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Abstract 

Background:  High-risk human papillomavirus (HR-HPV) infection is the main cause of cervical cancer, but additional 
alterations are necessary for its development. Abnormal DNA methylation has an important role in the origin and 
dissemination of cervical cancer and other human tumors. In this work, we analyzed the methylation of eight genes 
(AJAP1, CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17) that participate in several biological processes for 
the maintenance of cell normality. We analyzed DNA methylation by methylation-specific PCR (MSP) and HPV infec‑
tion using the INNO‑LiPA genotyping kit in 59 samples diagnostic of normal cervical tissue (non-SIL), 107 low-grade 
squamous intraepithelial lesions (LSILs), 29 high-grade squamous intraepithelial lesions (HSILs) and 51 cervical cancers 
(CCs).

Results:  We found that all samples of LSIL, HSIL, and CC were HPV-positive, and the genotypes with higher frequen‑
cies were 16, 18, 51 and 56. In general, the genes analyzed displayed a significant tendency toward an increase in 
methylation levels according to increasing cervical lesion severity, except for the CDH13 gene. High CpG island meth‑
ylator phenotype (CIMP) was associated with a 50.6-fold (95% CI 4.72–2267.3)-increased risk of HSIL and a 122-fold risk 
of CC (95% CI 10.04–5349.7).

Conclusions:  We found that CIMP high was significantly associated with HSIL and CC risk. These results could indi‑
cate that CIMP together with HR-HPV infection and other factors participates in the development of HSIL and CC.
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Background
Cervical cancer remains a health problem in developing 
countries. Worldwide, there are approximately 529,800 
new cases and 275,100 deaths every year [1]. The main 
cause of cervical cancer is persistent infection with 
HR-HPV [2]. This cancer evolves from the well-known 

precursor lesions LSIL and HSIL. Since not all cervi-
cal lesions with HR-HPV infections progress to cervical 
cancer, it is clear that additional events are necessary for 
progression [3, 4]. Epigenetic mechanisms are modifica-
tions that could have an important contribution to the 
progression of CC, particularly DNA methylation [5, 6].

DNA methylation frequently occurs at the cytosine-
5-carbon adjacent to guanine (CpG), and CpG dinucleo-
tides are abundant in regions denominated CpG islands 
[7]. DNA methylation plays important roles in genomic 
imprinting, embryonic development, chromatin struc-
ture and diseases such as cancer because it modulates the 
transcription of genes [8]. A fraction of the CpG islands 
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is in gene promoters. In cancer, including cervical cancer, 
the hypermethylation of promoters of tumor suppres-
sor and DNA repair genes is common [9–11]. Abnormal 
methylation participates in the initiation, transformation, 
and dissemination of cancer [8, 12]. Several studies have 
analyzed the abnormal methylation of genes that partici-
pate in cellular proliferation, apoptosis, differentiation, 
cell cycle, and cellular transformation during cervical 
carcinogenesis [13–17]. From these reports, it has been 
proposed that measurement of methylation could serve 
as a biomarker for early detection, diagnosis, and prog-
nosis in cancer.

In this work, we analyzed the methylation of eight 
genes (AJAP1, CDH1, CDH13, MAGI2, MGMT, 
MYOD1, RASSF1A and SOX17) that participate in 
many biological processes. These genes were selected 
because they are involved in essential functions in the 
maintenance of cell normality and have CpG islands. 
Methylation of CpG islands in promoters decreases gene 
expression, and there are reports of hypermethylation in 
multiple types of cancer. The methylation of these eight 
genes has been evaluated in cervical cancer but has been 
evaluated individually; though their methylation has not 
been related to HPV, only a small number of samples 
have been analyzed, rather than systematically in normal 
cervical tissue (non-SIL), LSIL, HSIL, and CC. Therefore, 
in this work, we evaluated the methylation of eight genes 
and HPV genotypes in 58 non-SIL, 107 LSIL, 29 HSIL 
and 51 CC samples.

Results
A total of 245 samples were included in this study: 58 
non-SIL, 107 LSIL, 29 HSIL and 51 CC samples. Soci-
odemographic and sexual characteristics associated 
with the development of precancerous lesions and cer-
vical cancer are shown in Table  1. The mean ages were 
37.59 ± 10.97  years for non-SIL, 35.78 ± 11.94  years for 
LSIL, 39.37 ± 13.29 years for HSIL and 57.12 ± 13.18 for 
CC. The smoking status, alcohol consumption, parity, 
sexual age of onset and education years were statistically 
significant between non-SIL, LSIL, HSIL and CC.

High-risk HPVs are the cause of cervical cancer. We 
determined the prevalence of single, multiple, and mixed 
HPV infections in the samples included in this study 
(Table  2). The prevalence rates of HPV infection were 
49.15% in non-SIL and 100% in LSIL, HSIL, and CC. Sin-
gle infection with HR-HPV was detected in 23.73% of 
non-SILs, 41.12% of LSILs, 34.48% of HSILs and 60.78% 
of CCs, while multiple infections with HR-HPV were 
detected in 3.39% of non-SILs, 19.63% of LSILs, 24.14% 
of HSILs and 21.57% of CCs. Mixed HPV infections were 
more frequent, with HR and low-risk (LR) infections in 
10.17% of non-SILs, HR and probably high-risk (PHR) 

infections in 21.5% of LSILs, HR and PHR infections in 
13.79% of HSILs and HR and LR infections in 9.8% of 
CCs. Additionally, in Additional file 1: Table S1, we show 
the prevalence of all HPV genotypes found in this study. 
HPV16, 18, 51 and 56 were the genotypes more fre-
quently detected.

At the present time, there is evidence that DNA meth-
ylation is involved in the genesis and progression of 
cervical cancer. In this work, we analyzed the DNA meth-
ylation status of eight genes (AJAP1, CDH1, CDH13, 
MAGI2, MGMT, MYOD1, RASSF1A and SOX17) in 
245 cervical tissue samples (Fig. 1). In general, the genes 
displayed a significant tendency toward an increase 
in methylation levels according to increasing cervical 
lesion severity, except for the CDH13 gene. Addition-
ally, we analyzed the DNA methylation level and expres-
sion of these genes in cervical cancer samples (TCGA 
data; Additional file 3: Fig. S2). In this data set, we found 
methylation and lower expression in AJAP1, SOX17, 
CDH1, and RASSF1A genes. Furthermore, we analyzed 
the DNA methylation level and mRNA expression levels 
of these genes in four cervical cancer cell lines as a refer-
ence to the HaCaT cell line (Fig. 2 and Additional file 4: 
Fig. S3). AJAP1 methylation was significantly more prev-
alent in the SiHa, HeLa and C-33A cell lines. MYOD1 
and CDH13 methylation was significantly more preva-
lent in CaSki, SiHa and HeLa cell lines. Only MGMT 
methylation was significantly more prevalent in the four 
cell lines, while CDH1 methylation was not significantly 
prevalent in any of the cell lines. SOX17 methylation was 
significantly more prevalent in the SiHa and HeLa cell 
lines, and RASSF1A and MAGI2 methylations were only 
observed in C-33A and SiHa cells, respectively (Fig.  2). 
In general, mRNA expression levels are lower in cervical 
cancer cells lines than in HaCaT cells, except for SOX17 
and MYOD1 in SiHa cells, MGMT in C-33A cells and 
AJAP1, SOX17 and MYOD1 in HeLa cells (Additional 
file 4: Fig. S3).

Using densitometric analysis, we semiquantified the 
methylation levels of all the samples by MSP. The meth-
ylation level of each gene was categorized into three 
groups, unmethylated, methylated and hypermethylated, 
and an arbitrary value was assigned to each category: 0, 
1 and 2, respectively. Additional file 5: Fig. S4 and Addi-
tional file 6: Fig. S5 show the methylation levels of eight 
genes in non-SIL, LSIL, HSIL, CC samples and cell lines.

Previously, the presence of the CIMP has been reported 
in several types of human cancer. This phenotype is 
characterized by the existence of commonly methylated 
genes that can influence different aspects of cancer biol-
ogy. For CIMP analysis, the arbitrary values of the three 
categories were used (unmethylated 0, methylated 1 and 
hypermethylated 2). Thus, the sum of arbitrary values of 
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the eight genes by the patient was used to define CIMP 
categories: CIMP negative (0 to 1), CIMP low (2 to 5) and 
CIMP high (> 6). The CIMP analysis of non-SIL, LSIL, 
HSIL, and CC samples is shown in Fig. 3. CIMP high was 
found mainly in CC and HSIL, and CIMP negative was 
found in non-SIL and LSIL.

The CIMP status represents the sum of abnor-
mal methylation of the eight genes analyzed by sam-
ple. Therefore, we evaluated the CIMP status and the 
risk of LSIL, HSIL, and CC development (Table  3). 

CIMP high was associated with a 50.6-fold (95% CI 
4.72–2267.3)-increased risk of HSIL and a 122-fold risk 
of CC (95% CI 10.04–5349.7). Given that the CIMP sta-
tuses between non-SIL and LSIL or HSIL and CC are 
very similar (Fig.  3), we analyzed the risk of this mode. 
CIMP high was associated with a 158.6-fold (95% CI 
28.9–1471.41) increased risk of HSIL + CC. Additionally, 
Additional file  1: Tables S2 to S9 show the methylation 
status of each gene and the risk of LSIL, HSIL, and CC 
development.

Table 1  Sociodemographic and sexual conduct characteristics associated with precancerous lesions and cervical cancer

CC cervical cancer, HSIL high-grade squamous intraepithelial lesion, LSIL low-grade squamous intraepithelial lesion, Non-SIL negative for squamous intraepithelial 
lesion
a Expressed as mean ± standard deviation
b Kruskal-Wallis
c chi-squared

Non-SIL LSIL HSIL CC P

n = 58 % n = 107 % n = 29 % n = 51 %

Age (years)a 37.59 ± 10.97 35.78 ± 11.94 39.37 ± 13.29 57.12 ± 13.18 0.001b

Range 19–68 19–74 20–63 31–84

Smoking status

 No 52 89.66 89 83.18 24 82.76 35 68.63 0.042c

 Yes 6 10.34 15 14.02 3 10.34 10 19.61

 Unknown 0 0.0 3 2.80 2 6.90 6 11.76

Alcohol consumption

 No 31 53.45 54 50.47 20 68.97 36 70.59  < 0.001c

 Yes 27 46.55 50 46.73 7 24.14 9 17.65

 Unknown 0 0.0 3 2.80 2 6.90 6 11.76

Parity

 None 33 55.93 62 57.94 6 20.69 2 3.92  < 0.001c

 1–2 18 30.51 26 24.30 4 13.79 5 9.80

 3–5 6 10.17 16 14.95 7 24.14 17 33.33

 ≥ 6 1 1.69 0 0.0 8 27.59 25 49.02

 Unknown 1 1.69 3 2.80 4 13.79 2 3.92

Sexual age of onset

 < 16 3 5.08 12 11.21 5 17.24 16 31.37  < 0.001c

 16–20 39 66.10 53 49.53 19 65.52 24 47.06

 > 20 16 27.12 40 37.38 3 10.34 8 15.69

 Unknown 1 1.69 2 1.87 2 6.90 3 5.88

Number of life time sexual partners

 1–2 48 81.36 75 70.09 22 75.86 35 68.63 0.056c

 ≥ 3 10 16.95 28 26.17 4 13.79 9 17.65

 Unknown 1 1.69 4 3.74 3 10.34 7 13.73

Education (years)

 0 0 0.0 3 2.80 7 24.14 19 37.25  < 0.001c

 6 2 3.39 7 6.54 7 24.14 22 43.14

 9 4 6.78 8 7.48 3 10.34 0 0.0

 12 5 8.47 15 14.02 1 3.45 5 9.80

 ≥ 13 48 81.36 70 65.42 9 31.03 1 1.96

 Unknown 0 0.0 4 3.74 2 6.90 4 7.84
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Discussion
It is known that persistent infection with HR-HPV is 
the cause of cervical cancer [2]. However, additional 
alterations are necessary for the development of cervical 
lesions and cervical cancer [4]. Abnormal DNA methyla-
tion has an important role from genesis to the dissemina-
tion of cervical cancer and other human tumors [12, 18]. 
In this study, we evaluated the DNA methylation of eight 
genes, identified and genotyped DNA-HPV, and ana-
lyzed the CIMP status and the risk of LSIL, HSIL, and CC 
development.

CIMP-positive tumors are a class of cancers that have 
concurrent hypermethylation of multiple genes, and such 
genes are involved in cellular transformation, prolifera-
tion, migration, and invasion, which are key functions in 
the genesis of human cancer [19, 20]. In our work, CIMP 
high represents a subclass of patients with methylation or 
hypermethylation in most of the genes analyzed, and it 
is likely that such genes are decreased or not expressed. 
In fact, several studies have reported DNA methylation 
and decreases or a lack of expression of these genes in 
several types of human cancer [6, 13, 21]. Furthermore, 
in general, the mRNA levels of these genes were lower 
in cervical cancer than in normal cervical tissue (TCGA 
data; Additional file 7: Fig. S6). We found that CIMP high 

was significantly associated with an increased risk of 
HSIL (OR = 50.6) and CC (OR = 122). In agreement with 
our results, two studies have reported that CIMP high is 
significantly associated with HSIL and CC development 
[12, 21]. Biologically, this result can be explained by the 
individual contribution of each abnormally methylated 
gene in the molecular alterations that cause HSIL and CC 
development.

The analyzed genes in this work (SOX17, MYOD1, 
MAGI2, CDH1, AJAP1, MGMT, CDH13, and RASSF1A) 
participate in essential biological processes to main-
tain cell normality, and there is sufficient evidence for 
their protective role against the development of cancer. 
For example, SOX17 is a transcription factor involved 
in cellular reprogramming and has an antagonist role in 
WNT signaling [22]. There is evidence of its silencing by 
methylation in several types of human cancer [23–25]. 
MYOD1 is a master regulator of differentiation in muscle 
cells [26]. Abnormal promoter methylation is frequent 
in cervical cancer and other human cancers [27–29]. 
MAGI2 belongs to the membrane-associated guanylate 
kinase superfamily and is an important part of tight junc-
tion proteins in epithelial cells [30]. MAGI2, beta-catenin 
and other proteins participate in migration and prolifera-
tion in some cell types [21]. Abnormal expression and 

Table 2  Prevalence of single, multiple and mix HPV infection in Non-SIL, LSIL, HSIL and, CC

CC cervical cancer, HSIL high-grade squamous intraepithelial lesion, LSIL low-grade squamous intraepithelial lesion, Non-SIL negative for squamous intraepithelial 
lesion, HR high risk, PHR probably high risk, LR low risk, UR indeterminate risk

Non-SIL LSIL HSIL CC

n = 59 % n = 107 % n = 29 % n = 51 %

HPV negative 30 50.85 0 0.0 0 0.0 0 0.0

HPV positive 29 49.15 107 100 29 100 51 100

Single infection

HR 14 23.73 44 41.12 10 34.48 31 60.78

PHR 3 5.08 3 2.80 1 3.45 0 0.0

LR 0 0.0 3 2.80 0 0.0 0 0.0

UR 0 0.0 2 1.87 0 0.0 0 0.0

Total 17 28.81 52 48.59 11 37.93 31 60.78

Multiple HPV infection

HR 2 3.39 21 19.63 7 24.14 11 21.57

Mix HPV infection

HR and PHR 2 3.39 23 21.50 4 13.79 1 1.96

HR and LR 6 10.17 5 4.67 3 10.34 5 9.80

HR and UR 1 1.69 0 0.0 0 0.0 0 0.0

PHR and LR 0 0.0 0 0.0 0 0.0 1 1.96

PHR and UR 0 0.0 0 0.0 1 3.45 1 1.96

HR, PHR and LR 1 1.69 6 5.61 2 6.90 0 0.0

HR, PHR and UR 0 0.0 0 0.0 0 0.0 1 1.96

HR, PHR, LR and UR 0 0.0 0 0.0 1 3.45 0 0.0

Total 10 16.94 34 31.78 11 37.93 9 17.64
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hypermethylation in this gene are common events in dif-
ferent types of cancer [31, 32]. In our work, the hyper-
methylation of the SOX17, MYOD1 and MAGI2 genes 
was significantly associated with CC development. The 
CDH1 gene encodes E-cadherin, which is a transmem-
brane glycoprotein involved in cell–cell adhesion and is 

key for controlling cell maturation and movement [33]. 
CDH1 is considered a tumor suppressor gene and is 
frequently silenced by the methylation of its promoter 
in cervical cancer and other human tumors [13, 33, 34]. 
AJAP1 is a transmembrane protein that is an important 
part of cell–cell and cell-extracellular matrix interactions 

Fig. 1  Analysis of the methylation levels of the AJAP1, CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17 genes in cervical tissue. Methylation 
was analyzed in 58 samples negative for squamous intraepithelial lesions (non-SILs), 107 low-grade squamous intraepithelial lesions (LSILs), 29 
high-grade squamous intraepithelial lesions (HSILs) and 51 cervical cancers (CCs). The p values were calculated using the Kruskal–Wallis test



Page 6 of 11Loaeza‑Loaeza et al. Clinical Epigenetics            (2022) 14:4 

Fig. 2  Analysis of the methylation levels of the AJAP1, CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17 genes in cervical cancer cell lines. 
The data are presented as fold changes in the cancer cell line relative to the HaCaT cell line. *p < 0.05
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[35]. This gene has been considered a tumor suppressor 
and is epigenetically silenced by methylation in cervical 
cancer, glioma, esophageal squamous cell carcinoma, 
lung cancer and endometrial carcinoma [21, 35–38]. We 
found that the hypermethylation of CDH1 and AJAP1 
was significantly associated with HSIL and CC devel-
opment. MGMT encodes a DNA repair protein that is 
removed by direct repair of oxygen 6-methylguanine 
lesions [39]. Lack of expression and promoter hyper-
methylation are frequent in human cancers, including 
cervical cancer [40, 41]. We found that the hypermeth-
ylation of MGMT was significantly associated with HSIL 
development. RASSF1A is a tumor suppressor gene that 
encodes scaffold proteins [42]. Additionally, hypermeth-
ylation and lack of expression of this gene are frequent 

in cancer [43, 44]. In our work, the methylation level of 
RASSF1A increased according to cervical lesion severity.

CDH13 is an atypical cadherin since it lacks the trans-
membrane and cytoplasmic domains to mediate its func-
tions through its signaling properties [45]. This gene is 
considered a tumor suppressor, and its inactivation by 
hypermethylation is common in colorectal cancer and 
human lung adenocarcinoma cell lines [46–48]. Although 
CDH13 has a clear function in cancer, we did not find 
that its methylation was associated with HSIL and CC 
development. In agreement with our results, there is 
work that shows low-frequency or absence of meth-
ylation in this gene [13, 21, 49]. There is no evidence of 
CDH13 methylation in cervical cancer. We believe that 
this is because DNMT3B and 3A (de novo methylases) 
does not show an affinity for the promoter of this gene 
and that the decrease in its expression is explained by 
other components of epigenetic regulation [8, 10, 20].

Four of the genes (SOX17, MAGI2, AJAP1 and CDH1) 
that we analyzed and that were significantly associated 
with HSIL, and CC development play essential roles in 
the WNT/β-catenin signaling pathway [21, 50]. This sign-
aling pathway is crucial in embryogenesis and cell differ-
entiation, and abnormalities in this pathway are common 
in human cancers, including cervical cancer [51–53].

We do not show concrete evidence that this panel of 
genes is involved in the initiation, development and pro-
gression of HSIL or CC. We only show epidemiological 
evidence of the methylation role and the risk of develop-
ment HSIL and cervical cancer. Another limitation of our 

Fig. 3  CpG island methylation phenotype (CIMP) frequencies in 
non-SIL, LSIL, HSIL and CC

Table 3  CIMP status and risk of cervical lesion

Significant values for associations are indicated in bold

CIMP, CpG island methylation phenotype; OR, odd ratio; CI, confidence interval; CC, cervical cancer; HSIL, high-grade squamous intraepithelial lesion; LSIL, low-grade 
squamous intraepithelial lesion; Non-SIL, negative for squamous intraepithelial lesion

CIMP OR CI P

Negative
n

High
n

Non-SIL 16 2 1

LSIL 43 1 0.19 0.003–3.92 0.141

HSIL 1 15 120 7.95–5342.9 0.0000

CC 1 25 200 13.75–8683.9 0.0000

Non-SIL 16 2 1

HSIL and CC 2 40 160 16.64–1960.8 0.0000

Non-SIL and LSIL 59 3 1

HSIL and CC 2 40 393.3 52.9–4040.78 0.0000

Negative + low
n

High
n

Non-SIL 57 2 1

LSIL 107 1 0.27 0.004–5.26 0.251

HSIL 14 15 30.5 5.77–290-09 0.0000

CC 26 25 27.4 5.91–248.19 0.0000
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study is that unfortunately, we did not analyze the expres-
sion of the 8 genes in the included samples. Instead, we 
analyzed the expression of these genes in cervical cancer 
cell lines and databases. Although there is concordance 
between the expression and methylation data of the cell 
lines and the analyzed samples, we must take these simi-
larities with caution. The cell lines are homogeneous and 
do not reflect the complexity of cervical tumor tissue.

Conclusions
We found that CIMP high was significantly associated 
with HSIL and CC development. This result could indi-
cate that CIMP in precancerous lesions and cervical 
cancer participates in its genesis together with HR-HPV 
infection. Additionally, the SOX17, MAGI2, AJAP1, 
MYOD1, MGMT, and CDH1 genes can be used as bio-
markers in HSIL and CC development.

Methods
DNA samples
This study was conducted with 245 DNA samples from 
the Sample Bank of the Laboratory of Biomedicina 
Molecular, Universidad Autónoma de Guerrero, México. 
The population consisted of 58 samples diagnostic of 
non-SIL, 107 LSIL, 29 HSIL and 51 CC. The diagnosis of 
non-SIL and LSIL was performed by cytomorphological 
examination through the Papanicolaou test and diagnosis 
of HSIL and CC by histological diagnosis, according to 
the International Federation of Gynecology and Obstet-
rics. The Bioethics and Research Committee of the Insti-
tute approved the study (UAGro-IECan 04/18/2016), 
according to the ethical guidelines of the 2008 Helsinki 
Declaration.

Cell culture
Human cervical carcinoma (C-33A, SiHa, CaSki and 
HeLa) and human skin keratinocyte (HaCaT) cell lines 
were obtained from the American Type Culture Collec-
tion (ATCC, USA). Cells were grown at 37 °C in a 5% CO2 
atmosphere with DMEM and F-12 1:1 (Sigma–Aldrich, 
St. Louis, MO) supplemented with 10% fetal bovine 
serum, 100 U/ml penicillin and 100 µg/ml streptomycin.

HPV detection and genotyping
Genomic DNA of clinical samples was extracted 
from cervical cells by the phenol chloroform method. 
Genomic DNA of cell lines was extracted using the Wiz-
ard® Genomic DNA Purification Kit (Promega; Madison, 
WI, USA) according to the manufacturer´s instructions. 
HPV detection and genotyping were performed with an 
INNO‑LiPA genotyping kit (Fujirebio Europe, Gent, Bel-
gium) without amendment and according to the manu-
facturer’s protocol.

Methylation‑specific PCR
Methylation analysis of the AJAP1, CDH1, CDH13, 
MAGI2, MGMT, MYOD1, RASSF1A and SOX17 genes 
was performed by MSP and densitometric analysis was 
performed with ImageJ software (NIH; Bethesda, Mary-
land, USA). Primer sequences are shown in Table  4. 
Briefly, 2 μg of genomic DNA was modified using the EZ 
DNA Methylation-Gold™ Kit (Zymo Research; Irvine, 
CA, USA). PCR was performed using Amplitaq Gold 
Master Mix (Applied Biosystems; Foster City, CA, USA) 
according to the manufacturer’s protocol. Amplifica-
tion conditions were as follows: denaturation, 95  °C for 
10 min; 30 to 35 cycles of amplification: 30 s at 95 °C, 30 s 
at 60 °C and 30 s at 72 °C; and a final extension of 72 °C 
for 10  min. DNA from human leukocytes methylated 

Table 4  Primer sequences

M, methylated; U, unmethylated; F, forward; R, reverse

Gene 5′ to 3′ Tm °C

AJAP1 M F: TTT​GGT​AGA​GTT​TTT​CGA​TTC​GGT​AGC​
R: ACC​GAA​ACT​CCG​CGC​CGA​TAA​

60

U F: TTT​GGT​AGA​GTT​TTT​TGA​TTT​GGT​AGT​
R: CCA​AAA​CTC​CAC​ACC​AAT​AA

55

CDH1 M F: TTA​GGT​TAG​AGG​GTT​ATC​GCGT​
R: TAA​CTA​AAA​TTC​ACC​TAC​CGAC​

57

U F: TAA​TTT​TAG​GTT​AGA​GGG​TTA​TTG​T
R: CAC​AAC​CAA​TCA​ACA​ACA​CA

55

CDH13 M F: TCG​CGG​GGT​TCG​TTT​TTC​GC
R: GAC​GTT​TTC​ATT​CAT​ACA​CGCG​

57

U F: TTG​TGG​GGT​TTG​TTT​TTT​GT
R: ACA​TTT​TCA​TTC​ATA​CAC​ACA​

53

MAGI2 M F: CGT​AGA​GTT​CGA​GAT​GTG​GTA​TTA​GGC​
R: AAA​CTC​CTA​TAC​GAA​AAA​AAC​GCG​CTA​

60

U F: TGT​AGA​GTT​TGA​GAT​GTG​GTA​TTA​GGT​
R: AAC​TCC​TAT​ACA​AAA​AAA​ACA​CAC​TA

55

MGMT M F: TTT​CGA​CGT​TCG​TAG​GTT​TTCGC​
R: GCA​CTC​TTC​CGA​AAA​CGA​AACG​

59

U F: TTT​GTG​TTT​TGA​TGT​TTG​TAG​GTT​TTTGT​
R: AAC​TCC​ACA​CTC​TTC​CAA​AAA​CAA​AACA​

59

MYOD1 M F: GAC​GGT​TTT​CGA​CGG​TTT​
R: GCC​CGA​AAC​CGA​ATA​CAC​

56

U F: ATT​TGA​TGG​TTT​TTG​ATG​GTTT​
R: CAC​ACA​CAT​ACT​CAT​CCT​CACA​

57

RASSF1A M F: GTG​TTA​ACG​CGT​TGC​GTA​TC
R: AAC​CCC​GCG​AAC​TAA​AAA​CGA​

65

U F: TTT​GGT​TGG​AGT​GTG​TTA​ATGTG​
R: CAA​ACC​CCA​CAA​ACT​AAA​AACAA​

60

SOX17 M F: GGA​GAT​TCG​CGT​AGT TTTCG​
R: AAC​CCG​ACC​ATC​ACC​GCG​

60

U F: GGA​GAT​TTG​TGT​AGT TTTTG​
R: ACC​CAA​CCA​TCA​CCACA​

55

GAPDH M F: GAG​AAA​GTA​GGG​TTC​GGT​TAT​TAG​C
R: AAA​AAC​GAA​ACG​AAA​AAC​TACGA​

55

OXT M F: ATA​AAA​AGG​TTA​GGT​CGG​AGA​GAT​C
R: AAA​TAT​AAC​AAA​CGA​AAA​TCA​ACG​C

52
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in vitro with M.SssI (New England Biolabs, Inc., Ipswich, 
USA) was used as a positive control, and reactions with-
out DNA were used as a negative control. Additional 
controls were included, selection was made from infor-
mation collected from cell lines of different tissues and 
pathological states in the genome browser. RRBS and 
Methyl 450  K Array methylation dates were charge for 
the CpG island of GAPDH (unmethylated) and OXT 
(Methylated) genes. Furthermore, OXT has been used as 
a control methylated DNA by MeDIP assay [54] (Addi-
tional file 2: Fig. S1).

Semiquantification of methylation levels
We performed semiquantification of methylation levels 
by densitometry analysis with ImageJ. The quantitative 
values of each sample and of each gene were obtained, 
and the minimum and maximum values of each sample 
group (non-SIL, LSIL, HSIL and CC) were calculated 
tertiles. With these data, we established three catego-
ries: unmethylated (first tertile), methylated (second ter-
tile) and hypermethylated (third tertile). In addition, for 
CpG island methylation phenotype (CIMP) analysis, 
we assigned an arbitrary value to each category: 0 for 
unmethylated, 1 for methylated and 2 for hypermethyl-
ated. Thus, with the sum of arbitrary values of the eight 
genes by each patient, CIMP categories were established: 
CIMP negative (0 to 1), CIMP low (2 to 5) and CIMP 
high (> 6).

Statistical analysis
All results are expressed as the mean ± standard devia-
tion. The chi-squared and Kruskal–Wallis tests were used 
to determine the differences between non-SIL, LSIL, 
HSIL and CC. The associations between CIMP status 
and the risk of developing CC, HSIL, and LSIL were esti-
mated by odds ratios (ORs) using the STATA 10.0 soft-
ware package (StataCorp, College Station, TX, USA). 
Ninety-five percent confidence intervals (95% CIs) and p 
values are reported for the OR.
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of cervical lesion; Table S5. Methylation status of MYOD1 and risk of 
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Additional file 3: Fig. S2. Methylation and expression heatmaps of AJAP1, 
SOX17, CDH13, MAGI2, MGMT, CDH1, RASSF1, and MYOD1 genes in public 
database (Cervical Squamous Cell Carcinoma and Endocervical Adeno‑
carcinoma, TCGA, Firehose Legacy). a) Methylation data of 309 patients. b) 
Expression level of analyzed genes. The yellow box shows a representa‑
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Additional file 4: Fig. S3. Analysis of the expression levels of the AJAP1, 
CDH13, MAGI2, SOX17, MGMT, and MYOD1 genes in cervical cancer cell 
lines. The dates are presented as the fold change in cancer cell line relative 
to HaCaT cell line. *p<0.05

Additional file 5: Fig. S4. Analysis of the methylation levels of the AJAP1, 
CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17 genes in each of 
the non-SIL and LSIL samples. The sum of arbitrary values of methylation 
and CIMP status is shown.

Additional file 6: Fig. S5. Analysis of the methylation levels of the AJAP1, 
CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17 genes in each of 
the HSIL and CC samples. The sum of arbitrary values of methylation and 
CIMP status is shown.

Additional file 7: Fig. S6. Expression of analyzed genes in TCGA dataset. 
The mRNA levels of analyzed genes were investigated in normal and 
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endocervical adenocarcinoma tumor samples. *p<0.05
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