly expressed (Fig. 8A) and hypomethylated (Fig. 8B) 
only in 4C11 + metastatic melanoma cells compared to 
melan-a, 4C and 4C11− cells, had their expression sig-
nificantly increased in melan-a, 4C and 4C11− cells after 
5azaCdR and 5azaCdR + TSA treatment (Fig.  8C). For 
both genes, 5azaCdR treatment significantly reverted the 
gene silencing in melan-a cells, while 5azaCdR + TSA 
in 4C11 + melanoma cells. In parallel, for Ptprf gene, 
not expressed in metastatic 4C11 + cells compared to 
melan-a, 4C and 4C11− cells and presenting concord-
ant increased methylation in almost all CpGs located in 
the promoter region (Fig. 8A, B, respectively), the treat-
ment with 5azaCdR was able to revert gene silencing in 
4C11 + cells (Fig.  8C). Survival analyses showed that 
the hypermethylation of ARNT2 CpGs in the gene body 
region correlates with poor survival (Fig. 8D). This is in 

Fig. 7  Genes from the malignancy signature presenting CpGs’ methylation status with significant prognostic value. Pyrodx2 and Ptgfrn are shown 
for gene expression (A) and CpG methylation (B) in melan-a, 4C, 4C11− and 4C11+ cell lines. C. Kaplan–Meier plots show the result of overall 
survival analysis conducted in patients from the TCGA-SKCM cohort, with samples split by CpG methylation status for CpGs of the respective genes. 
Gene expression is shown as raw fragment counts, with the bar representing standard error. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 for 
ANOVA statistical test. CpG methylation sites for the promoter region of the genes are shown as methylated (black circle) for ≥ 70% methylation 
and white circles for < 70% methylation
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line with the finding that methylation in the body of this 
gene is correlated to its higher expression [5; 32–36]. For 
the IGFBP4 gene, the hypermethylation of two CpGs, 
once located in the 1500  bp distance from the TSS, in 
a north shore, and another located 200  bp of the TSS, 
inside a CpG island, predicted good patient survival out-
comes (Fig.  8D). Interestingly, the methylation status of 
two CpGs from PTPRF exhibited different outcomes for 
patient survival: cg05661060, located in the gene body, in 
a shelf region, is hypomethylated in the patient subgroup 
with poor survival. In contrast, cg06796515 (located 
on an island) is hypermethylated in patients with poor 
prognosis.

Multi‑CpG methylation panels of malignancy 
and metastasis markers discriminate patient prognosis
After analyzing the importance of single CpGs methyla-
tion status to patient survival, we decided to investigate 
the combined prognostic value of a panel of CpG meth-
ylation sites and build more accurate Cox proportional-
hazard multivariate models for melanoma prognosis 
based on the malignancy and metastasis CpG signatures. 
The characteristics of the patients selected for the models 
are described in Additional file 4: Table S4.

To determine the subset of relevant predictor vari-
ables and avoid overfitting in the Cox model, a LASSO 
regularization step was applied to employ only vari-
ables with non-zero coefficients in the final Cox survival 
model. This final Cox model was built using the survival 
R package with the selected CpGs as input. The HR was 
obtained, along with respective coefficients and p-values, 
corrected using the Benjamini–Hochberg method for 
multiple testing hypotheses. Furthermore, the significant 
CpGs (p-adjusted ≤ 0.05) were selected to compose the 
panels for malignancy and metastasis signatures, total-
izing 33 CpGs in the malignancy (Table 1) and 31 CpGs 
in the metastasis signature (Table  2). The complete set 
of the CpGs and covariates used in both models can be 
found in the Additional file 5: Table S5.

Interestingly, there were two CpGs in common among 
the signatures: cg00478851 and cg01607369. The first 
CpG exhibited the same direction of methylation regu-
lation, while the second showed opposite directions 
between the two signatures. cg00478851 is present within 
a distance of 1500 base pairs from the TSS of PPFIBP2, 
in a north shore of the closest CpG island; it has HR 

values of 3.6 and 2.5, respectively, in the malignancy 
and metastasis signatures, showing its importance for 
both tumor initiation and metastasization. On the other 
hand, cg01607369, which is located in the gene body of 
PPFIBP2, and an open sea region, had an HR of 0.3 in the 
malignancy but a HR equal of 2.9 in the metastasis sig-
nature; it may be concluded that its methylation status is 
associated with better prognosis during tumor initiation 
but with worse prognosis at the metastatic state.

The regression coefficients from the CpGs in the Cox 
multi-CpGs models were used as weights to their respec-
tive methylation β-values to calculate a risk score per 
patient using either the malignancy or metastasis signa-
tures. The Kaplan–Meier survival curves from patients 
stratified on by high- and low-risk score groups based 
on the median value are shown in Fig. 9 (log-rank malig-
nancy p-value = 1e-11, metastasis p-value = 2e-13), dem-
onstrating the accuracy of both CpG panels in correctly 
predicting patient prognosis.

Discussion
In this work, we analyzed the dynamics of DNA meth-
ylation patterns in a murine cellular model of melanoma 
progression. In addition to genetic and chromosomal 
alterations occurring throughout melanoma progression, 
it is well accepted that epigenetic alterations play a role 
in tumorigenesis by either promoter hypermethylation 
of tumor suppressor genes or global hypomethylation. 
These epigenetic changes collectively induce an unstable 
genomic state, prone to genomic mutations and expres-
sion of transposable elements [36–38].

Despite different studies having described DNA meth-
ylation alterations in melanomas, few of them have evalu-
ated these alterations in samples or cells with similar 
genetic backgrounds corresponding to different stages 
of melanoma progression. To fill this gap, we have per-
formed a differential methylation analysis using pairwise 
comparisons between cell lines representing distinct 
stages of a linear model of melanoma progression. This 
analysis has provided vital information about the CpG 
methylation dynamics occurring in each step of the mela-
noma progression.

All cell lines (premalignant 4C, non-metastatic 
4C11−, and metastatic 4C11 +) derived from the 
melan-a melanocyte lineage showed progressively more 
hypomethylated CpGs concentrated in gene promoters 

(See figure on next page.)
Fig. 8  Genes from the metastasis signature with CpGs methylation status correlated with melanoma patient survival. The genes Arnt2, Igfbp4, and 
Ptprf are shown for gene expression (A, E and I, respectively) and CpG methylation (B, F and J, respectively) in melan-a, 4C, 4C11− and 4C11+ cell 
lines. C, F and K. Cell lines presenting, respectively, low Arnt2, Igfpb4 and Ptprf expression were treated for 48 h only with 5azaCdR or for additional 
18 h with Trichostatin A (TSA) and had their expression evaluated by RT-qPCR. D, H and L. Kaplan–Meier plots show the result of overall survival 
analysis conducted in patients from the TCGA-SKCM cohort, with samples split by CpG methylation status for CpGs of the respective genes. Gene 
expression is shown as raw fragment counts, with the bar representing standard error
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Fig. 8  (See legend on previous page.)



Page 13 of 20Rius et al. Clinical Epigenetics           (2022) 14:68 	

and equally distributed in either CpG islands or regions 
not including islands or shores (called “open sea”). This 
observation is in line with the findings from Ecsedi 
and colleagues, in which decreased promoter methyla-
tion was correlated with increased Breslow thickness 
in melanomas [39]. Opposingly, the hypermethyla-
tion of upstream regulatory regions of genes and the 
hypomethylation of repetitive genome elements have 

been described in melanoma cell lines correspond-
ing to stages III and IV compared to normal melano-
cytes [40]. Another study classified melanomas in three 
groups, presenting high, intermediate, and low meth-
ylation in promoter regions. It showed that most of 
them were categorized in the high methylation group 
[41]. These contradictory results could be related to cell 
lines and/or tumor samples corresponding to different 
melanoma stages. In addition, melanoma tissue speci-
mens, a diversity of patient treatment procedures could 
contribute to the heterogeneous molecular alterations 
observed in different studies. Moreover, adjacent tissue 

Table 1  Significant covariables in malignancy signature Cox 
model

Table containing CpGs whose methylation was used to compose the risk score 
of malignancy signature plus the co-variables age, gender, and Breslow depth, 
all significant from the Cox model of malignancy signature

Name UCSC_RefGene_Name coef HR p.adj

age_at_diagnosis NA 0.063 1.065 0.000

breslow_thick-
ness_at_diagnosis

NA 0.640 1.896 0.003

cg00033516 FLJ13197; KLF3 1.703 5.490 0.000

cg00144186 FJX1 − 0.775 0.461 0.043

cg00478851 PPFIBP2 1.274 3.575 0.000

cg00489485 WFDC1 0.723 2.061 0.020

cg01607369 PPFIBP2 − 1.217 0.296 0.001

cg03600687 BOK − 0.910 0.402 0.049

cg04086443 PHGDH 0.717 2.048 0.048

cg05358729 RAB11FIP4 1.377 3.962 0.013

cg06973225 SDC3 − 0.928 0.395 0.049

cg07590102 CDKL5 − 1.767 0.171 0.000

cg08034797 SEPT9 0.602 1.826 0.043

cg08892078 KLHDC8A − 1.379 0.252 0.001

cg08963581 ZFHX3 0.517 1.677 0.043

cg09070371 HS3ST6 0.759 2.136 0.043

cg10238675 CUX2 0.721 2.056 0.004

cg10581650 MIR1287; PYROXD2 0.993 2.699 0.005

cg12368542 TRIM13; DLEU2 − 1.342 0.261 0.013

cg13206063 MICAL1 − 2.023 0.132 0.000

cg13601997 LMX1B − 1.280 0.278 0.013

cg13786722 FMN1 1.166 3.210 0.007

cg13935009 CDK18 − 0.936 0.392 0.003

cg16353361 APLN 1.087 2.965 0.003

cg17498321 NOTCH3 − 0.900 0.406 0.015

cg18189288 SPATS2L 0.383 1.467 0.048

cg18329187 CKB 1.387 4.001 0.001

cg19802865 FOXA1 0.686 1.986 0.007

cg21079003 RGMA 1.164 3.203 0.003

cg21642988 DNAJA4 − 0.868 0.420 0.007

cg23109191 GAB2 0.633 1.883 0.007

cg25244036 MAPK4 − 1.475 0.229 0.013

cg25318211 MICAL1 1.154 3.171 0.001

cg26604214 RAP1GAP2 − 0.840 0.432 0.020

cg27417997 SHROOM3 − 0.831 0.436 0.013

gender NA − 1.389 0.249 0.021

Table 2  Significant covariables in metastasis signature Cox 
model

Table containing CpGs whose methylation was used to compose the risk score 
of metastasis signature plus the co-variable age, significant from the Cox model 
of metastasis signature

Name UCSC_RefGene_Name coef HR p.adj

age_at_diagnosis NA 0.130 1.138 0.000

cg00263760 VAX1 1.019 2.771 0.008

cg00478851 PPFIBP2 0.921 2.511 0.040

cg00562312 ADAMTS2 0.817 2.264 0.040

cg00807464 CUX2 1.151 3.160 0.005

cg01607369 PPFIBP2 1.079 2.943 0.010

cg01965173 RIPPLY2 − 2.296 0.101 0.001

cg03818920 RIPPLY2 1.587 4.891 0.031

cg03847279 FGFRL1 1.547 4.697 0.000

cg05632623 NPTX1 − 2.470 0.085 0.004

cg06103654 DPYSL5 1.111 3.036 0.004

cg06385227 EN2 − 1.416 0.243 0.000

cg09619271 IGFBP3 − 0.652 0.521 0.031

cg11317199 TRIM14 − 0.637 0.529 0.031

cg12094808 FRMD5 − 0.760 0.468 0.031

cg12156672 CDK5R2 − 0.922 0.398 0.031

cg12387713 MSX2 0.877 2.404 0.007

cg13058819 SLC35F3 − 1.230 0.292 0.006

cg14002622 CDK5R2 0.833 2.301 0.006

cg15004938 SYN3; TIMP3 0.928 2.529 0.031

cg16130019 JAZF1 1.029 2.798 0.011

cg16449084 SSH3; ANKRD13D − 0.865 0.421 0.050

cg16603596 RIMKLB − 1.142 0.319 0.028

cg18353826 OLFM2 1.069 2.912 0.004

cg19856252 KY 1.151 3.161 0.007

cg22897522 MYH10 − 1.067 0.344 0.006

cg23123250 SPNS2 0.790 2.202 0.031

cg23372684 COL23A1 − 0.975 0.377 0.030

cg23894948 SLC7A4 1.625 5.080 0.000

cg24647724 DNAH9 − 1.634 0.195 0.004

cg25927375 KIRREL3 0.916 2.500 0.005

cg26057780 BDNF 1.528 4.611 0.006
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and lymphocyte infiltrates can influence the results of 
studies using tissue biopsies [11, 12].

The comparison between the metastatic melanoma cell 
line 4C11 + with premalignant melanocytes 4C and non-
metastatic melanoma cells 4C11− showed hypermethyl-
ated CpGs concentrated mainly in islands and promoter 
regions. This is consistent with the findings of Wouters 
et al., in which higher methylation levels were also seen 
in CpG islands and promoters of metastatic melanomas 
compared to nevi and primary melanomas [42]. In our 
model, 1,351 hypermethylated and 848 hypomethylated 
genes in the comparison between metastatic 4C11 + and 
non-metastatic 4C11− melanoma cells, which could be 
related to the acquisition of metastatic capacity.

Early in melanoma progression (4C vs. melan-a), there 
are many hypomethylated genes, most with a low CpG 
count (Fig.  3B). In the next transition between prema-
lignant (4C) and non-metastatic melanoma cell line 
(4C11−), the number of genes presenting alteration in 
promoter methylation is small. Differences of meth-
ylation per gene do not reach a high number of CpGs 
(Fig.  3). In the metastatic cell line (4C11 +), which rep-
resents the latest stage of progression in our model, both 
hypo- and hypermethylated genes containing high num-
ber of DMCs are present compared to its non-metastatic 
counterpart 4C11−, and also with premalignant 4C and 
melan-a melanocytes.

In the metastatic stage of our model, there were more 
genes with DMCs in their promoters. In a previous study, 
our group showed a higher protein and mRNA expres-
sion of the de novo DNA methyltransferase DNMT3a 
in 4C11 + compared to all the other cell lines. In con-
trast, the maintenance DNA methyltransferase DNMT1 
is highly expressed in all cell lines derived from melan-a 
melanocytes [21]. Zhang and collaborators have shown 
that the ectopic expression of DNMT3a in embryonic 
stem cells leads to the hypermethylation of 5-methylcy-
tosines in the DNA [43]. Therefore, it is possible that the 
hypermethylation state and increased number of meth-
ylated CpGs per gene observed in 4C11 + cells might be 
induced by the increased DNMT3a expression. Never-
theless, more studies would be necessary to confirm this 
hypothesis.

Hypermethylated genes in the metastasis signature 
were enriched with functions related to nervous system 
development. Both peripheral neurons and melanocytes 
are cells that originated from the neural crest; therefore, 
it is reasonable to conceive developmental genes would 
be regulated by epigenetic reprogramming during mela-
noma progression. Numerous developmental genes are 
upregulated in 4C and 4C11− cells in our model, such as 
Twist1, Snai1, Gata4, and Nanog [16]. Moreover, these 
cells exhibit lower expression of E-cadherin and gain of 
N-cadherin expression, leading to the conclusion that 
they undergo cell reprogramming and exhibit a mesen-
chymal and less differentiated phenotype.

The contribution of each discovered DMCs from the 
malignancy and metastasis signatures was assessed in the 
context of melanoma survival, using TCGA-SKCM CpG 
methylation data [44]. There were more CpGs whose 
methylation levels were related to good prognosis, both 
in the malignancy and metastasis signatures. They were 
predominantly hypomethylated in malignancy, simi-
larly to the findings of de Unamuno Bustos et al., where 
the unmethylation of promoter CpG islands of multiple 
genes was associated with good prognosis in a cohort 
containing predominantly primary melanomas (140 of 

Fig. 9  Risk scores for melanoma survival calculated from CpG 
methylation malignancy and metastasis-related panels accurately 
separate samples into low and high-risk groups. Kaplan–Meier 
plots show survival of high and low risk patients according to a (A) 
Malignancy Risk Score (HR = 3.29 [2.48–4.37]), and (B) Metastasis 
Risk Score (HR = 1.84 [1.56–2.16]), both obtained from the respective 
signatures of CpG methylation status, containing, respectively, 33 and 
31 CpGs
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170 samples) [45]. In the metastasis signature, the CpGs 
with good prognostic value were mainly hypermeth-
ylated, in line with the findings of Tanemura and col-
leagues, in which MINT31 gene CpG island methylation 
conferred good prognosis in stage III melanoma [46].

We have found a concordant relationship between 
lower promoter methylation and higher gene expression 
levels for Pyroxd2 and Ptgfrn from the malignancy signa-
ture, which was also associated with the poorest survival 
in melanoma patients (Fig. 7). This is the first time that 
the promoter methylation levels of Pyrodx2 and Ptgfrn 
have been described in melanoma, which could be fur-
ther explored as novel individual biomarkers for this 
disease. PYROXD2 is differentially expressed in basal 
cell carcinoma [47] and is localized in the mitochondrial 
inner membrane, where it is associated with increased 
cell proliferation and ATP production [48], highlighting 
its role in melanoma survival and metabolism.

Notably, PTGFRN is overexpressed in glioblastoma 
multiforme and is associated with poor survival [49]. 
However, its methylation status has not yet been inves-
tigated. Glioblastoma and melanoma are closely related 
types of cancer, both aggressive and with the same devel-
opmental origin from neural crest cells.

We have also investigated the relationship between 
DNA methylation and gene expression levels for three 
genes from the metastasis signature (Arnt2, Igfbp4 and 
Ptprf). Arnt2 expression was increased in the metasta-
sis-prone 4C11 + cells and diminished DNA methyla-
tion compared to the other cell lines (melan-a, 4C and 
4C11−) (Fig.  8). This gene belongs to the bHLH/PAS 
transcription factor family, and its promoter has already 
been demethylated in P19 embryonic carcinoma cells 
[50]. Besides, its higher expression was associated with 
breast cancer metastasis [51] and a tumorigenic molec-
ular signature in glioblastoma [52]. Curiously, we have 
found that methylation alterations in two CpGs at this 
gene body correlated with poor survival. Indeed, there 
is consistent evidence about the positive correlation 
between methylation at a gene body and increased gene 
expression [31–36].

IGFBP4, a member of the insulin-like growth factor 
binding protein that regulates angiogenesis [53], exhib-
ited higher gene expression in the 4C11 + cell line and 
concordantly lower promoter methylation (Fig.  8). Fur-
thermore, in TCGA-SKCM, the analysis of the methyla-
tion levels of CpGs close to the TSS was able to identify 
a subgroup of patients with low methylation and worst 
survival outcome. There is vast published literature 
about Igfbp4 and different types of cancer. Particularly in 
melanoma, one study compared primary and metastatic 
tumors and found increased protein levels of IGFBP4 
in primary versus metastatic tumors [54]. Elevated 

transcriptional levels of this gene have also been found in 
glioblastoma biopsies [55] and lung cancer tissue [56].

Finally, the gene Ptprf was found to have a lower 
expression level in 4C11 + cells and concomitant hyper-
methylation of its promoter compared to the other cell 
lines (Fig. 8). Curiously, one study reported the opposite 
finding, showing that PTPRF was over-expressed in met-
astatic and primary melanoma cells in  vitro and in  situ 
compared to melanocytes [57]. In contrast, its expres-
sion was found to be downregulated in non-small cell 
lung cancer cell lines [58]. The survival analysis of DNA 
methylation within PTPRF revealed a remarkable high 
HR (1.84) for a CpG located in the gene body in a region 
classified as a CpG island: patients with lower methyla-
tion levels exhibited better survival. This particular CpG 
methylation shall be better evaluated in the clinic as a 
potential biomarker of melanoma aggressiveness.

To obtain a more accurate prediction of melanoma 
survival based on CpG methylation levels, we decided 
to build panels of CpGs using multivariate Cox regres-
sion after LASSO regularization. The final models were 
composed of a malignancy signature panel with 33 CpGs, 
and another panel from the metastasis signature with 31 
CpGs (Tables 1 and 2). These panels were then applied to 
calculate survival risk scores and more accurately classify 
patients into low and high-risk groups (Fig. 9). Wouters 
and colleagues also identified two signatures associated 
with different 4-year survival outcomes for melanoma 
using more than 734 DNA methylation markers [42]. 
However, survival multivariate analyses were not evalu-
ated for these probes. This multivariate approach has 
already been conducted for clear cell renal carcinoma 
[59], leukemia [60], esophageal squamous cell carcinoma 
[61], colorectal cancer [62], lung adenocarcinoma [63], 
among others. Future validation of the identified CpGs 
methylation panels in a new cohort will be deemed nec-
essary for their use in the clinic.

Conclusions
Our findings demonstrate the usefulness of the mela-
noma progression cell model to unravel epigenetic 
changes occurring during melanoma progression. This 
model can further contribute to discovering molecules 
present in one specific disease stage, which could be clin-
ically employed to tailor treatment for patients. Further-
more, the CpGs methylation differences identified in this 
study were practical to identify relevant genes that par-
ticipate in the control of phenotypic switching along with 
melanoma progression.

The limitations of our study are related to the fact that 
ERRBS is a technique that evaluates CpG sites located 
mostly in CpG islands; therefore, even with our findings 
of interesting methylation differences in different regions 
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of the genome, the exploration of differential methylation 
in non-island or shore regions was limited. Furthermore, 
we focused on the differential methylation analysis for 
the CpGs located in the promoter region of the genes. 
Consequently, further studies comparing CpG meth-
ylation differences in non-promoter regions could unveil 
novel results.

The DNA methylation profiling of the melanoma pro-
gression steps in our model revealed markers associated 
with malignancy and metastasis, which were also predic-
tive of human melanoma survival. These markers include 
DNA methylation changes in Pyrodx2 and Ptgfrn, which 
are hypermethylated in melan-a non-tumorigenic cells, 
Arnt2 and Igfbp4, that are hypomethylated in malignant 
metastatic 4C11 + cells, and Ptprf, which is hypermethyl-
ated in 4C11 + cells. Furthermore, we established panels 
of CpGs using multivariate prognostic models that could 
accurately predict survival outcomes in human patients, 
and deserve to be evaluated in future studies in search of 
reliable biomarkers for the clinical assessment of mela-
noma prognosis.

Material and methods
Cell culture
The cell lines 4C, 4C11− and 4C11 + were cultured in 
RPMI 1640 medium (Gibco) pH 6.9 with addition of 
1.0 × 105 U/L antibiotic Pen-Strep (Gibco) and supple-
ment of 5% fetal bovine serum (FBS, Gibco). The cultures 
were maintained in humidified incubators containing 5% 
of CO2 at 37  °C. Melan-a cells were cultured under the 
same conditions, but with addition of 200  nM phorbol 
12-myristate 13-acetate (PMA, Amresco), an activator 
of PKC needed for the growth of melanocytes in culture 
[24]. Three biological replicates of each cell line, obtained 
from distinct passages, were obtained in the conditions 
described above.

Enhanced reduced representation bisulfite sequencing 
(ERRBS)
To obtain pure samples, DNA was extracted from cul-
tured cells using the Gentra Puregene Cell Kit (Qiagen), 
according to the fabricant recommendations, including 
the addition of RNase A solution (contained in the kit). 
Approximately 200 µL of a minimum concentration of 
80  ng/µL were forwarded to the Epigenomics Core Lab 
of Weill Cornell Medical College, with sufficient qual-
ity of double-stranded DNA determined by fluorim-
etry using QuantiFluor® dsDNA System (Promega), 
following the Epigenomics Core recommendations. After 
passing the quality controls, all the samples had their 
libraries constructed as described by Garrett-Bakelman 
and colleagues [24]. The samples were multiplexed and 

distributed in three lanes for sequencing in Illumina 
HiSeq 2500.

The output files in format.bcl (base call) were demul-
tiplexed and converted to fastq files using the software 
bcl2fastq. Adaptors and low-quality reads were removed, 
and the reads were aligned to the mm10 mouse bisulfite 
converted genome using Bismark [26], to generate CpG 
calls. These steps were conducted by the Epigenomics 
Core team.

Differential methylation analyses
Differential methylation analyses were conducted for 
each of the pairwise comparisons in the R environment 
[28], using the package methylKit [27]. From the align-
ment output file, containing minimum of 10 count cov-
erage, counts above 99.9 percentile were filtered out, to 
avoid PCR bias. The data were corrected for overdisper-
sion for a more stringent statistical analysis. P-values 
were corrected to q-values using the package default 
method: SLIM [29].

The parameters for selection of differentially meth-
ylated CpGs (DMCs) were: q-value ≤ 0.01 [29] and 
minimum of 25% of difference in methylation between 
compared lineages. Annotation of functional features 
(promoter, exon, intron, intergenic regions, TSSs), and 
of CpG classification (CpG islands, shores, and other 
regions), was conducted using the package Genoma-
tion [64]. Reference.bed files were downloaded from the 
table browser UCSC [65], containing only RefSeq curated 
genes for functional features, and default CpG islands 
classification, both based on mm10 genome assembly.

Promoter regions for annotation of genes were defined 
as within the range from -500 to + 500 base pairs of dis-
tance from TSS, and minimum of three DMCs were con-
sidered for accounting the gene as having its promoter 
differentially methylated.

From the annotated genes with differentially methyl-
ated promoters, a selection was made based on the cell 
lines’ characteristics. Hypomethylated and hypermethyl-
ated genes present in the intersection among the com-
parisons between each of the cell lines 4C, 4C11− and 
4C11 + with melan-a were gathered as being related 
to melanocyte malignant transformation, whereas 
genes present in the intersection among the compari-
sons between all non-metastatic cell lines (melan-a, 4C 
and 4C11−) with the aggressive lineage 4C11 + were 
accounted as related to melanoma metastasis/aggres-
siveness in the model. Venn Diagrams were constructed 
using the BioVenn tool [66].

5‑Methylcytosine content
Nuclear DNA (6  mg), extracted as described in the 
ERRBS method, was transferred to 54.5 µL of Milli-Q 
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water containing 2.5 µL of 200  mM Tris/MgCl2 buffer 
(pH 7.4) and 1 µL (2.5 units) of deoxyribonuclease I (Qia-
gen). The samples were incubated at 37 °C for 1 h. Then, 
1 µL (0.001 units) of phosphodiesterase I and 1 µL (2 
units) of alkaline phosphatase were added, followed by 
further incubation at 37 °C for 1 h. Aliquots of 50 µL of 
residual volume were analyzed by a HPLC/PDA system 
(Shimadzu), as follows: a 250  mm × 4.6  mm i.d., 5  µm, 
Luna C18(2) column (Phenomenex) was eluted with a 
gradient of 0.1% formic acid in water (Solution A) and 
CH3OH:H2O (1:1, v/v; added of 0.1% formic acid; Solu-
tion B; from 0 to 25 min, 0 to 36% B; from 25 to 27 min, 
36 to 0% B; from 27 to 37 min, 0% B) at a 1 mL/min flow 
rate and 30  °C. The PDA detector was set at 286  nm. 
Calibration curves were constructed at intervals of 0.5 to 
8 nmol for 2′-deoxycytidine (dC) and 0.01 to 0.8 nmol for 
5-mC. The percentage of global DNA methylation was 
calculated using the following equation:

Pathway enrichment
The gene enrichment analysis in the database Gene 
Ontology: Biological Process of the overlapped genes 
involved in malignant transformation and melanoma 
aggressiveness was conducted using the R package clus-
terProfiler [30]. The enrichment analysis is based on 
hypergeometric distribution, and it calculates q-value 
for FDR control.

Survival analyses per CpG
The Cox proportional-hazard models for overall sur-
vival were built using TCGA-SKCM data for all the CpGs 
annotated to orthologs of the differentially methylated 
genes from the malignant transformation and melanoma 
metastasis signatures, using the methSurv tools devel-
oped by Modhukur et al. [44]. In methSurv, the analysis 
is made by individual CpG sites, and patient subgroups 
are separated based on methylation status into high and 
low methylation according to distinct parameters, such 
as median, mean, first quartile (q25) and fourth quartile 
(q75). Each model contains the covariables: age, sex, and 
a single CpG methylation. Kaplan–Meier plots of selected 
CpGs were built using the website provided by methSurv 
authors, which is https://​biit.​cs.​ut.​ee/​meths​urv/. All plots 
were generated splitting the samples by the best method, 
with log-rank p-value accounted, and adjusted for the 
covariates age and sex. All models with adjusted p-values 
≤ 0.01 are represented in the Additional file 4: Table S4.

5mC(%) =
5mC(nmol)x100

5mC(nmol) + dC(nmol)

Survival analyses with multiple CpGs
The CpGs whose methylation patterns were signifi-
cantly associated with survival in the Cox models (sin-
gle CpG per model) for each signature were selected 
and combined in a new multivariate model with multi-
ple CpGs. LASSO regularization was performed in the 
Cox proportional-hazards models for selecting vari-
ables and avoiding overfitting. The glmnet R package 
was used, with minimum λ obtained after 20 simula-
tions. After regularization, a multivariate Cox regres-
sion was performed, using the survival R package and 
CpGs methylation, gender, age, and Breslow depth 
as covariates. The coefficients from the significant 
CpGs in the Cox models were used in to obtain a risk 
score for each patient: αj =

∑
ϕi × βij , where φ is the 

coefficient in the Cox model for the ith CpG, β is the 
methylation β value for the ith CpG in the jth patient, 
and α is the risk score for the jth patient. The samples 
were split based on the mean risk score value in high 
and low risk subgroups, and Kaplan–Meier plots were 
built for malignancy and metastasis signatures using 
survminer R package. All p-values were corrected for 
multiple-testing hypotheses using the Benjamini-Hoch-
berg (False Discovery Rate) method. 345 patients from 
TCGA-SKCM were analyzed, after removing individu-
als with missing data.

RNA expression
RNA sequencing of the cell lines melan-a, 4C, 4C11− 
and 4C11+ was performed in triplicates in the Illu-
mina HiSeq 1500 platform. Analysis of the data was 
conducted by trimming of the fragments using Trim-
momatic [67], STAR alignment [68], and Rsubread [69] 
counting of the fragments, to assess the expression level 
of RNA in each of the cell lines. A complete description 
of the RNA-seq analysis can be found in Pessoa and 
colleagues [16].
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Additional file 6: Table S6. Equivalence list between mouse ERRBS CpGs 
location and human Infinium 450 k CpGs probes and location referenced 
by their closest gene.

Additional file 7: Figure S1. Distribution of different percentages of 
methylation across all CpGs analyzed in a sample. Three biological repli-
cates of each cell line have their methylation levels represented.

Additional file 8: Figure S2. Heatmaps with differentially methylated 
CpGs between cell lines in the melanoma progression model. Results from 
pairwise comparisons between non-malignant melan-a melanocytes and 
non-metastatic (4C11−) and metastatic (4C11+) melanoma cell lines, 
between 4 and 4C11− and 4C11+, and between 4C11− and 4C11+ are 
shown.

Additional file 9: Figure S3. Pyroxd2 and Ptgfrn gene silencing is not 
reverted in melan-a melanocytes after 5azaCdR treatment. Melan-a cells 
were treated with 5azaCdR for 48 h, and the expressions of Pyroxd2 and 
Ptgfrn were determined by RT-qPCR.
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