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Abstract 

Background:  Cigarette smoke is a major public health concern. Epigenetic aging may be an important pathway by 
which exposure to cigarette smoke affects health. However, little is known about how exposure to smoke at differ-
ent life stages affects epigenetic aging, especially in older adults. This study examines how three epigenetic aging 
measures (GrimAge, PhenoAge, and DunedinPoAm38) are associated with parental smoking, smoking in youth, and 
smoking in adulthood, and whether these epigenetic aging measures mediate the link between smoke exposure 
and morbidity and mortality. This study utilizes data from the Health and Retirement Study (HRS) Venous Blood Study 
(VBS), a nationally representative sample of US adults over 50 years old collected in 2016. 2978 participants with data 
on exposure to smoking, morbidity, and mortality were included.

Results:  GrimAge is significantly increased by having two smoking parents, smoking in youth, and cigarette pack 
years in adulthood. PhenoAge and DunedinPoAm38 are associated with pack years. All three mediate some of the 
effect of pack years on cancer, high blood pressure, heart disease, and mortality and GrimAge and DunedinPoAm38 
mediate this association on lung disease.

Conclusions:  Results suggest epigenetic aging is one biological mechanism linking lifetime exposure to smoking 
with development of disease and earlier death in later life. Interventions aimed at reducing smoking in adulthood 
may be effective at weakening this association.
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Background
Epigenetic clocks, or deoxyribonucleic acid methylation 
(DNAm) age, is a DNAm-based tool for assessing levels 
of DNAm related to aging health outcomes [1]. The first 
generation clocks (e.g., HorvathAge and HannumAge) 
are sets of DNAm sites that are highly correlated with 
chronological age [2, 3]. A second generation of clocks 
(e.g., GrimAge and PhenoAge) were trained instead 
on age-relevant biomarkers (e.g., serum creatinine, 

c-reactive protein), behaviors (e.g., smoking), and health 
outcomes, including mortality. Similarly, Dunedin-
PoAm38 is a DNAm summary measure designed to 
capture the pace of aging. It was trained on change in 
biomarkers and health indicators over 12  years. These 
new generation DNAm aging measures have been shown 
to be strongly predictive of all-cause mortality, multiple 
morbidities, and frailty [4, 5]. There is also strong evi-
dence they are sensitive to health behaviors like smoking 
[4, 6, 7].

Exposure to smoke and epigenetic aging
Exposure to cigarette smoke increases risk for multiple 
morbidities—including cancer, cardiovascular disease, 
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and lung disease—as well as mortality, and about one in 
five deaths in the US can be attributed to cigarette smok-
ing [8]. One mechanism by which cigarette smoke expo-
sure may affect health is through accelerated epigenetic 
aging—a DNAm-based measure of biological aging. 
Early life exposure to smoking, including prenatal mater-
nal smoking, second-hand smoke exposure, and smok-
ing in youth are associated with a range of important 
health outcomes, including lung function [9, 10], chronic 
obstructive pulmonary disease [11, 12], and cancer in 
adulthood [13–15]. Cigarette smoke causes damage to 
tissues. This damage accumulates, potentially driving 
accelerated epigenetic aging [6, 16–18]. Thus epigenetic 
aging may be an important pathway by which exposure 
to cigarette smoke affects health. However, little is known 
about how exposure to smoke at different life stages 
affects epigenetic aging, especially in older adults.

DNAm aging measures are objective indicators of 
accelerated aging that are relatively easy to collect and 
interpret and that have strong associations with social 
and behavioral predictors and health outcomes. How-
ever, there are a large number of unknowns that limit 
research utilizing these DNAm aging measures. These 
measures were all trained differently and have individ-
ual strengths and weaknesses. However, because studies 
typically utilize one DNAm aging measure at a time, it is 
unclear which measures are most useful as predictors of 
health outcomes and which are most affected by a given 
exposure. Because there has been relatively little life 
course research or research in older adults investigating 
the relationship between smoking and epigenetic age, it is 
unknown how early life and lifetime exposure to smoking 
and to second-hand smoke affect DNAm aging measures 
in older adults. To our knowledge, this is the first study 
investigating this association with second-generation 
DNAm aging measures in older adults.

Current study
Given the potential health consequences of parental 
smoking, smoking in youth, and smoking in adulthood 
reviewed above, it is important to (1) explore how expo-
sure to parental smoking affects smoking in youth and 
adulthood and (2) identify the physiological mechanisms 
by which smoke exposure across the life course affects 
chronic disease morbidity and mortality. Thus, this study 
builds on the large body of research described above to 
examine pathways by which parental smoking and smok-
ing in youth and adulthood affect chronic illness morbid-
ity and mortality. This study investigates how epigenetic 
aging measures as measures of biological aging medi-
ate the associations between life course smoke exposure 
and chronic illness morbidity and mortality in a nation-
ally representative sample of older adults (the 2016 

Venous Blood Study (VBS) from the Health and Retire-
ment Study (HRS)) [19, 20]. To our knowledge, this is the 
first study to do so. This research will help clarify when 
smoking cessation interventions may be most successful 
and will identify biological processes linking smoking to 
physical health.

Results
Descriptive statistics
Descriptive statistics are shown in Table 1. The weighted 
sample is 53% female and has a median age of 65 years. 
73% of the sample is Non-Hispanic White, 12% is Non-
Hispanic Black, 11% is Hispanic, and 4% is Non-Hispanic 
Other Race, 17% has less than 12  years of education, 
31% has 12  years of education, 25% has 13–15  years of 
education, and 27% has 16 or more years of education. 
The sample had a median wealth of $157,000. More 
than a third of the sample is obese (37%), and 59% were 
non-drinkers.

Structural equation model results
Structural Equation Model (SEM) results are shown in 
Figs. 1, 2 and 3. These models are all fully recursive, but 
only significant and marginal hypothesized pathways are 
shown for ease of presentation.

Respondents who smoked in youth and who had two 
parents who smoked tended to have more adult pack 
years. That is, respondents who smoked in youth were 
predicted to smoke about 15 more pack years of ciga-
rettes in adulthood. Respondents were predicted to 
smoke about 4 more pack years of cigarettes in adulthood 
if both of their parents smoked. Parent smoking was 
associated with significantly higher probability of smok-
ing in youth.

Turning now to results for GrimAgeAdj (Fig. 1), adult 
pack years, smoking in youth, and having two parents 
who smoked were significantly associated with greater 
GrimAgeAdj. For each additional pack year, participants 
were expected to have a GrimAgeAdj about 0.09  years 
greater than similar peers. Participants who smoked 
in youth were expected to have a GrimAgeAdj about 
0.7  years older than similar peers who did not. If both 
of a participant’s parents smoked, they were expected to 
have a grim age 0.6  years greater than similar peers for 
whom neither parent smoked. GrimAgeAdj significantly 
predicted mortality, and having cancer, high blood pres-
sure, lung disease, and heart disease. A one year higher 
GrimAgeAdj was associated with an increased risk of 
each of these outcomes.

PhenoAgeAdj (Fig.  2), alternatively, was only signifi-
cantly predicted by adult pack years, such that each addi-
tional pack year was associated with a 0.03 year greater 
PhenoAgeAdj. PhenoAgeAdj significantly predicted all 
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health outcomes in the model except lung disease. A 
one year higher PhenoAgeAdj was associated with an 
increased risk of mortality, cancer, high blood pressure, 
and heart disease.

Finally, DunedinPoAm38Adj (Fig.  3) was only signifi-
cantly associated with adult pack years. Each additional 
pack year was associated with a pace of biological aging 
of 0.001  years per chronological year faster than simi-
lar peers with 1 fewer pack year. DunedinPoAm38 was 

significantly associated with all five health outcomes. A 
DunedinPoAm38 pace of aging increase of 1  year per 
chronological year was associated with an increased risk 
of mortality, cancer, high blood pressure, lung disease, 
and heart disease.

Mediation results
Turning to mediation results (Tables  2, 3), the total 
effects of adult pack years on cancer and lung disease 

Table 1  Descriptive statistics (N = 2978)

Variable Mean/proportion Standard Deviation Range

Mortality 0.08 0 to 1

Cancer 0.18 0 to 1

High blood pressure 0.62 0 to 1

Lung disease 0.14 0 to 1

Heart disease 0.27 0 to 1

GrimAgeAdj − 0.18 4.32 − 15.38 to 21.86

PhenoAgeAdj 0.08 6.76 − 22.56 to 41.44

DunedinPoAm38Adj 0.00 0.09 − 0.32 to 0.38

Pack years 11.64 18.80 0 to 138.94

Smoking in youth 0.20 0 to 1

Parent smoking

 Neither parent smoked 0.34 0 to 1

 One parent smoked 0.42 0 to 1

 Both parents smoked 0.24 0 to 1

Age 67.65 9.61 50 to 100

Race

 White, Not Hispanic 0.73 0 to 1

 Black, Not Hispanic 0.12 0 to 1

 Hispanic 0.11 0 to 1

 Other, Not Hispanic 0.04 0 to 1

Gender

 Male 0.47 0 to 1

 Female 0.53 0 to 1

Education

 0–11 years 0.17 0 to 1

 12 years 0.31 0 to 1

 13–15 years 0.25 0 to 1

 16 + years 0.27 0 to 1

Log wealth 14.18 0.43 11.49 to 17.27

BMI

 Normal/underweight 0.26 0 to 1

 Overweight 0.37 0 to 1

 Obese 1 0.23 0 to 1

 Obese 2 0.14 0 to 1

Alcohol use

 Non-drinker 0.59 0 to 1

 1–4 drinks per time drinking 0.38 0 to 1

 5 + drinks per time drinking 0.03 0 to 1
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were significant and the total effect of smoking in youth 
on lung disease was significant. No other total effects 
were significant. Because none of the total effects of 
parental smoking on health outcomes were significant, 
we do not focus on those indirect effects here.

In the GrimAgeAdj model (Table  2, Panel B and 
Table  3, Panel B; shown in Fig.  1), all of the indirect 
paths from adult pack years to health outcomes were 
significant. That is, although the total effects of adult 
pack years were not all significant, each additional 
adult pack year was associated with an increased prob-
ability of mortality, cancer, high blood pressure, lung 
disease, and heart disease mediated by GrimAgeAdj. 

GrimAgeAdj mediated 32% of the total significant 
effect of adult pack years on cancer and 38% of the total 
significant effect of adult pack years on lung disease. 
Additionally, GrimAgeAdj mediated 11% of the total 
effect of smoking in youth on lung disease, and the path 
smoking in youth—> adult pack years—> GrimAge-
Adj—> lung disease mediated 21% of the total effect of 
smoking in youth on lung disease. That is, smoking in 
youth affected probability of lung disease in later life 
partly because smoking in youth was directly associated 
with accelerated GrimAgeAdj aging and partly because 
smoking in youth was tied to smoking in adulthood, 
which was associated with accelerated GrimAgeAdj.

Fig. 1  SEM Results for GrimAgeAdj. Note: N = 2978. Models are fully recursive; however, only significant theoretical pathways are shown. Total and 
indirect effects from this model are shown in Table 2, Panel B and Table 3, Panel B. ***p < .001, **p < .01, *p < .05

Fig. 2  SEM Results for PhenoAgeAdj. Note: N = 2978. Models are fully recursive; however, only significant theoretical pathways are shown. Total and 
indirect effects from this model are shown in Table 2, Panel C and Table 3, Panel C. ***p < .001, **p < .01, *p < .05
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Fig. 3  SEM Results for DunedinPoAm38Adj. Note: N = 2978. Models are fully recursive; however, only significant theoretical pathways are shown. 
Total and indirect effects from this model are shown in Table 2, Panel D and Table 3, Panel D. ***p < .001, **p < .01, *p < .05

Table 2  Total and indirect effects of adult pack years on health outcomes (N = 2978)

Outcome Total effect 95% confidence interval

Panel A. Total effects of adult pack years on health outcomes

Mortality 0.0006 0.0000 0.0012

Cancer 0.0019 0.0003 0.0036

High blood pressure 0.0009 − 0.0001 0.0018

Lung disease 0.0029 0.0020 0.0038

Heart disease 0.0013 − 0.0001 0.0026

Outcome Mediator(s) Indirect effect 95% confidence interval

Panel B. Indirect effects of adult pack years on health outcomes—GrimAgeAdj

Mortality GrimAgeAdj 0.0005 0.0003 0.0008

Cancer GrimAgeAdj 0.0006 0.0001 0.0010

High blood pressure GrimAgeAdj 0.0012 0.0007 0.0017

Lung disease GrimAgeAdj 0.0011 0.0006 0.0015

Heart disease GrimAgeAdj 0.0010 0.0005 0.0015

Panel C. Indirect effects of adult pack years on health outcomes—PhenoAgeAdj

Mortality PhenoAgeAdj 0.0001 0.0000 0.0002

Cancer PhenoAgeAdj 0.0001 0.0000 0.0002

High blood pressure PhenoAgeAdj 0.0001 0.0000 0.0003

Lung disease PhenoAgeAdj 0.0000 0.0000 0.0001

Heart disease PhenoAgeAdj 0.0001 0.0000 0.0002

Panel D. Indirect effects of adult pack years on health outcomes—DunedinPoAm38Adj

Mortality DunedinPoAm38Adj 0.0004 0.0002 0.0006

Cancer DunedinPoAm38Adj 0.0005 0.0001 0.0008

High blood pressure DunedinPoAm38Adj 0.0007 0.0003 0.0012

Lung disease DunedinPoAm38Adj 0.0005 0.0001 0.0009

Heart disease DunedinPoAm38Adj 0.0005 0.0001 0.0009
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Table 3  Total and indirect effects of smoking in childhood on health outcomes (N = 2978)

Outcome Total effect 95% confidence interval

Panel A. Total effects of smoking in youth on health outcomes

Mortality 0.0012 − 0.0265 0.0284

Cancer 0.0323 − 0.0193 0.0848

High blood pressure 0.0071 − 0.0452 0.0596

Lung disease 0.0749 0.0282 0.1213

Heart disease 0.0249 − 0.0292 0.0788

Outcome Mediator(s) Indirect effect 95% confidence interval

Panel B. Indirect effects of smoking in youth on health outcomes—GrimAgeAdj

Mortality GrimAgeAdj 0.0042 0.0011 0.0076

Cancer GrimAgeAdj 0.0042 0.0003 0.0101

High blood pressure GrimAgeAdj 0.0092 0.0021 0.0184

Lung disease GrimAgeAdj 0.0080 0.0018 0.0160

Heart disease GrimAgeAdj 0.0075 0.0017 0.0151

Mortality Adult Pack Years 0.0008 − 0.0093 0.0110

Cancer Adult Pack Years 0.0207 − 0.0084 0.0527

High blood pressure Adult Pack Years − 0.0054 − 0.0214 0.0112

Lung disease Adult Pack Years 0.0284 0.0136 0.0436

Heart disease Adult Pack Years 0.0041 − 0.0149 0.0229

Mortality Adult Pack Years—> GrimAgeAdj 0.0084 0.0042 0.0128

Cancer Adult Pack Years—> GrimAgeAdj 0.0084 0.0013 0.0155

High blood pressure Adult Pack Years—> GrimAgeAdj 0.0184 0.0110 0.0264

Lung disease Adult Pack Years—> GrimAgeAdj 0.0161 0.0091 0.0235

Heart disease Adult Pack Years—> GrimAgeAdj 0.0150 0.0082 0.0222

Panel C. Indirect effects of smoking in youth on healthoutcomes—PhenoAgeAdj

Mortality PhenoAgeAdj − 0.0007 − 0.0044 0.0024

Cancer PhenoAgeAdj − 0.0005 − 0.0035 0.0016

High blood pressure PhenoAgeAdj − 0.0007 − 0.0052 0.0026

Lung disease PhenoAgeAdj − 0.0003 − 0.0027 0.0011

Heart disease PhenoAgeAdj − 0.0006 − 0.0040 0.0022

Mortality Adult Pack Years 0.0080 − 0.0012 0.0172

Cancer Adult Pack Years 0.0285 0.0031 0.0565

High blood pressure Adult Pack Years 0.0122 − 0.0025 0.0281

Lung disease Adult Pack Years 0.0445 0.0299 0.0601

Heart disease Adult Pack Years 0.0185 − 0.0022 0.0393

Mortality Adult Pack Years—> PhenoAgeAdj 0.0016 0.0003 0.0034

Cancer Adult Pack Years—> PhenoAgeAdj 0.0011 0.0001 0.0028

High blood pressure Adult Pack Years—> PhenoAgeAdj 0.0016 0.0001 0.0040

Lung disease Adult Pack Years—> PhenoAgeAdj 0.0007 − 0.0002 0.0021

Heart disease Adult Pack Years—> PhenoAgeAdj 0.0013 0.0001 0.0032

Panel D. Indirect effects of smoking in youth on health outcomes—DunedinPoAm38

Mortality DunedinPoAm38Adj 0.0008 − 0.0032 0.0037

Cancer DunedinPoAm38Adj 0.0008 − 0.0031 0.0054

High blood pressure DunedinPoAm38Adj 0.0013 − 0.0047 0.0079

Lung disease DunedinPoAm38Adj 0.0009 − 0.0032 0.0058

Heart disease DunedinPoAm38Adj 0.0009 − 0.0036 0.0050

Mortality Adult Pack Years 0.0028 − 0.0063 0.0120

Cancer Adult Pack Years 0.0220 − 0.0035 0.0495

High blood pressure Adult Pack Years 0.0022 − 0.0128 0.0180

Lung disease Adult Pack Years 0.0374 0.0235 0.0521
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Results for PhenoAgeAdj (Table 2, Panel C and Table 3, 
Panel C; as shown in Fig. 2) are less supportive. None of 
the indirect effects from adult pack years to health out-
comes mediated by PhenoAgeAdj were significant, and 
none of the indirect effects from smoking in youth to 
lung disease mediated by PhenoAgeAdj were significant. 
Thus, PhenoAgeAdj does not appear to be a meaningful 
mediator of the association between smoke exposure and 
health outcomes investigated here.

Results from the model for DunedinPoAm38Adj 
(Table 2, Panel D and Table 3, Panel D; shown in Fig. 3) 
were similar to those for GrimAgeAdj. That is, all of the 
indirect paths from adult pack years to health outcomes 
were significant. Again, although the total effects of adult 
pack years were not all significant, each additional adult 
pack year was associated with an increased probability of 
mortality, cancer, high blood pressure, lung disease, and 
heart disease mediated by DunedinPoAm38Adj. Duned-
inPoAm38Adj mediated 26% of the total significant effect 
of adult pack years on cancer and 17% of the total signifi-
cant effect of adult pack years on lung disease. Duned-
inPoAm38Adj did not significantly directly mediate total 
effect of smoking in youth on lung disease, but the path 
smoking in youth—> adult pack years—> DunedinPoAm-
38Adj—> lung disease mediated 10% of the total effect 
of smoking in youth on lung disease. That is, smoking 
in youth was associated with probability of lung disease 
in later life partly because smoking in youth was tied to 
smoking in adulthood, which was associated with accel-
erated DunedinPoAm38Adj.

Additional analyses
We also estimated the same model with the first genera-
tion clocks HorvathAgeAdj and HannumAgeAdj (not 
shown). HorvathAgeAdj was not significantly associated 
with any of the health outcomes investigated here and 
was only significantly associated with having two parents 
who smoked, though in the wrong direction (b = − 1.131, 
p = 0.003). HannumAgeAdj was significantly associated 
with cancer risk (b = 0.007, p = 0.001) and high blood 
pressure (b = 0.005, p = 0.016), but was not significantly 
associated with any of the life course smoking variables. 

Thus, these first generation clocks do not appear to be 
plausible mediators of the association between life course 
smoking exposure and the health outcomes examined 
here.

It is also possible to assess each of the components of 
GrimAge separately. We estimated the same model as 
above with each of the components (Additional file  1: 
Figs. S1–S8). Components were on very large scales, so 
each was divided by 1000 to reduce variance and ease 
SEM estimation. Because each component was on a dif-
ferent scale, we present standardized coefficients to make 
estimates comparable. Only DNAm estimated pack years 
was significantly associated with having one parent who 
smoked, two parents who smoked, or smoking in youth. 
DNAm estimated adrenomedullin, cystatin-C, growth/
differentiation factor-15, pack years, plasminogen activa-
tor inhibitor type 1, and tissue inhibitor of metallopro-
teinase 1 (TIMP-1) were all significantly associated with 
adult pack years. The indirect effects of smoking in youth 
and adult pack years on lung disease appear to be mostly 
driven by DNAm surrogate pack years which explained 
20.52% and 34.96% of those total effects, respectively. 
DNAm surrogate TIMP-1 is the only component that 
significantly mediates the association between adult pack 
years and cancer risk, explaining about 5% of this total 
association.

Discussion
Past research suggests DNAm aging measures repre-
sent a plausible biological pathway by which exposure to 
cigarette smoke affects mortality and  multiple chronic 
morbidities, including cancer, high blood pressure, lung 
disease, and heart disease. However, little is known about 
how exposure to smoking across the life course affects 
DNAm aging measures and these health outcomes. This 
study builds on this past research by utilizing a nation-
ally representative sample of US adults over age 50 to 
test whether smoking exposure by three potentially criti-
cal vectors (parental smoking, smoking in youth, and 
adult pack years) affects four chronic disease morbidi-
ties and mortality and whether these effects are medi-
ated by three second-generation DNAm aging measures. 

Table 3  (continued)

Outcome Mediator(s) Indirect effect 95% confidence interval

Heart disease Adult Pack Years 0.0121 − 0.0086 0.0325

Mortality Adult Pack Years—> DunedinPoAm38Adj 0.0065 0.0035 0.0098

Cancer Adult Pack Years—> DunedinPoAm38Adj 0.0072 0.0020 0.0128

High blood pressure Adult Pack Years—> DunedinPoAm38Adj 0.0112 0.0050 0.0182

Lung disease Adult Pack Years—> DunedinPoAm38Adj 0.0075 0.0018 0.0135

Heart disease Adult Pack Years—> DunedinPoAm38Adj 0.0074 0.0022 0.0132
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Results showed all three DNAm aging measures were sig-
nificantly affected by adult pack years and all three sig-
nificantly predicted the health outcomes examined here 
(except PhenoAgeAdj was not associated with lung dis-
ease). Additionally, GrimAgeAdj was significantly associ-
ated with smoking in youth and having two parents who 
smoked. GrimAgeAdj and DunedinPoAm38Adj were 
both important mediators of the total effects of adult 
smoking on cancer and lung disease, and GrimAgeAdj 
played a role in the link between smoking in youth and 
lung disease in later life.

The epigenome in general [21–24] and these aging 
measures in particular [6, 16–18] are highly affected by 
smoking exposure. By establishing when in the life course 
smoking exposure affects these measures and to what 
degree, the current work helps to clarify how DNAm 
aging measure are associated with life course smok-
ing exposure. Results suggest GrimAge is most sensitive 
to life course smoking exposure, as it is independently 
affected by adult pack years, smoking in youth, and 
parental smoking. GrimAge and DunedinPoAm38 both 
appear to be plausible pathways connecting adult smok-
ing to cancer and lung disease. Additionally, GrimAge 
significantly mediated the association between smoking 
in youth and lung disease. These findings are consist-
ent with past research showing GrimAge and Duned-
inPoAm38 are affected by smoking more strongly than 
PhenoAge [6, 25]. The DNAm surrogate pack years com-
ponent appeared to be the main reason GrimAgeAdj 
mediated the associations between smoking in youth 
and adult pack years and lung disease, suggesting epi-
genetic aging measures that directly incorporate smok-
ing (e.g., GrimAge) may more fully capture life course 
smoke exposure. The DNAm surrogate TIMP-1 compo-
nent appeared to be the main reason GrimAgeAdj medi-
ated the association between adult pack years and cancer, 
consistent with past research suggesting TIMP-1 plays 
an important role in cell proliferation in cancerous tissue 
[26].

These results also suggest damage caused by smoking 
early in life increases risk of lung disease via several path-
ways. First, people who smoke in youth are also likely to 
smoke in adulthood and are thus continuously exposed to 
smoking-related risk. Second, smoking in youth appears 
to directly affect adult GrimAge, independent of later 
smoking behavior. Thus, GrimAge may capture perma-
nent damage caused by smoking early in life. Further 
longitudinal research is needed investigating how smok-
ing during developmental critical periods differentially 
affects later life biological aging. Additional research is 
needed investigating the effect of smoking cessation on 
epigenetic aging. Early investigations suggest cessation 

can substantially reduce the epigenetic aging and tel-
omere attrition associated with smoking [27, 28].

The current study has some key limitations. Smoking in 
youth and pack years for former smokers were assessed 
using a retrospective self-report and may be biased by 
recall and social desirability. Our measures of chronic 
disease morbidity were self-reported. Future work 
should validate our results in a well characterized clinical 
population.

Despite these limitations, these results provide evi-
dence that accelerated DNAm aging may be a plausible 
biological mechanism linking smoking in youth to lung 
disease later in life and smoking in adulthood to can-
cer and lung disease. These results suggest a substantial 
portion of the lung disease risk of smoking in youth is 
associated with accelerated DNAm aging; however, a 
larger portion was explained by pathways involving adult 
smoking. Though early life smoking may cause some per-
manent damage, cessation in adulthood reduces a large 
proportion of the risk. Thus, interventions focused on 
prevention of early life smoking are essential, and efforts 
focused on cessation in adulthood are also important.

Methods
Sample
We utilize data from the DNA methylation subsam-
ple from the Health and Retirement Study 2016 Venous 
Blood Study (N = 4018) [29]. A certified phlebotomist 
collected 50.5 mL of blood from consenting participants 
within 4  weeks of the HRS core interview (if possible) 
in the participants’ homes. DNA for DNAm analysis 
was extracted from an ethylenediamine tetraacetic acid 
(EDTA) whole blood tube. DNAm analysis was con-
ducted by the Clinical Laboratory Improvement Amend-
ments of 1988 (CLIA) certified Advanced Research and 
Diagnostic Laboratory at the University of Minnesota. 
Detailed methods for this sample are published elsewhere 
[19, 20]. This sample was developed to be representative 
of the U.S. population over age 50 when weighted.

2978 participants were included in the current study 
due to missingness in independent variables. 23 partici-
pants were missing on the pack years measurement, 43 
were missing on the smoking in childhood measure, 941 
were missing on the parental smoking measure, 17 were 
missing on at least one health outcomes, and 76 were 
missing on at least one control variable.

Measures
Chronic conditions and mortality
We examine morbidity in four chronic conditions associ-
ated with smoking [30] (viz., cancer, high blood pressure, 
lung disease, and heart disease) and mortality. Partici-
pants were asked whether or not a doctor had told them 
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they had cancer or a malignant tumor of any kind except 
skin cancer, high blood pressure or hypertension, chronic 
lung disease except asthma such as chronic bronchitis 
or emphysema, or heart attack, coronary heart disease, 
angina, congestive heart failure, or other heart problems 
at the time of the interview. If responses were missing 
from the 2018 interview, 2016 responses were used. Mor-
tality was assessed by identifying participants who were 
known to be deceased as of 2020.

DNAm aging measures
We utilize three DNAm aging measures that have been 
widely applied in past research (viz., GrimAge, Pheno-
Age, and DuneinPoAm38). GrimAge was trained on 7 
DNAm surrogates of plasma proteins associated with 
mortality and pack years [31]. PhenoAge was trained on 
9 blood-based markers of immune and tissue function 
[32]. DunedinPoAm38 was trained on changes in bio-
markers and health indicators related to healthy aging 
[33]. GrimAge and PhenoAge are both scaled in years 
and are meant to capture epigenetic age at the time of 
measurement. DunedinPoAm38 is meant to capture 
pace of aging and is scaled in years of epigenetic aging 
per chronological year. Because it focuses on current 
pace of aging, DunedinPoAm38 may be more sensitive 
to recent smoking behaviors; whereas, the second gen-
eration clocks were designed to capture current DNAm 
age and may be more sensitive to early life and other life 
course exposures. These three measures were trained in 
separate samples with different ages groups represented. 
GrimAge was first trained in the Framingham Heart 
Study offspring cohort (ages 53–73), PhenoAge in the 
InCHIANTI cohort (ages 21–100), and DunedinPoAm38 
in the Dunedin Study cohort (a birth cohort with clocks 
estimated at age 38). It is possible that measures trained 
in older samples may be better able to capture epigenetic 
aging in the older American HRS sample.

Smoking and smoke exposure
Life course smoke exposure as assessed using self-reports 
of parental smoking, smoking in youth, and smok-
ing pack years in adulthood. More detailed information 
about these measures is available in the Additional file 1.

Controls
In all models in current study, we control for age, race, 
and gender. We also control for education coded as 
0–11  years, 12  years, 13–15, or 16+ years (reference 
group), wealth (log transformed), BMI categorized as 
25–29.99, 30–34.99, 35+, or < 25 (reference group), and 
alcohol use categorized as 1–4 drinks per day drinking, 
5+ drinks per day drinking, or non-drinker (reference 
group).

Plan of analysis
Three structural equation models (SEMs) were estimated 
regressing chronic disease morbidities and mortality on 
each of the DNAm aging measures, adult pack years, 
smoking in youth and parent smoking, adult pack years 
regressed on smoking in youth and parent smoking, and 
smoking in youth regressed on parent smoking. Because 
the DNAm aging measures covary highly with the con-
trol variables, we regressed each DNAm aging measure 
on the controls and computed the residuals. These resid-
ualized DNAm aging measures are used in the analyses. 
We are thus able to adjust for these potential confound-
ers and avoid issues associated with multicollinearity. In 
tables, figures, and the text, all DNAm aging measures 
have the suffix “Adj” appended to their name to indicate 
they are adjusted for age, race, gender, education, wealth, 
BMI, and alcohol use. To facilitate comparisons among 
effects, standardized coefficients are shown in the figures. 
For main effects, both standardized and unstandardized 
coefficients are noted in the text. Survey weights and 
strata were applied from the HRS tracker file. Partici-
pants missing Venous Blood Study-specific weights were 
assigned their 2016 core weight. Having a large number 
of parameters relative to the number of clusters can cause 
estimation problems in SEM. We therefore estimated 
models with all variables residualized using the same 
process as described for DNAm aging measures above. 
These models produced highly similar results with a 
nearly identical pattern of significance.

Because indirect effects may not be normally distrib-
uted, common significance tests that assume a normal 
distribution can be biased. Therefore, indirect effects 
were assessed using the Monte Carlo method. In this 
method, effects are estimated for the sample, a sam-
pling distribution of the product of the independent 
and mediating variable are generated based on 1000 
random samples with population values equal to the 
sample values, and lower and upper confidence inter-
vals are generated based on this distribution [34]. This 
method has been shown to be comparable to other 
asymmetric methods and is appropriate for complex 
survey data [35]. Thus, indirect effects were calculated 
based on the SEM models. All analyses were conducted 
in R 4.1.1 [36] using the survey [37], lavaan [38], lavaan.
survey [39], and semTools [40] packages. R code to 
reproduce the figures is available at https://​github.​com/​
etklo​pack/​lifet​ime_​smoki​ng_​epige​netic_​aging.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​022-​01286-8.
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