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DNA 5‑hydroxymethylcytosine in pediatric 
central nervous system tumors may impact 
tumor classification and is a positive prognostic 
marker
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Abstract 

Background:  Nucleotide-specific 5-hydroxymethylcytosine (5hmC) remains understudied in pediatric central nerv-
ous system (CNS) tumors. 5hmC is abundant in the brain, and alterations to 5hmC in adult CNS tumors have been 
reported. However, traditional approaches to measure DNA methylation do not distinguish between 5-methylcy-
tosine (5mC) and its oxidized counterpart 5hmC, including those used to build CNS tumor DNA methylation clas-
sification systems. We measured 5hmC and 5mC epigenome-wide at nucleotide resolution in glioma, ependymoma, 
and embryonal tumors from children, as well as control pediatric brain tissues using tandem bisulfite and oxidative 
bisulfite treatments followed by hybridization to the Illumina Methylation EPIC Array that interrogates over 860,000 
CpG loci.

Results:  Linear mixed effects models adjusted for age and sex tested the CpG-specific differences in 5hmC between 
tumor and non-tumor samples, as well as between tumor subtypes. Results from model-based clustering of tumors 
was used to test the relation of cluster membership with patient survival through multivariable Cox proportional 
hazards regression. We also assessed the robustness of multiple epigenetic CNS tumor classification methods to 5mC-
specific data in both pediatric and adult CNS tumors. Compared to non-tumor samples, tumors were hypohydroxym-
ethylated across the epigenome and tumor 5hmC localized to regulatory elements crucial to cell identity, including 
transcription factor binding sites and super-enhancers. Differentially hydroxymethylated loci among tumor subtypes 
tended to be hypermethylated and disproportionally found in CTCF binding sites and genes related to posttranscrip-
tional RNA regulation, such as DICER1. Model-based clustering results indicated that patients with low 5hmC patterns 
have poorer overall survival and increased risk of recurrence. Our results suggest 5mC-specific data from OxBS-treated 
samples impacts methylation-based tumor classification systems giving new opportunities for further refinement of 
classifiers for both pediatric and adult tumors.

Conclusions:  We identified that 5hmC localizes to super-enhancers, and genes commonly implicated in pediat-
ric CNS tumors were differentially hypohydroxymethylated. We demonstrated that distinguishing methylation and 
hydroxymethylation is critical in identifying tumor-related epigenetic changes. These results have implications for 
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Background
Central nervous system malignancies are the most com-
mon pediatric solid tumor type in North America [1]. 
They are the leading cause of death from disease in 
childhood and are the greatest source of cancer-derived 
morbidity in the USA, due to treatment side effects and 
resistance [2]. Pathologists commonly classify these 
tumors into glioma, ependymoma, and embryonal types 
[3]. Within these broad groups, there is substantial vari-
ability in histopathology and patient prognosis. For 
instance, gliomas encompass diagnoses such as glioblas-
toma, a high-grade cancer with low survival requiring 
chemotherapy, radiation, and surgery, while pilocytic 
astrocytoma, a benign entity, is cured by surgery alone. 
Due to the variation in underlying disease mechanism 
and impact on prognosis, risk stratification and classifica-
tion are critical to treatment planning and goal setting.

Several studies have paved the way in using molecu-
lar markers to classify pediatric central nervous system 
(CNS) tumors. Through gene sequencing, diagnoses 
have been subdivided. WNT1 and SHH mutations have 
been identified as subtype-specific genetic alterations in 
group 1 and 2 medulloblastomas with subsequent treat-
ment and prognostic implications [4, 5] Likewise, epend-
ymomas have been split into multiple subgroups based 
on C11orf95-RELA and Yap1 fusions [6], while BRAF-
KIAA1549 fusion has been used to characterize pediat-
ric low-grade gliomas [7]. These molecular markers have 
recently been incorporated into the WHO CNS tumor 
classification guidelines [3]. However, while genomic 
approaches have provided ways to better characterize 
pediatric CNS tumors, many lack obvious genetic driv-
ers. Further, these genetic findings are not always associ-
ated with prognosis.

While genome-scale 5mC profiles have been well-
described and used clinically in CNS tumors, there is 
very limited nucleotide-specific data for the other major 
cytosine modification in the brain, 5-hydroxymethylcy-
tosine (5hmC). In mammals, TET proteins oxidize 5mC 
to 5hmC, which can be further transformed to 5-for-
mylcytosine (5fC) and 5-carboxylcytosine (5caC) lead-
ing to methylation loss [8, 9]. Though initially thought 
to be an intermediate, 5hmC has since been shown 
to play a distinct role in regulating gene transcription 
and increasing chromatin accessibility [10–12]. Unlike 
methylcytosine, 5hmC concentrates in gene bodies 
and enhancers and is associated with increased gene 

expression [13–15]. 5hmC tends to be depleted in pro-
moter CpG islands and is instead observed in the flank-
ing CpG shores and shelves [14, 16].

5hmC modifications are most abundant in the brain, 
with levels tenfold higher than other tissues, though 
varying among regions of the brain [17]. In the cerebel-
lum, 5hmC accounts for up to 42% of cytosine modifi-
cations [18]. Appropriate patterning of 5hmC is likely 
critical to normal neurodevelopment, and altered 
5hmC has been associated with developmental neuro-
pathologies such as Rett syndrome, autism, and schizo-
phrenia [19–21]. 5hmC has been studied in adult brain 
tumors, such as glioblastoma, and has been shown to 
correlate with survival [13, 22, 23]. However, genome-
wide nucleotide level studies in pediatric central nerv-
ous system tumors are lacking. Changes in 5hmC in 
tumors have been consistent across tissue types, with 
depletion of 5hmC in gene bodies and regulatory 
regions such as enhancers and transcription factor 
binding sites [24–28]. Loss of 5hmC tends to coincide 
with commonly mutated genes in cancers and is tissue-
specific [10, 13, 29, 30]. 5hmC appears to play a unique 
role in cancer, such as localizing to sites of DNA dam-
age, and promoters with 5hmC have been shown to be 
resistant to the hypermethylation that is common in 
cancers [28, 31]. To date, the role of 5hmC in pediat-
ric CNS tumors has yet to be adequately measured and 
understood.

Epigenetic profiling to characterize CNS tumors 
in both research and clinical settings is increasingly 
applied. DNA methylation, the addition of a methyl 
group to cytosine, 5-methylcytosine (5mC), is one of 
the most common and best-studied epigenetic modi-
fications. Alterations in the methylation status of spe-
cific cytosines have been used to classify CNS tumors 
in both adults and children to great effect—identify-
ing changes that transcend somatic genetic alterations 
[32–36]. Capper et  al. have even set up a molecular 
neuropathology webite where methylation array data 
can be uploaded to classify CNS tumors [36]. Tumor 
DNA methylation signatures have been used not only 
for diagnostic purposes but to stratify subgroups with a 
worse prognosis [37, 38]. However, current methods of 
measuring nucleotide level 5mC—including those for 
CNS tumor classification—rely on bisulfite conversion 
techniques which cannot distinguish between 5hmC 
and 5mC [39]. This confounds to what degree these 

patient prognostication, considerations of epigenetic therapy in CNS tumors, and for emerging molecular neuropa-
thology classification approaches.
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classifications rely on 5hmC to diagnose or prognosti-
cate tumor types and has not been clearly delineated.

Most studies of 5hmC only provide a genome-level 
summary measure of 5hmC without chromosome, gene 
region, or nucleotide-specific information [40, 41]. Due 
to the abundance of 5hmC in the brain and its observed 
alterations in tumorigenesis, we aimed to examine 5hmC 
in pediatric CNS tumors. We measured 5-methylcytosine 
and 5-hydroxymethylcytosine epigenome-wide at nucle-
otide resolution in pediatric glioma, ependymoma, and 
embryonal tumors as well as non-tumor tissue using tan-
dem bisulfite and oxidative bisulfite sequencing followed 
by hybridization to the Illumina Methylation EPIC Array 
that interrogates over 860,000 CpG loci. Lastly, we used 
our raw data, processed with bisulfite treatment (includ-
ing both 5mC and 5hmC) as well as oxidative bisulfite-
treated data files (including only 5mC), as the input for 
several existing tumor classification systems to determine 
whether using 5mC-specific data could impact the diag-
nostic aptitude of these tools.

Results
Overview of study population
All cases included in this study (n = 27) received treat-
ment at the Children’s Hospital at Dartmouth Hitchcock 
and the Norris Cotton Cancer Center between 1993 
and 2009. The mean age of cases was 9.5 years, and the 
mean age of subjects providing non-tumor samples was 
6 years. Tumor samples included thirteen gliomas, eight 
ependymomas, and six embryonal tumors. Additional 
details of subject demographic, tumor characteristics and 
diagnoses are provided in Table 1. Our cohort included 
both common and rare entities, including dysplastic 
gangliocytoma and spinal myxopapillary ependymoma. 
The most common glioma subtype was pilocytic astro-
cytoma, and medulloblastoma for embryonal tumors. 
The most diverse subtype was gliomas with a range of 
histopathologic diagnoses incluging desmoplastic gan-
glioglioma, dysembryoplastic neuropithelial tumors, and 
dysplastic gangliocytomas with limited sample sizes due 
to their respective rare prevalence (Table 1). All samples 
were H3F3A (K27 and G34) and TERT promoter (C228T 
and C250T) wild-type, as determined by Sanger sequenc-
ing (Additional file 6: Table S1).

Pediatric CNS tumors are globally depleted of 5hmC
To measure nucleotide-specific 5hmC and 5mC levels, 
we applied tandem bisulfite and oxidative bisulfite treat-
ment to DNA from 27 fresh frozen pediatric CNS tumor 
samples and three non-tumor control tissues. Treated 
DNA was hybridized to the Illumina Human Methylation 
EPIC array. Following processing, CpG probes associated 

with SNPs and sex chromosomes were removed, and 
743,461 CpG sites remained in the dataset.

To first compare our findings with prior work where 
5hmC measures only provide a single epigenome-wide 
summary value, we calculated median 5hmC levels using 
the 743,461 CpG sites in our dataset. Median 5hmC lev-
els were significantly lower in tumors (gliomas 1.75%, 
ependymomas 1.76%, and embryonal tumors 1.22%), 
compared to non-tumor tissues (4.81%) (Fig. 1a). Median 
levels of tumor 5mC (glioma 62.5%, ependymoma 62.4%, 
embryonal 57.7%, non-tumor 60.3%), did not differ from 
controls (Fig. 1b).

Table 1  Patient demographics and tumor characteristics

a Tumor type and grade were determined by a neuropathologist re-review of 
samples and distribution of tumor type was determined by prevalence at the 
institution

Tumor (n = 27) Non-Tumor (n = 3)

Age, mean (SD) 9.5 (5.5) 6 (5.6)

Range 1–18 0–11

Sex n (%)

Female 12 (44) 1 (33)

Male 15 (56) 2 (67)

Tumor type,a n (%)

Embryonal 6 (22)

Medulloblastoma 4

Embryonal (NOS) 2

Glioma 13 (48)

Anaplastic ganglioglioma 1

Desmoplastic ganglioglioma 2

Dysembryoplastic neuroepithelial 
tumor

2

Dysplastic gangliocytoma 1

Glioblastoma 1

Pilocytic astrocytoma 5

Low-grade glioma 1

Ependymoma 7 (30)

Subependymoma 1

Ependymoma 5

Myxopapillary ependymoma 1

WHO grade n (%)

I 12 (44)

II 5 (19)

III 2 (7)

IV 8 (30)

Sample location n (%)

Supratentorial 9 (33) 3 (100)

Subtentorial 17 (63)

Spinal 1 (4)

Median follow up (years) 14

Mean time to recurrence (years) 1.5
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Cumulative density plots for median 5hmC and 5mC 
across all tumor samples demonstrated very low 5hmC 
levels at the majority of CpG sites in contrast to 5mC 
levels, which were more evenly distributed (Fig.  1c). 
We observed a negative correlation between 5hmC and 
5mC for approximately 80% of CpGs in tumor samples 
as indicated by the distribution of Spearman’s correlation 
coefficients (Fig.  1d). CpG-specific median beta values 
were calculated across all tumor samples and ordered by 
increasing value to identify the distribution of 5hmC level 
and loci with appreciable 5-hydroxymethylation (Fig. 1e).

The difference in the levels of 5hmC and 5mC 
between tumors and controls depends on the distance 
from the transcription start site (TSS). Immediately 
surrounding the TSS, there was no discernible differ-
ence between tumors and non-tumor tissues, and lev-
els of both cytosine modifications drop to near zero. 
At approximately 300 base pairs in the 5′ and 700 base 

pairs 3′ direction, tumors demonstrate hypohydroxy-
methylation and hypermethylation (Fig.  2). Compared 
with non-tumor control tissue, we observed consist-
ently lower levels of 5hmC within each tumor sub-
type (Additional file 6: Fig. S1a). Despite lower median 
5hmC near TSSs, a substantial proportion of high 
5hmC CpGs are found within 5 kb of the TSS, with 14% 
of loci within 2000 base pairs upstream of the start site 
(Additional file 6: Fig. S1b).

We decided to focus on the top 5% of measured loci 
with the highest median 5hmC beta values, which we 
refer to as the "high 5hmC CpGs," for downstream 
investigation. This subset consisted of 37,173 loci with 
a median beta value greater than 0.09 (Fig.  1d). 5mC 
levels at these sites had similar relationships between 
tumors and non-tumors as at the genome wide level 
with tumor median levels significantly higher than non-
tumor (Additional file 6: Fig. S2).

Fig. 1  Distribution of 5-hmC in tumor samples and median beta values by tumor class and  cytosine modifications in CNS tumors as compared 
to non-tumor brain tissue. a Consistent with studies in other tumor types, 5-hydroxymethylation levels are depleted compared to non-tumor 
samples; this depletion holds across tumor types. Two-tailed Welch’s t test comparing median values was performed and differences met statistical 
significance. b Total methylation levels do not differ significantly between tumor and non-tumor samples. c Examined the empirical cumulative 
distribution of median 5-hydroxymethylcytosine and 5-methylcytosine across 27 primary pediatric central nervous system tumors. While 5mC 
demonstrates a bimodal distribution, 5hmC is far more sparsely distributed. d Cumulative proportions of Spearman correlation coefficients 
calculated for each CpG across all tumors. e Ordered distribution of CpG-specific median 5hmC values across the EPIC array in tumor samples. The 
x axis represents percentile rank of CpG by median beta value. We isolated CpGs with medians greater than the 95th percentile and called these 
high 5hmC CpGs. This corresponded to 37, 173 loci with a median beta value greater than 0.09. We based subsequent analyses on these high 5hmC 
CpGs
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Genomic enrichment of 5hmC in regulatory regions 
of the genome
We then investigated the relationship between genomic 
context and CpGs with high 5hmC, specifically investi-
gating CpG islands and other genomic transcriptional 
regulatory elements (Fig. 3). Tumor CpG islands are sig-
nificantly depleted of high 5hmC CpGs (OR 0.03, 95% 
CI 0.03–0.03, P < 2.2E−16). Out of the 37,173 loci desig-
nated as high 5hmC, only 281 were identified as residing 
in the CpG islands. CpG depleted open sea regions are 
significantly enriched for high 5hmC CpGs (OR 2.71, 95% 
CI 2.64–2.78, P < 2.2E−16). In fact, 77% of high 5hmC 
loci were in open sea regions (Additional file 6: Table S2). 
High 5hmC sites predominantly localize to genomic 
regions associated with transcriptional regulation such 
as enhancers (OR 1.56, 95% CI 1.49–1.64, P = 7.68E−69), 
transcription factor binding sites (OR 1.14, 95% CI 1.11–
1.17, P = 3.57E−20), and 5′ untranslated regions (UTR-5) 
(OR 1.29, 95% CI 1.25–1.33, P = 2.06E−61).

Super-enhancers have been shown to be critical to 
cell identity, and aberrant methylation in these regions 
has been implicated in the development of human can-
cer [42]. To test the relation of super-enhancer with high 
5hmC loci, we accessed super-enhancer coordinates 
defined in multiple brain-derived cell lines from the 
dbSuper database [43] and performed the same enrich-
ment analysis as above. We identified significant enrich-
ment of high 5hmC in annotated super-enhancers, 

including astrocyte lines (OR 1.75, 95% CI 1.65–1.86, 
P = 1.94E−68) and anterior caudate lines (OR 1.93, 95% 
CI 1.88–2.03, P = 6.22E−216, Fig. 3).

Next, we investigated the enrichment of high 5hmC 
loci at the gene level. We wanted to identify genes that 
had large clusters of high 5hmC loci. We first identified 
genes with at least ten high 5hmC CpGs (n = 486 genes). 
We defined the gene-level high 5hmC sites as a propor-
tion of measured CpGs that were high 5hmC to account 
for different gene lengths, number of CpGs measured 
on the array, and number of high 5hmC CpGs. The 
range of high 5hmC sites as a proportion of those meas-
ured ranged from 1.4 to 52.6% and the mean propor-
tion of hydroxymethylated CpGs among the 486 genes 
was 17%. Genes with the highest proportion of their 
CpGs designated as “high 5hmC” were SHOC2 (53%), 
ZRANB1 (48%), MBNL1 (41%), ZMIZ1-AS1 (35%), 
DICER1 (35%), and GNAQ (35%) (Additional file 2). This 
list also included, but was not exclusive to, genes per-
taining to RNA interference pathways such as DICER1 
and Argonaute gene (AGO2) [44–46] and neurodevel-
opment (GNAQ, FOXO3) [47, 48]. Using the genomic 
coordinates of the list of genes enriched for high 5hmC 
loci as the input, the Genomic Regions Enrichment of 
Annotations Tool (GREAT) analysis revealed biological 
pathways including regulation RNA interference path-
ways and RISC complex formation, as well as cell signal-
ing pathways, and neuronal signaling and development. 
High 5hmC pathways also included those associated 
with craniofacial and neurodevelopmental pathologies, 
including autism, hyperactivity, and slanted palpebral fis-
sures (Additional file 2).

Locus‑specific differentially hydroxymethylated regions
We tested the high 5hmC sites for differential hydroxym-
ethylation between tumor and non-tumors (n = 37,173), 
adjusting for age and sex, in a linear model. Tumors were 
hypohydroxymethylated, with 84% of the high 5hmC 
loci demonstrating reduced hydroxymethylation, and 
we observed 726 loci with significantly hypohydroxy-
methylation in tumors (FDR < 0.1, Fig.  4a). Submitting 
the 726 differentially hypohydroxymethylated regions 
(DHMRs) to GREAT analysis resulted in overlap with 
steroid response pathways (4 of the 20 gene ontology 
biological processes), RNA stability, as well as WNT 
signaling and beta-catenin binding (Additional file  3). 
Furthermore, in contrast to the overall genomic context 
patterning of high 5hmC CpGs, tumor DHMRs were 
significantly enriched in CpG islands and shore regions 
while depleted in open sea regions (Fig. 4b). The major-
ity of CpGs, 63%, were found in open sea regions (Addi-
tional file  6: Table  S3). Differentially hydroxymethylated 
regions (DHMRs) in CpG islands were associated with 

Fig. 2  5hmC levels in relation to transcription start sites. Median 
5hmC and 5mC within ± 10 kilo base pairs from the nearest gene 
transcription start site (TSS) for both tumors (n = 27) and non-tumors 
(n = 3). We observed that there were minimal differences between 
tumors and non-tumors near the transcription start sites and both 
cytosine modifications were depleted. However, within less than 
1000 base pairs of the TSS, tumors were hypohydroxymethylated and 
hypermethylated as compared to controls



Page 6 of 17Azizgolshani et al. Clin Epigenet          (2021) 13:176 

10 genes which included Wnt pathway regulator APC2, 
histone H3 demethylase KDM2A, and orphan G protein-
coupled receptor GPRC5B critical for neurodevelopment 
(Additional file 3) [49].

To determine whether particular transcription factors 
are associated with DHMRs, we tested for enrichment 
in binding sites from transcription factor experiments 
(ENCODE) using the locus overlap analysis (LOLA) 
software in CNS and embryonic stem cell lines. We 
identified enrichment for DHMRs at CTCF binding 
sites, a transcription factor linked to alternative splic-
ing by regulating RNA polymerase II and TET [50] 

(Fig.  4d). Using LOLA to interrogate sites associated 
with histone modifications generated by the NIH Road-
map Epigenomics Project, we found that DHMRs were 
significantly associated both with chromatin signatures 
for transcriptional activation (H3K4me3) and priming 
(H3K4me1) (Additional file 6: Fig. S3). Lastly, we inves-
tigated total 5mC levels among DHMRs. All tumor sub-
types were hypermethylated at these sites as compared 
to non-tumors (Fig.  4c). This pattern of hypohydroxy-
methylation and hypermethylation was only captured 
in tandem OxBS derived data and was lost in BS only 

Fig. 3  Enrichment of high 5hmC nucleotides in transcriptional regulators. High 5hmC loci are modestly enriched in enhancers, transcription factor 
binding sites, and 5′ untranslated regions. Conversely, they are depleted in promoters. Here, the top 37,173 CpGs are compared to all the sites 
included in the EPIC methylation array. Compared to the 850k universe, these sites are significantly depleted in CpG islands and enriched in open 
sea regions. These CpGs are enriched in super enhancers suggesting a role in determining cellular identity. The x-axis for relation to CpG islands 
represents the log odds ratio
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derived data with the latter demonstrating a relative 
hypomethylation in tumors (Additional file 6: Fig. S4). 
In tumors, these sites also demonstrated higher levels 
of 5mC compared to average 5mC levels in the rest of 
the genome (Additional file 6: Fig. S5).

Subtype to non‑tumor comparisons
To further explore high 5-hmC sites (n = 37,173) in 
tumor and non-tumor tissues, we stratified by tumor 
type (embryonal, ependymoma, glioma) and com-
pared to non-tumor tissues adjusting for age and sex. 
Embryonal tumors had the most extensive differential 

Fig. 4  Localization of differentially hydroxymethylated regions. a EWAS results of the high 5hmC CpGs (n = 37,173) comparing tumor and 
non-tumor tissue from an age and sex adjusted linear model (limma). Volcano plot of differentially hydroxymethylated CpGs, plotting the 
difference of log2 fold change in beta value and the respective negative log10 of the unadjusted P value. Blue points represent 726 differentially 
hypohydroxymethylated regions (DHMR) with an adjusted P value (FDR) < 0.1. b Forest plot demonstrates enrichment of differentially 
hydroxymethylated regions within the high 5hmC loci. c Oxidative bisulfite derived mean 5mC beta values at these DHMRs stratified by tumor 
type demonstrates significant hypermethylation at these loci in tumors as compared to controls. However, bisulfite treatment alone only cannot 
distinguish between 5mC and 5hmC and demonstrated no change or hypomethylation. d We leverage the locus overlap analysis package (LOLA) 
to determine the significance of overlap of hypohydroxymethylated sites with binding sites of specific transcription factors profiled by ENCODE. The 
top 12 enriched transcription factors discovered by LOLA analysis are represented above. TFs are plotted on the x axis and the y axis represents the 
-log10 q value (corrected for multiple hypothesis testing). The size of the bubbles represents the odds ratio and the color represents the cell line. 
The dotted line represents a q value of 0.05. CTCF is the only transcription factor that meets statistical significance
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hypohydroxymethylation with 12,593 loci (40%) losing 
5hmC (FDR < 0.1, (Fig. 5a). We subset these loci to CpGs 
with an FDR < 0.02 (n = 1832) and performed a GREAT 
analysis. The previously observed response to steroid 
pathways was maintained, and pathways related to mTOR 
regulation emerged (Additional file 4). The extent of dif-
ferential hydroxymethylation in ependymomas compared 
with non-tumor tissues was lower than that of embryo-
nal tumors (n = 1630 DHMR, FDR < 0.1, Fig. 5b). We did 
not observe significant differential hydroxymethylation 

among gliomas compared with non-tumor samples’ 
DHMRs (Fig.  5c). Though gliomas did not appear to be 
significantly differentially hydroxymethylated as com-
pared to controls, we questioned whether this was due 
to the inherent bias of subsetting our analysis to the high 
5hmC loci. Therefore, we ran the linear model on all loci 
in the array and found 25, 147 differentially hydroxym-
ethylated CpGs (Additional file 6: Fig. S6). We repeated 
GREAT analysis for ependymomas with loci with an 
FDR < 0.1 (n = 1630) and gliomas with an FDR < 0.2 

Fig. 5  Results from linear models comparing CpG hydroxymethylation in each tumor subtype to non-tumors. Blue represents loss of 5hmC and red 
gain of 5hmC by tumor as compared to controls. a Volcano plot of differentially hydroxymethylated regions in a comparison between embryonal 
and control samples. Colored points represent CpGs that are differentially hydroxymethylated with an adjusted P value (FDR) less than 0.1. 15,072 
CpGs of the 37,173 high 5hmC CpGs were significantly differentially hydroxymethylated with an FDR less than 0.1. b Volcano plot comparing 
ependymomas to non-tumors. Colored points represent an FDR less than 0.1. c Comparison of gliomas to controls. No points reached statistical 
significance
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(n = 637) (Additional file  4). Response to corticosteroid 
pathways was consistently present across all tumor types.

5hmC and survival
Prior publications identified an association between 
decreased total 5hmC and survival in CNS tumors 
with mixed results [13, 40]. Here, we used a model-
based clustering method, recursively partitioned 
mixture model (RPMM) [51], to discern profiles of 
5hmC and investigate the association of profiles with 
survival. Applying RPMM to the top 10,000 most 
variable sites in tumor samples yielded two classes 
of tumors, which correlated with mean 5hmC levels 
(P = 2.735E−05, Kruskal–Wallis rank-sum test, df = 1), 
and we then defined the two classes as high 5hmC and 
low 5hmC. A Chi-squared test evaluating the rela-
tionship between RPMM clusters and grade did not 
reach our threshold for statistical significance with a 
P value of 0.099. Similarly, we did not have sufficient 
evidence to conclude an association of RPMM cluster 
with tumor type (Embryonal OR 0.68, CI 0.05–6.03, 

P > 0.99, Ependymoma OR 1.68, CI 0.23–12.42, 
P = 0.67, Glioma OR 0.84, CI 0.14–4.98, P > 0.99) or 
subject age (Kruskal–Wallis rank-sum test P = 0.26, 
df = 1). With the exception of the glioblastoma sam-
ple which was excluded from our survival analysis due 
to lack of follow up and one anaplastic ganglioglioma, 
all gliomas were low grade. All embryonal tumors in 
our study were grade 4 and only 2 of 8 ependymo-
mas were high grade. Despite this, there was relatively 
equal distribution of tumor types in high and low 
5hmC clusters. The low 5hmC cluster was composed 
of 25% embryonal tumors, 25% ependymoma, 50% 
gliomas while the high 5hmC class had 18% embryo-
nal, 36% ependymoma, 45% gliomas (Fig. 6). Then, we 
fit two independent multivariable Cox proportional 
hazards models for survival and recurrence adjust-
ing for patient sex and tumor type, for the outcomes 
of death and recurrence. The low 5hmC cluster was 
associated with an increased hazard of death (HR 6.47, 
95% CI 0.79–53.2, P = 0.08, concordance index = 0.84, 
Cox proportional hazards regression) and recurrence 

Fig. 6  High and low 5hmC clusters and their relation to survival and recurrence. Recursively partitioned mixture model (RPMM) of tumor samples 
of the top 10,000 most variable CpGs in tumor samples. In the heatmap, each column represents an individual sample and each row is a CpG. Two 
clusters emerged that correlated with average 5hmC and were so labeled high 5hmC (gray) and low 5hmC (black). Patient status as alive or dead is 
denoted under status and tracks with RPMM cluster as does tumor grade
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(HR 4.83, 95% CI 0.95–24.6, P = 0.06, concordance 
index = 0.79) (Table 2). Applying the model but adjust-
ing for grade demonstrated similar trends of improved 
prognosis for patients with high 5hmC tumors, but 
were underpowered (Additional file  6: Table  S4 and 
Fig. S7).

In order to compare our results to more common 
methods of correlating 5hmC with survival, we con-
structed an index representing the total 5hmC con-
tent. The index is defined by averaging beta-values 
of all CpGs (n = 743,461) and assigning a sample to a 
“High Total 5hmC” group if the mean was greater than 
the 50th percentile (i.e., the sample mean 5hmC level 
was greater than 0.035). The results were consistent 
with the RPMM method described above, with the low 
5hmC group having poorer survival (log-rank P = 0.08, 
concordance index 0.75) (Additional file  6: Fig. S8). 
In a multivariable Cox proportional hazards model 
adjusted for sex and tumor type, the low total 5hmC 
group was associated with increased risk of recurrence 
though this did not reach statistical significance (HR 
3.6, CI 95% 0.9–14.5, P = 0.07) and death (HR 3.4, CI 
95% 0.69–16.5, P = 0.14).

Applying principal component analysis (PCA) of 
this subset of CpGs, revealed discernible clusters that 
overlapped substantially with the different tumor 
types (Additional file  6: Fig. S9a). PCA also showed 
an overlap of clusters with survival (Additional file  6: 
Fig. S9b). Using methylation beta values at these loci 
also yielded discernible cluster separation by survival 

emphasizing the potential clinical relevance of our 
CpGs (Additional file 6: Fig. S9c).

5hmC and methylation‑based classification systems
We next assessed the robustness of epigenetic CNS 
tumor classification methods to array data that is 5mC-
specific. Molecular neuropathology accepts bisulfite-
treated IDAT files from CNS tumors and offers a list of 
diagnosis with best fit. We submitted IDAT files from 
both bisulfite and oxidative bisulfite-treated samples were 
submitted to this methylation-based CNS tumor classifi-
cation system [36]. Despite high-quality data from fresh 
frozen specimens provided from the bisulfite-treated 
IDAT files, the molecularneuropathology.org tool could 
not classify 26% (7/27) of our tumors labeling them “Not 
Defined” or “Control tissue.” Undefined tumors included 
those with histopathologic diagnoses both common such 
as medulloblastoma and subependymoma as well as rare 
such as dysplastic gangliocytoma, desmoplastic and ana-
plastic ganglioglioma. Of particular interest, when the 
OxBS-treated IDAT files, representing 5mC-specific sig-
nal, from the same tumors were submitted, 26% (7/27) 
of the samples switched diagnoses (Table  3), suggesting 
that hydroxymethylated CpGs are included in the Cap-
per et  al. random-forest-based classification system. In 
addition, we used a pediatric focused methylation-based 
classification tool called MethPed [34, 35] to investigate 
5mC-specific signal in tumor classification. While this 
tool only left the dysplastic ganglioglioma as undefined, 
it over diagnosed our samples as glioblastomas. Many 

Table 2  Cox proportional hazard models of survival by RPMM 5hmC cluster membership

a Multivariate Cox proportional hazard ratios and confidence interval for survival based on RPMM cluster membership adjusted for age, sex, and tumor type 
demonstrated an increased hazard of death for the low 5hmC RPMM cluster (HR 6.47, 95% CI 0.79–53.2, P = 0.08)
b Multivariate cox proportional hazard ratio for recurrence based on RPMM cluster membership adjusting for age, sex, and tumor type demonstrated an increased 
hazard of recurrence for the low 5hmC cluster (HR 4.83, 95% CI 0.95–24.6, P = 0.06)

A B

Cox proportional hazard ratios for survivala Cox proportional hazard ratios for recurrenceb

Variable HR (95% CI) P value Variable HR (95% CI) P value

Age 0.97 (0.83–1.1) 0.70 Age 0.93 (0.80–1.1) 0.30

Sex Sex

 Female 1.0 (referent)  Female 1.0 (referent)

 Male 0.73 (0.12–4.3) 0.73  Male 0.70 (0.20–2.4) 0.58

Tumor type Tumor type

 Glioma 1.0 (referent)  Glioma 1.0 (referent)

 Ependymoma 3.93 (0.54–28.6) 0.18  Ependymoma 6.63(1.21 -36.3) 0.03

 Embryonal 4.95 (0.63 -38.9) 0.13  Embryonal 4.27 (0.76 -24.1) 0.10

RPMM cluster RPMM cluster

 High 5hmC cluster 1.0 (referent)  High 5hmC cluster 1.0 (referent)

 Low 5hmC cluster 6.47 (0.79–53.2) 0.08  Low 5hmC cluster 4.83 (0.95–24.6) 0.06
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of the samples that the Capper classification tool left 
undefined, MethPed predicted to be glioblastomas. The 
MethPed classification of OxBS derived 5mC-specific 
data resulted in 24/27 (89%) of tumors switching diag-
noses. Further, when we tested the Capper Classifica-
tion system on 5mC-specific adult glioblastoma data 
from our prior work on hydroxymethylation [13] 73% 
(22/30) of tumors changed diagnoses, suggesting that 
5hmC plays an even greater role in adult glioblastoma 
classification than pediatric tumors. Most tumors were 
reclassified from IDH wildtype glioblastoma to “con-
trol tissue, inflammatory tumor microenvironment.” To 
assess whether tumor purity affected the diagnosis of the 
classification systems, we derived purity estimates with 
the Infinium Purify [52] method. There was no associa-
tion between class switching and tumor purity for either 
the MethPed (ANOVA, P = 0.7) or Capper classification 
systems (ANOVA, P = 0.361).

To compare overlap of our high 5hmC with CpGs 
used in the Capper unsupervised analysis, we explored 
the overlap between the most variable CpGs in the Cap-
per dataset and the high 5hmC CpGs in our pediatric 
cohort and adult glioblastomas. We isolated 31,476 with 
a S.D > 0.228 to capture an approximation of the 32,000 
most variably methylated probes mentioned in the origi-
nal paper’s methods. We then reprocessed the pediatric 

and adult samples to identify the top 5% most hydroxym-
ethylated CpGs in both groups. 723 of the 19,353 (3.7%) 
pediatric high 5hmC CpGs overlapped with the Cap-
per set. Consistent with the large proportion of tumors 
that switched classes for adult glioblastomas, 4979 of the 
19,353 (26%) high 5hmC CpGs from that data set over-
lapped with the Capper classification CpG set (Fig.  7). 
With regard to the MethPed probes, the 900 CpGs used 
by their classification system were published and we 
found that 45 of the 900 probes overlapped with the high 
5hmC CpGs in the pediatric study.

Discussion
Childhood nervous system tumors have a relatively low 
incidence of mutations. Common variations tend to 
be related to epigenetic mechanisms such as chroma-
tin remodeling [53–55]. DNA methylation has been 
explored as a potential driver, and our results deline-
ate the unique role of 5hmC from 5mC in CNS tumor 
pathology. We demonstrate that 5hmC is lost in tumors 
in a locus-specific pattern and that these sites are hyper-
methylated. This mirrors findings in adult glioblastomas, 
which undergo a similar exchange of 5hmC for 5mC [23]. 
CpG islands that were specifically affected by this pattern 
include APC2, a regulator of WNT signaling pathway, 
and KDM2A, a histone demethylase.

Table 3  Methylation-based classification systems and tumor type predictions

a Sample IDAT files from both BS and OxBS-treated tissues were submitted to methylation-based CNS tumor classification systems: molecular neuropathology and 
MethPed. The table above demonstrates how classifications switched in pediatric tumors based on the classification system and the files submitted

Capper methylation-based classification tool BS (n) OxBS (n) MethPed methylation-based classification tool BS (n) OxBS (n)

Glioma 11 9 Glioma 15 18

 Anaplastic pleomorphic xanthoastrocytoma 1 1  Pilocytic astrocytoma 7 11

 CNS high-grade neuroepithelial tumor with MN1 alteration 1 1  Glioblastoma 8 7

 Pilocytic astrocytoma 6 6

 Glioma, IDH mutant 1 1

 Low-grade glioma, dysembryoplastic neuroepithelial 
tumor

2

Ependymoma 5 4 Ependymoma 5 5

 Ependymoma, myxopapillary 1 1

 Ependymoma, posterior fossa group A 3 2

 Ependymoma, RELA fusion 1 1

Embryonal 4 4 Embryonal 6 4

 Medulloblastoma group 3 and 4 4 4  Medulloblastoma SHH 1 1

 Medulloblastoma group 3 and 4 4 3

 Embryonal tumor with multilayered rosettes 1

Undefined 7 10 Undefined 1 0

 Not defined 6 6

 Control tissue 1

 Plexus tumor 3

 CNS neuroblastoma with FOXR2 activation 1
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CNS tumor classification systems such as MethPed and 
Molecular Neuropathology rely on bisulfite-treated data 
that do not distinguish between 5hmC and 5mC. Our 
study suggests for the first time that 5hmC affects meth-
ylation-based CNS tumor classification systems as OxBS 
files which contain 5mC levels changed diagnoses. Oxi-
dative bisulfite treatment enabled us to resolve this rela-
tionship, whereas bisulfite only treated samples—which 
measure the sum of 5hmC and 5mC—demonstrated 
hypomethylation in tumors as compared to controls. This 
was independent of tumor purity and more pronounced 
in adult glioblastomas than pediatric tumors. We pos-
tulate that given the high rate of change in classification 
with the OxBS data that 5hmC does play a role in the 
classification of these tumors but that the CpGs used to 
assign pediatric CNS tumor diagnosis are not necessar-
ily those with the highest 5hmC levels. This is in contrast 
with adult glioblastomas which not only demonstrated a 
higher rate of change but also had 26% of the high 5hmC 
loci in the most variable loci of the Capper dataset.

It appears that loci that are critical to tumor classifica-
tion are not necessarily the most hydroxymethylated due 
to little overlap of loci that are used in these classifica-
tion systems with our list of high 5hmC CpGs. Our study 
as well as previously conducted projects have focused on 
the most hydroxymethylated loci as these tend to have 
the clearest signals and are less likely to be attributable 
to noise alone. However, our findings motivate further 

examining loci with median levels of 5hmC. Our results 
reinforce the importance of a more nuanced approach 
to the study of cytosine modifications in CNS tumors, 
and offer new opportunities to refine classification 
approaches that benefit clinicians and patients [36].

Though 5-hydroxymethylation in pediatric brain 
tumors has been investigated, studies to date have not 
been on a genome-scale at a locus resolution. An asso-
ciation between 5hmC and anaplasia was established 
using immunohistochemistry (IHC) to examine 5hmC 
in all WHO classifications of brain tumors [56]. Our 
study adds to existing literature that 5hmC accumulates 
in super-enhancers and suggests a link between a loss 
of 5hmC and anaplasia [56]. Recently, Wu et al. showed 
high 5hmC levels were associated with worse survival in 
pediatric posterior fossa ependymomas [40]. However, as 
this study was conducted using IHC, it remains unclear 
where in the genome this hyperhydroxymethylation was 
taking place. In line with previous studies, we observed 
that the loss of 5hmC in tumors was associated with 
shorter overall survival and time to recurrence [13, 22]. 
A nucleotide level analysis allowed us to identify enrich-
ment of high 5hmC loci in genes critical to normal crani-
ofacial and neurodevelopment further strengthening the 
link between these tumors and developmental neurobiol-
ogy [57]. We also found that differentially hypohydroxy-
methylated CpGs are enriched in molecular pathways 
that are frequently connected to childhood brain tumors, 

Fig. 7  Venn diagram of shared CpGs in adult and pediatric tumor high 5hmC loci and methylation-based classification system’s most variable loci. 
The overlap of high 5hmC sites identified in pediatric tumors and adult glioblastomas with the most variable CpGs in the Capper data set with high 
5hmC loci in pediatric and adult CNS tumors. There was considerably greater overlap between adult glioblastoma’s high 5hmC loci and the Capper 
data sets most variable CpGs (18%) than with the pediatric tumors’ high 5hmC CpGs (2%)
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particularly those related to WNT signaling and beta-
catenin binding, implicating such genes as APC2, WNT4, 
WNT11, WNT5B, SHH, and BCL9. 5hmC loss in WNT 
has been associated with other tumors such as melanoma 
and colorectal cancer [26, 30].

The tendency of 5hmC to accumulate at 5′ splicing 
sites in the exon–intron boundary has been suggested 
as a link between the epigenetic marker and alternative 
splicing [58]. We found that not only did our high 5hmC 
sites localize to 5′ untranslated regions in concordance 
with previous work but that these loci were enriched in 
genes implicated in posttranslational regulation of gene 
expression such as the DICER1, AGO2, and EIF2C2. The 
association between 5hmC and CTCF, a methylation-
sensitive transcription factor linked to alternative splic-
ing and RNA polymerase II regulation, has also been 
reported in embryonal cells [12, 59]. Increased 5hmC 
levels have been tied to reduced binding of nucleosomes 
to DNA and reduced CTCF attachment [60]. 5hmC has 
been shown to oscillate at 150 nucleotides, the length of 
nucleosome wound DNA, and 5hmC has been suggested 
as a linker binding CTCF to DNA [61].

Due to the extreme rarity of pediatric brain tumors, 
our study is limited by the sample size. Additionally, our 
study consists primarily of medulloblastomas, pilocytic 
astrocytomas and ependymomas based on the prevalence 
of these tumors therefore generalizable largely to these 
subtypes. Larger studies would need to be done in order 
to capture the true effect of 5hmC on pediatric CNS 
tumors. In the future, a larger multi-institutional study 
is warranted to narrow the confidence interval for 5hmC 
association with patient outcomes and increase power 
for differential hydroxymethylation analysis in tumor 
subgroups. We did not observe significant differential 
hydroxymethylation among gliomas compared with 
non-tumor samples, which is not unlikely a reflection 
of the heterogeneity of this tumor class. These tumors 
were diagnosed prior to the WHO 2016 Classification of 
CNS tumors [3] with the updated molecular studies that 
it entailed, and it is possible that some of these tumors 
would be diagnosed differently if the most recent criteria 
were applied. However, histopathological re-review was 
conducted for all samples. Though potential variation in 
the proportion of non-tumor tissue content may have 
contributed to more proximal clustering with non-tumor 
samples and higher total 5hmC levels, the observed asso-
ciation of 5hmC with survival and recurrence was robust 
to this potential variation. Including multiple types of 
pediatric central nervous system tumors, both rare and 
common, and comparing tumor tissue to control sam-
ples enhances the generalizability of our findings. In the 
future, 5hmC measures have promise for clinical applica-
tions guiding both diagnosis and treatment.

There is evidence that treatment affects the sam-
ples 5hmC levels. All but two of our samples were from 
patients diagnosed when chemotherapy regimens were 
largely give in an adjuvant setting and are expected to be 
chemotherapy naïve. One glioblastoma sample taken at 
the time of autopsy timing of treatment was unknown. 
Aside from chemotherapy, children with CNS tumors 
are almost always given dexamethasone for tumor edema 
and this was reflected in our results. For instance, GREAT 
analysis of differentially hydroxymethylated regions in 
the tumor versus non-tumor comparison demonstrated 
the clustering of DHMRs in steroid response pathways. 
This is likely due to the treatment of most CNS tumors 
with dexamethasone in order to reduce edema and the 
risk of herniation. This relationship was present across all 
tumor subtypes. 5hmC has been associated with steroid-
induced osteonecrosis and endometriosis, and our data 
provide further evidence of the connection between the 
medication and the epigenomic marker [62, 63].

Conclusions
To our knowledge, we describe for the first time a 
genome-wide cytosine-specific analysis of 5hmC in three 
classes of childhood CNS tumors: embryonal, glioma, 
and ependymoma. Super-enhancer targeting by 5hmC in 
all three classes of tumors was identified, and genes com-
monly implicated in pediatric CNS tumors were differ-
entially hypohydroxymethylated. We demonstrated that 
distinguishing methylation and hydroxymethylation is 
critical in identifying tumor-related epigenetic changes.

Materials and methods
Study population and samples
Pathologically confirmed fresh-frozen primary CNS 
tumor specimens from 27 unique individuals were iden-
tified; they included thirteen gliomas, eight ependymo-
mas, and six embryonal tumors. All patients were treated 
at Dartmouth Hitchcock Medical Center. Samples were 
collected from patients who had provided consent for the 
use of tissues for research purposes as approved by the 
committee for the protection of human subjects (Insti-
tutional Review Board). Detailed information about each 
patient, including demographics, tumor histopathol-
ogy, survival, time to recurrence, metastasis, chemo-
therapy and radiation regimens, was collected from the 
electronic medical record system. Pathologic re-review 
confirmed histopathologic tumor type and grade for all 
cases according to the 2016 WHO classification of CNS 
Tumors [3]. A table with complete patient informa-
tion, including survival and treatment received is avail-
able (Additional file  1). Five patients had greater than 
one sample with two patients each having four samples 
available. Four fresh-frozen non-tumor brain specimens 
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from children ranging in age from newborn to 11 years 
were selected as control tissues. Three tissues were from 
patients with epilepsy who underwent surgical resection 
and were used in our analyses. One tissue was excluded 
from analysis as it was from a non-immune hydrops feta-
lis subject at only 21 6/7 weeks gestational age.

DNA extraction and modification
Tumor DNA was extracted from fresh frozen tumor tis-
sue using DNeasy Blood and Tissue Kit (Qiagen) fol-
lowing the manufacturer’s instructions. Approximately, 
1–15  mg of tumor tissue was used for DNA extraction. 
DNA was subjected to tandem bisulfite and oxidative 
bisulfite (OxBS) conversion using the TruMethyl OxBs 
module kit (Cambridge Epigenetix—Nugen), according 
to the TrueMethyl protocol M01481, Revision v2.

TERT promoter and H3F3A sequencing
Tumor samples were sequenced for TERT Promoter 
(C2505, C280T) and H3F3A mutations status (K27M, 
G34) using PCR amplification and Sanger sequenc-
ing. ~ 10  ng of genomic DNA per sample was amplified 
(see Appendix for the list of primers). For H3F3A, One-
Taq Hot Start 2 × Master Mix with standard buffer was 
used (NEB). PCR cycle parameters were as follows: dena-
turation at 95 °C for 30 s, followed by 35 cycles of 94 °C 
for 30  s, 48  °C for 30  s, 68  °C for 1  min, with the final 
extension at 68 °C for 5 min. Amplicons were visualized 
in Agarose Gel each time. For TERT Promoter, OneTaq 
Hot Start 2X Master Mix with GC buffer (NEB) was used. 
Cycle parameters were as follows: denaturation at 94  °C 
30 s, followed by 35 cycles of 94 °C 30 s, 59 °C for 30 s, 
68 °C for 1 min, with a final extension at 68 °C for 5 min. 
DNA was purified using the Qiagen PCR purification kit 
prior to visualization on an agarose gel. Primer sequences 
used can be found in Additional file 5.

Cytosine modification measures
Illumina Human Methylation EPIC Beadchips were 
loaded with sample DNA in a randomized fashion with 
equal distribution of all tumor subtypes and non-tumor 
samples in each chip in order to eliminate batch effects. 
Beadchips were read using the Illumina iScan reader, and 
sample intensity data (IDAT files) was generated. Nor-
malization and background correction from each of the 
BS and OxBS converted samples was performed using 
the Funnorm procedure available in the R/Bioconduc-
tor package minfi (version 1.30.0) [64]. Before analysis, 
we removed CpG sites on sex chromosomes using the 
updated Illumina EPIC annotation file (R/Bioconduc-
tor package IlluminaHumanMethylationEPICanno.
ilm10b4.hg19) and SNP probes identified in the EPIC 
array [65]. To estimate methylated, hydroxymethylated, 

and unmethylated proportions of cytosine, we applied 
the OxyBS algorithm which takes bisulfite-treated data 
which includes both 5mC and 5hmC levels and approxi-
mates 5hmC signal intensity by subtracting oxidative 
bisulfite-treated data which provides only 5mC signal 
intensities [39]. Through this method, a total of 743,461 
probes were left for analysis. Array data analysis was con-
ducted in R version 3.6.1 [66].

Statistical analyses
We identified and subset our data to the 5% 
(37,173/743,461) most highly hydroxymethylated CpG 
sites (high 5hmC loci), as determined by the median, 
across all tumor types. We performed Fisher’s exact tests 
for enrichment of these 37,173 consistently hydroxy-
methylated CpGs in CpG islands, shores, and shelves 
against the 743,461 CpG universe. For gene promoter, 
exon, and intron regions and regulatory elements, we 
used a Cochran-Mantel–Haenszel test to assess enrich-
ment stratifying by probe type. The Phantom 5 enhancer 
annotation (available in the Illumina EPIC annotation 
file) was used to map CpGs in enhancer regions. Coor-
dinates for super-enhancers were downloaded from the 
dbSuper database [43]. We examined the 486 genes in 
which these high 5hmC CpGs were enriched using the 
UCSC reference gene names in the Illumina annotation 
file. We selected for genes that had at least 10 CpGs rep-
resented in the EPIC array. We used the genomic coor-
dinates of these high 5hmC CpGs in enriched genes as a 
query set of regions and submitted to Genomic Regions 
Enrichment of Annotations Tool (GREAT) analysis. We 
tested for enrichment against the background of the 
743,173 CpGs in the EPIC array used in our analyses.

Analysis of CpG‑specific associations
Differential hydroxymethylation status between tumor 
and non-tumor brain tissue at the CpG loci in our data 
set was determined through multivariable linear models 
for microarray data (limma) [67]. Models were adjusted 
for subject age and sex and applied to 5hmC β-values. 
Benjamini–Hochberg correction was used to adjust for 
multiple testing. We examined whether there were dif-
ferences between tumors and non-tumors in 5hmC lev-
els within the top 5% most hydroxymethylated CpGs 
(37,173). We applied the same model to each tumor sub-
type and compared them to non-tumor samples in order 
to determine if the results changed when stratified.

To explore if the loss of tumor hydroxymethylation 
in high 5hmC loci was limited to specific gene sets, we 
selected CpGs that were differentially hypohydroxym-
ethylated with negative log fold change (log-FC < 0) and 
FDR less than 0.1 (726 CpGs) and queried the GREAT 
software [68]. To test if these loci were associated with 
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transcription factor binding sites or sites of histone mod-
ifications, we interrogated the ENCODE and Roadmaps 
database using the LOLA R/Bioconductor package [69]. 
We tested for enrichment in CpG islands, shores and 
shelves using a Fisher’s exact test against the 37,173 high 
5hmC loci. We used the same universe to test for enrich-
ment of DHMRs in regulatory regions and super-enhanc-
ers using a Cochran-Mantel–Haenszel test.

Survival analysis
Recursively partitioned mixture model (RPMM) has been 
used for clustering DNA methylation and hydroxymeth-
ylation data to identify classes of tumors based on beta 
values [51]. Here, we applied RPMM to the top 10,000 
most variable CpGs across tumors as determined by vari-
ance, and the resulting clustering solution contained two 
distinct clusters, defining a low and a high 5hmC cluster. 
A multivariable Cox proportional hazards model adjust-
ing for age at diagnosis, sex, and tumor type was used to 
determine if cluster designation correlated with survival. 
Although one patient in our cohort had a diagnosis of 
glioblastoma, the sample was collected at autopsy and no 
clinical information was available. Therefore, due to the 
lack of follow-up, we excluded this patient from our sur-
vival analysis.

Evaluation of 5hmC in methylation‑based classification 
systems
Although the Capper classification system does not dis-
close the list of CpGs it uses to predict tumor type, we 
downloaded and processed the files from their experi-
ment and isolated 31,476 with a S.D > 0.228 to capture 
an approximation of the 32,000 most variably methylated 
probes they state were used in their methods. In order 
to evaluate overlap of adult and pediatric tumors’ high 
5hmC loci with the capper data set, we used IDAT files 
previously published experiments examining 5hmC lev-
els in adult glioblastomas [13], reprocessed the files with 
ours and re-subset the complete dataset (encompass-
ing both pediatric and adult data) to the CpGs with the 
top 5% hydroxymethylation levels. This included 19, 353 
CpGs. Infinium Purify [52] was used to determine tumor 
purity from methylation levels and publically available 
tumor IDAT files [36] were downloaded to provide more 
robust predictions.
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