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Abstract 

Background:  Studies on DNA methylation have the potential to discover mechanisms of cardiovascular disease 
(CVD) risk. However, the role of DNA methylation in CVD etiology remains unclear.

Results:  We performed an epigenome-wide association study (EWAS) on CVD in a longitudinal sample of Swedish 
twins (535 individuals). We selected CpGs reaching the Bonferroni-corrected significance level (2 × 10–7) or the top-
ranked 20 CpGs with the lowest P values if they did not reach this significance level in EWAS analysis associated with 
non-stroke CVD, overall stroke, and ischemic stroke, respectively. We further applied a bivariate autoregressive latent 
trajectory model with structured residuals (ALT-SR) to evaluate the cross-lagged effect between DNA methylation of 
these CpGs and cardiometabolic traits (blood lipids, blood pressure, and body mass index). Furthermore, mediation 
analysis was performed to evaluate whether the cross-lagged effects had causal impacts on CVD. In the EWAS models, 
none of the CpGs we selected reached the Bonferroni-corrected significance level. The ALT-SR model showed that 
DNA methylation levels were more likely to predict the subsequent level of cardiometabolic traits rather than the 
other way around (numbers of significant cross-lagged paths of methylation → trait/trait → methylation were 84/4, 
45/6, 66/1 for the identified three CpG sets, respectively). Finally, we demonstrated significant indirect effects from 
DNA methylation on CVD mediated by cardiometabolic traits.

Conclusions:  We present evidence for a directional association from DNA methylation on cardiometabolic traits and 
CVD, rather than the opposite, highlighting the role of epigenetics in CVD development.
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Background
Cardiovascular disease (CVD) refers to a group of dis-
orders that affect the heart or blood vessels, of which 
the most common types are coronary heart disease and 
stroke [1]. CVD is a global public health concern, many 
risk factors have been associated with CVD, and new fac-
tors emerge with the development of omics technologies, 
such as genetic variation and epigenetic modifications.

Epigenetics is defined as chemical modifications to the 
DNA, which regulate gene expression without chang-
ing the DNA sequence itself. DNA methylation is a type 
of epigenetic process where a methyl group is added to 
the 5′-position of a cytosine, forming 5-methylcytosine. 
It is mostly found in regions containing a large number 
of cytosine 5′ to guanine dinucleotides (CpGs) in pro-
moters. As a consequence, gene transcription could be 
turned off if the CpG is methylated. Due to the advances 
of new technologies to detect DNA methylation in the 
last decades [2], especially array-based approaches, it is 
feasible to assess hundreds of thousands of CpGs along 
the genome in the population.
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Epigenetic studies on DNA methylation further help 
us to understand how genetic and environmental fac-
tors interact at the cellular level to contribute to CVD 
development. Studies have revealed that DNA methyl-
ation is associated with CVD [3–5] and its cardiometa-
bolic risk factors such as body mass index (BMI) [6], 
lipids [7, 8], and blood pressure (BP) [9]. Furthermore, 
DNA methylation processes may be involved in the 
biological mechanisms underlying CVD, such as ath-
erosclerosis [10] and inflammation [11]. However, the 
underlying mechanisms of these associations are not 
yet well understood, for example, how DNA methyla-
tion co-varies with complex cardiometabolic traits in a 
longitudinal perspective, and how this co-varying pat-
tern could determine CVD.

Hence, the aim of our study was to perform an epig-
enome-wide association study (EWAS) of CVD based 
on a longitudinal sample of Swedish twins. In par-
ticular, we aim to (1) explore the association between 
CpGs and CVD, (2) investigate the association between 
DNA methylation of CVD-related CpGs and other car-
diometabolic traits, especially the co-varying patterns, 
and (3) examine the mediation path from DNA meth-
ylation to cardiometabolic traits and CVD.

Results
Characteristics of the study population
This study was based on the Swedish Adoption/Twin 
Study of Aging (SATSA) [12], a twin-based longitu-
dinal study collecting information on aging-related 
phenotypes in repeated waves of assessments between 
1984 and 2014 in Sweden. Assessment in each wave 
included a questionnaire survey and an in-person test-
ing (IPT), and each IPT is referred to by adding a num-
ber suffix to the assessment name, for example, IPT3 
means the third IPT (“Methods” section, Study popu-
lation). The EWAS was conducted in 535 individuals, 
including 83 monozygotic (MZ) twin pairs, 155 dizy-
gotic (DZ) twin pairs, and 59 single twins. For the 535 
individuals, 187 individuals were classified as MZ, 347 
were classified as DZ, and one has unknown zygosity. 
There were totally 1399 DNA methylation measure-
ments, and half of the participants (269/535) had at 
least three measurements of DNA methylation. Two 
hundred and twelve individuals were diagnosed with 
non-stroke CVD in the registry database, 108 were 
diagnosed with stroke regardless of subtype, and 85 of 
them were specifically diagnosed with ischemic stroke. 
The general characteristics are displayed in Table  1. 
Information on DNA methylation samples and cardio-
metabolic traits (lipids, BMI, BP) in different IPTs is 
presented in Additional file 1: Table S1.

Identification of epigenome‑wide CpGs associated 
with CVD
All the analysis was performed in all sample, MZ and 
DZ samples, respectively. It meant the result in all sam-
ple if there was no particular noting. In EWAS analysis 
of all sample, for each category of CVD events, denoted 
as non-stroke CVD, overall stroke, and ischemic stroke, 
no CpGs reached Bonferroni-corrected significance 
(P < 2 ×  10–7); therefore, we identified 20 CpGs with 
the lowest P value in a model adjusted for age, sex, and 
smoking in relation to the three CVD events, respec-
tively. Seven CpGs were associated with both overall 
stroke and ischemic stroke (Additional file 1: Table S2). 
Manhattan plots show associations distributed across 
the whole genome (Additional file  2: Figure S1, Addi-
tional file 3: Figure S2, Additional file 4: Figure S3). In 
the separate analysis for MZ and DZ, the association 
between cg11188837 and ischemic stroke was signifi-
cant in DZ (effect size = −0.0942, P value = 8.70 × 10–9) 
(Additional file 1: Table S2).

We did not find significant associations (P value was 
set to 6.25 ×  10–4 for the multiple testing) between age 
at the onset of CVD and DNA methylation of these 
CVD-related CpGs (Additional file 1: Tables S3–S8) in 
all sample, MZ and DZ samples.

Table 1  Characteristics of the study sample

MZ monozygotic twins, DZ dizygotic twins, CVD cardiovascular disease, SD 
standard deviation

Characteristics N or mean value

Individuals (MZ pairs, DZ pairs, single twins) 535 (83, 155, 59)

Zygosity

MZ 187

DZ 347

Unknown 1

Repeated measures of DNA methylation per person

1 145

2 121

3 119

4 98

5 49

6 3

Female (%) 313 (58.5)

Baseline age (years), mean (SD) 72.7 (9.3)

Baseline current smokers (%) 85 (15.9)

Non-stroke CVD (%) 212 (39.6)

Overall stroke (%) 108 (20.2)

Ischemic stroke (%) 85 (15.9)

Statin user (%) 95 (18.0)
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Association between DNA methylation of CVD‑related 
CpGs and cardiometabolic traits
Next, we applied a bivariate autoregressive latent trajec-
tory model with structured residuals (ALT-SR; “Methods” 
section, Statistical analysis) [13] to examine the autore-
gressive and cross-lagged effect for identified CpGs on 
seven cardiometabolic traits (total cholesterol (TC), low-
density lipoprotein cholesterol (LDL), high-density lipo-
protein cholesterol (HDL), total triglyceride (TG), systolic 
blood pressure (SBP), diastolic blood pressure (DBP), and 
BMI). The autoregressive effect describes the within-per-
son changes of each of the two constructs over time, and 
the cross-lagged effect describes whether DNA methyla-
tion at one time point predicts within-person changes of 
cardiometabolic traits at an adjacent later time point, 
and/or vice versa. In ALT-SR for non-stroke CVD-related 
CpGs (P value was set to 0.05/(20 × 7) ≈ 3 × 10–4 after 
Bonferroni adjustment based on the number of CpGs and 
traits), we observed 162 significant autoregressive and 
cross-lagged associations, of which 84 associations were 
cross-lagged effects from DNA methylation measure-
ments prior to cardiometabolic trait measurements and 
four were opposite cross-lagged effects. More autore-
gressive associations were found for cardiometabolic 
traits than DNA methylation (70 vs. 4), and most of them 
in TG, BMI, SBP, and DBP. In particular, we found that 
some CpGs had cross-lagged effects on multiple traits at 
multiple time points, for example, cg01417615 had cross-
lagged effects for all lipids and BMI, cg02268354 had 
effects on TC, LDL, TG, BMI, and DBP, cg04482923 had 
effects on LDL, HDL, and BMI, cg20729301 had effects 
on BMI, SBP, and DBP, and cg24610274, cg11521799 and 
cg01207734 had cross-lagged effects on both SBP and 
DBP. The four cross-lagged effects detected in opposite 
direction, trait on DNA methylation, were found for DBP 
at IPT3 through IPT8 determining DNA methylation of 
cg05367173 at the subsequent time points. This site was 
found to have bidirectional associations with DBP since 
it also had cross-lagged effects on DBP at IPT3 and IPT5. 
Most of the models fit the data well, but there were some 
exceptions for models of TG, SBP, and DBP. In separate 
analysis for MZ and DZ, ALT-SR model failed to con-
verge in a few combinations of CpGs and cardiometabolic 
traits due to the small sample size and model complexity; 
therefore, there was no output for these conditions. For 
those converged models in both all sample and subsam-
ples, there were no big differences for the cross-lag effect 
pattern between CpGs and cardiometabolic traits in dif-
ferent samples. (Fig. 1, Additional file 5: Figure S4, Addi-
tional file 6: Figure S5, Additional file 1: Table S9A–S9G).

For the 20 overall stroke-related CpGs, we observed 
142 significant autoregressive and cross-lagged asso-
ciations identified from the ALT-SR model, of which 45 

were cross-lagged effects of methylation on cardiomet-
abolic traits, and six were effects from traits to methyl-
ation. Again, TG, BMI, SBP, and DBP accounted for the 
majority of the autoregressive associations. The CpGs 
with the highest number of cross-lagged effects were 
cg01408932, cg05566961, cg06151165, cg07290552, 
cg10859726, and cg18146799 predicting SBP and DBP 
in at least two time points. The latter three CpGs were 
also found to have cross-lagged effects on BMI. The 
cross-lagged effect from traits to DNA methylation 
happened in DBP predicting the methylation level of 
cg05530317, cg01408932, and cg06151165 at one or 
more time points, and in SBP at IPT3 determining the 
methylation level of cg05566961 at IPT5. No big dif-
ferences for cross-lagged effect were found between 
all sample and subsamples, and between MZ and DZ 
(Fig.  2, Additional file  7: Figure S6, Additional file  8: 
Figure S7, Additional file 1: Table S10A–S10G).

The ALT-SR analysis based on ischemic stroke-related 
CpGs showed that 154 significant associations were 
composed of 66 cross-lagged effects of DNA methyla-
tion on cardiometabolic traits, one cross-lagged effect 
from methylation on trait, as well as 87 autoregres-
sive effects. DNA methylation level of cg02947021 had 
multiple time point cross-lagged effects on all car-
diometabolic traits except SBP, because the ALT-SR 
model failed to converge for the analysis of SBP. More-
over, DNA methylation of cg03909417, cg07290552, 
cg10177207, cg10450108, cg14201424, and cg25889711 
showed cross-lagged effects on SBP, DBP, or both at 
multiple time points. The only significant cross-lagged 
effect from trait to DNA methylation was found in DBP 
at IPT8 predicting DNA methylation of cg05530317 at 
IPT9. No big differences for cross-lagged effect were 
found among different samples (Fig. 3, Additional file 9: 
Figure S8, Additional file  10: Figure S9, Additional 
file 1: Table S11A–S11G).

In order to avoid potential bias caused by the selec-
tion of CpGs and to increase the comparability with 
other studies, we also selected 20 top-ranked CpGs 
from EWAS analysis specific for these cardiometabolic 
traits (Additional file  1: Table  S12) to do the sensitiv-
ity analysis for cross-lagged effect. Sensitivity analysis 
for the ALT-SR model showed that the autoregressive 
effect was accounted for by TG, BMI, SBP, and DBP, 
and the majority of significant cross-lagged paths 
were in the direction from DNA methylation to traits, 
which was similar to the findings in the main analy-
sis. However, the majority of significant cross-lagged 
paths were found in CpGs relating to TC, TG, and SBP, 
which was not consistent with the findings in the ALT-
SR analysis of CVD-related CpGs (Additional file  1: 
Table S13A–S13G).
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Mediation effects linking DNA methylation, 
cardiometabolic traits, and CVD
Since we found the most cross-lagged effects in CVD-
related CpGs on subsequent cardiometabolic traits, the 
longitudinal mediation model was established with car-
diometabolic traits as the mediation variable in the path 
between DNA methylation and CVD. We used the same 
significance level as in the ALT-SR model for multiple 
testing.

In the mediation analysis for non-stroke CVD, we 
found 31 associations measuring the direct effects of 
either DNA methylation or traits on CVD, and 7 meas-
uring indirect effects. Direct effects originating from the 

slope of DNA methylation accounted for 80% (16/20) of 
the direct effects of DNA methylation on CVD. Direct 
effects of traits on CVD were mainly contributed by TC, 
LDL, BMI, SBP, and DBP. Indirect effects of CpGs to non-
stroke CVD were found in cg01417615 and cg20729301 
where LDL was treated as the mediator, and in 
cg20729301 where BMI was the mediator, and also in two 
CpGs (cg11521799 and cg20921874) where SBP was the 
mediator. For the converged mediation model, there was 
some different indirect effect pattern among all sample 
and subsamples, for example, we found significant medi-
ation effect from cg24610274 to non-stroke CVD medi-
ated by LDL in DZ sample, but not in all sample and MZ 

Fig. 1  Autoregressive and cross-lagged effect between DNA methylation of non-stroke CVD-related CpGs and cardiometabolic traits in all 
sample. Each point represents one significant effect (P value was set to 3 × 10–4). The X-axis represents the effect at different adjacent time 
points, for example, IPT3 → IPT5 means the effect of one variable at IPT3 on the other variable at IPT5. The Y-axis represents the standardized 
estimation coefficient from the regression model. The left part of the figure is the autoregressive effect, and the right part is the cross-lagged effect. 
“DNAm → DNAm” (gray plus sign) represents autoregressive effect of DNA methylation, “Trait → Trait” (blue circle) represents autoregressive effect 
of trait, “Trait → DNAm”(brown square) represents cross-lagged effect from trait to DNA methylation, and “DNAm → Trait” (red triangle) represents 
cross-lagged effect from DNA methylation to trait
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sample, and we found significant indirect effect of TC in 
this CpG site in DZ but not in MZ. (Additional file  11: 
Figure S10, Additional file  12: Figure S11, Additional 
file 13: Figure S12, Additional file 1: Table S14A–S14E).

In the mediation analysis with overall stroke as out-
come, we found 132 significant paths. Direct effects 
caused by slope of DNA methylation and slope of traits 
accounted for about 70% (47/66) and 95% (17/18) of the 
total direct effects of each construct, respectively. The 
highest number of indirect effects was identified when 
LDL and HDL were treated as mediators; for example, 
LDL had significant mediation effects in the path from 
multiple CpGs (cg12662929, cg17764549, cg25184724, 

cg05566961, cg06889348, and cg23250494) to overall 
stroke, and HDL had significant mediation effects for 
cg12662929, cg07897701, cg06151165, cg23250494, and 
cg02449762 on overall stroke. Moreover, TC had media-
tion effect in the path from cg11653466 to overall stroke 
and DBP has mediation effect for cg25936482. For the 
converged model, there was small different indirect effect 
pattern among all sample and subsamples; for example, 
DBP has a significant mediating effect in the path from 
cg11188837 to ischemic stroke in MZ, not in all sample 
and DZ (Additional file 14: Figure S13, Additional file 15: 
Figure S14, Additional file  16: Figure S15, Additional 
file 1: Table S15A–S15F).

Fig. 2  Autoregressive and cross-lagged effect between DNA methylation of overall stroke-related CpGs and cardiometabolic traits in all sample. 
Each point represents one significant effect (P value was set to 3 × 10–4). The X-axis represents the effect at different adjacent time points, for 
example, IPT3 → IPT5 means the effect of one variable at IPT3 on the other variable at IPT5. The Y-axis represents the standardized estimation 
coefficient from the regression model. The left part of the figure is the autoregressive effect, and the right part is the cross-lagged effect. 
“DNAm → DNAm” (gray plus sign) represents autoregressive effect of DNA methylation, “Trait → Trait” (blue circle) represents autoregressive effect 
of trait, “Trait → DNAm”(brown square) represents cross-lagged effect from trait to DNA methylation, and “DNAm → Trait” (red triangle) represents 
cross-lagged effect from DNA methylation to trait
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Mediation analysis for ischemic stroke revealed a sum 
of 56 significant paths, consisting of 40 direct associa-
tions, six indirect associations, and 10 total effects. Direct 
associations were contributed by the intercept and slope 
of DNA methylation, as well as the slope of cardio-
metabolic traits (TC, LDL, BMI, and SBP). The indirect 
effect was identified in the path from cg03909417 medi-
ated by TC, from cg22941668 mediated by LDL, from 
cg10177207 mediated by BMI, and from cg25889711 
mediated by SBP. The different indirect effect pattern was 
a bit different among all sample, MZ and DZ for some 
CpGs; for example, BMI had significant mediating effect 
for the association between cg10177207 and ischemic 

stroke in all sample and MZ sample, but not in DZ sam-
ple (Additional file 17: Figure S16, Additional file 18: Fig-
ure S17, Additional file 19: Figure S18, Additional file 1: 
Table S16A–S16F).

Discussion
In this longitudinal EWAS of CVD in a twin-based popu-
lation, we identified 20 top-ranked CpGs associated with 
non-stroke CVD, overall stroke, and ischemic stroke, 
respectively, where only one ischemic stroke-related CpG 
site reached Bonferroni-adjusted significance level in DZ. 
We further assessed cross-lagged effects between these 
CVD-related CpGs and cardiometabolic traits (blood 

Fig. 3  Autoregressive and cross-lagged effect between DNA methylation of ischemic stroke-related CpGs and cardiometabolic traits in all sample. 
Each point represents one significant effect (P value was set to 3 × 10–4). The X-axis represents the effect at different adjacent time points; for 
example, IPT3 → IPT5 means the effect of one variable at IPT3 on the other variable at IPT5. The Y-axis represents the standardized estimation 
coefficient from the regression model. The left part of the figure is the autoregressive effect, and the right part is the cross-lagged effect. 
“DNAm → DNAm” (gray plus sign) represents autoregressive effect of DNA methylation, “Trait → Trait” (blue circle) represents autoregressive effect 
of trait, “Trait → DNAm”(brown square) represents cross-lagged effect from trait to DNA methylation, and “DNAm → Trait” (red triangle) represents 
cross-lagged effect from DNA methylation to trait
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lipids, blood pressure, and BMI) over two decades, where 
DNA methylation at these CpGs predicted the level of 
all cardiometabolic traits at the adjacent follow-up time 
point, but the other direction was rarely found. In the 
mediation analysis, in addition to the direct effects from 
either DNA methylation or cardiometabolic traits on 
CVD, the indirect effects of some CpGs were mediated 
by cardiometabolic traits. Sensitivity analysis using differ-
ent sets of CpGs for cross-lagged effect showed a similar 
direction but different trait contribution for cross-lagged 
effects compared to that in the main analysis, demon-
strating less bias in the selection of CpGs for data analysis 
as well as complex associations among DNA methylation, 
cardiometabolic traits, and CVD.

EWAS findings in comparison with previous evidence
The top-ranked CpGs identified in our EWAS did not 
overlap with those of previous EWAS studies on either 
non-stroke CVD or stroke [4, 5]; however, genes mapped 
by these CpGs were reported to be associated with CVD 
or cardiometabolic traits in different ways in previ-
ous studies. For example, previous studies showed that 
genetic variants in SKI were related to coronary artery 
disease [14], and CpGs located in SKI were associated 
with smoking [15]. Genetic variants in TMUB2 (Trans-
membrane and ubiquitin like domain containing 2) were 
associated with multiple measures, such as BMI and 
body fat distribution [16], and we found that cg04482923 
in this gene had a significant cross-lagged effect on BMI. 
In the gene sets related to overall stroke or ischemic 
stroke in our study, we identified ABP1, also known as 
AOC1 (amine oxidase copper containing 1), which has 
been associated with HDL [17], TG [18], and BMI [19]. 
We found an indirect effect of cg07897701 in ABP1 on 
overall stroke mediated by HDL. Taken together, the 
CVD-related CpGs identified in our EWAS had prior evi-
dence of importance for CVD risk in these mapped gene 
regions.

Co‑varying pattern between DNA methylation 
and cardiometabolic traits
In the ALT-SR analysis using up to 20  years of longitu-
dinal data, we found that during late adulthood, changes 
in DNA methylation of CVD-related CpGs were likely to 
predict changes in cardiometabolic traits, but less likely 
to be reversely predicted by cardiometabolic traits. This 
pattern was consistent for different CpG sets identi-
fied in the EWAS analysis, for different cardiometabolic 
traits, as well as for different samples (all sample, MZ and 
DZ). With the number of EWAS studies increasing and 
a growth in the use of Mendelian randomization (MR), 
a method for causal inference, a great deal of evidence 
has been produced for the relationship between DNA 

methylation and cardiometabolic traits. However, these 
studies produced mixed results, especially for causal 
associations.

Lipids and DNA methylation
A bidirectional longitudinal association study conducted 
by Morrison et  al. (n = 179, 2 years of follow-up time) 
demonstrated that the cross-lagged effect was only sig-
nificant between epigenetic age at an earlier time point 
and metabolic syndrome (or its component, denoted as 
lipid/obesity) at a later time point [20]. Another study 
identified 101,911 cis-methylation quantitative trait loci 
(meQTLs, defined as genetic variants-CpG associations 
within the same gene locus) and 5342 trans-meQTLs 
(within different gene loci) associated with DNA meth-
ylation in human adipose tissue. They further reported a 
mediating role of DNA methylation between genetic var-
iants and metabolic traits such as BMI and lipids with a 
causal inference test [21]. However, another EWAS study 
using a stepwise MR analysis in a sample of 3,296 Dutch 
individuals demonstrated that blood lipids determined 
the methylation of genes related to lipid metabolism, and 
not vice versa [22]. Although there were some excep-
tions, longitudinal studies and MR studies give relatively 
consistent results with our study, such that DNA meth-
ylation potentially predicts lipids levels.

BMI and DNA methylation
Previous studies tend to conclude that BMI was the cause 
of changes in DNA methylation, rather than its conse-
quence. For example, Wahl et al. demonstrated the more 
likely causal direction from BMI to DNA methylation in 
an EWAS study (n = 10,261) [23]. Another large-sample 
EWAS study using MR approach (discovery popula-
tion: 3743; replication population: 4055) identified 83 
BMI-related CpGs, of which genetically predicted DNA 
methylation at one specific site was associated with BMI, 
and another 16 CpGs were secondary to BMI [24]. The 
following three studies demonstrated the cross-lagged 
effect between DNA methylation and BMI. As mentioned 
above, Morrison et  al. showed significant cross-lagged 
effect of epigenetic age on obesity [20]. Another study 
found that DNA methylation at follow-up was predicted 
by baseline BMI 6.2 years prior, and no significant asso-
ciations were found between baseline DNA methylation 
and BMI at follow-up [25]. The third study using data 
from mothers (n = 792) and children (n = 906) revealed 
cross-lagged effects between early-life BMI and later-life 
DNA methylation score in both populations. However, 
the MR analysis did not find a significant association 
between genetically predicted BMI and DNA meth-
ylation, but only demonstrated a very weak association 
between meQTLs and BMI [6]. It is worth mentioning 
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that one study based on the same twin sample as our 
study had similar findings as our study, that is, baseline 
levels of DNA methylation at five specific CpGs were sig-
nificantly associated with BMI at follow-up or associated 
with change in BMI [26]. Evidence of downstream effects 
of DNA methylation on BMI was also shown in another 
study identifying 92 causal CpGs for both CVD and its 
risk factors, four of which were for BMI [27]. Therefore, 
results are inconsistent, although more studies support 
the finding that BMI causes DNA methylation than the 
opposite.

BP and DNA methylation
Few studies have investigated the associations between 
BP and DNA methylation. A cross-sectional designed 
EWAS study (n = 17,010) identified 13 CpGs associated 
with BP and demonstrated bidirectional associations 
between two of these CpGs and BP in MR analysis [9]. 
Another trans-ancestry genome-wide association study 
showed that genetic variants associated with BP were 
also associated with DNA methylation at nearby CpGs 
(meQTL), suggesting a regulatory role of DNA methyla-
tion in the pathway linking genetic variants and BP [28]. 
Morrison et  al. did not find a significant cross-lagged 
effect between epigenetic age and BP [20].

Role of co‑varying patterns of DNA methylation 
and cardiometabolic traits in CVD
In the mediation analysis, the associations between DNA 
methylation of CVD-related CpGs and CVD were further 
strengthened (significant direct effect from DNA methyl-
ation on CVD). We also found significant indirect effects 
in the pathway from DNA methylation to CVD mediated 
by cardiometabolic traits, although the mediating effect 
only existed in a few CpGs.

A recent genome-wide module-based epigenetic study 
of incident CVD conducted by Westerman et al. not only 
gave similar results as ours regarding the DNA methyla-
tion role in the process of CVD, but also suggested pos-
sible mechanisms of DNA methylation in CVD during 
different stages along the entire life course. The authors 
identified three clusters of DNA methylation data, named 
brown, blue, and purple modules, to be strongly related 
to CVD, and the genes in these modules were found to 
be enriched in the processes of either immune function 
(brown module) or development (blue module). The 
brown module tended to have stronger correlations with 
cardiovascular risk factors, such as BP, lipids, and BMI. 
Mediation analysis demonstrated that the association 
between the brown module with CVD was weaker after 
adjusting for CVD risk factors than the converse, sug-
gesting that the brown methylation module may act as a 

biomarker, rather than a mediator, for the actions of CVD 
risk factors [3].

As Westerman and colleagues pointed out, the two 
modules proposed in the study may represent two dif-
ferent mechanisms of CVD: one is the long-lasting risk 
of early-life exposure, and the other is the inflammation 
mechanism during the life course. Interestingly, a similar 
module pattern was also obtained in an EWAS network 
analysis on chronic obstructive pulmonary disease [29], 
another age-related disease. The association between 
DNA methylation, early-life exposure, and disease in 
later life has been widely investigated in animal stud-
ies [30], famine population studies [31], and parent–off-
spring studies [6]. These studies support the hypothesis 
that DNA methylation responds to early-life exposure, 
such as maternal undernutrition/over-nutrition, stress, 
and household socioeconomic status [32]. Altered DNA 
methylation may persist, influence gene expression, and 
cause transcriptional interference and genomic instabil-
ity and ultimately influence health in later life [32, 33]. 
On the other hand, atherosclerosis and inflammation are 
the primary pathological bases of CVD. Atherosclero-
sis refers to thickness of the arterial intima and the for-
mation of atherosclerotic lesions and is induced by the 
complex interplay of various environmental risk factors, 
together with genetic background and DNA methyla-
tion regulation [34]. The relationship between environ-
mental risk factors and DNA methylation becomes more 
uncertain as age increases. From our results, although we 
identified a more relevant pattern of cross-lagged effect 
by DNA methylation predicting major CVD risk fac-
tors, we also found that DNA methylation at some CpGs 
was determined by these risk factors. From the literature 
we reviewed, the research results appear inconsistent, 
even with similar study designs, similar measurement 
techniques for DNA methylation, and similar defini-
tions of phenotypes. The inconsistency may in part be 
due to population features, sample size, time intervals of 
repeated measurements, statistical models, measurement 
error, and unknown mechanisms, which will pose chal-
lenges for future research and prevention strategies.

Strengths and limitations
The strengths of the current study are reflected in several 
aspects. First, as far as we know, this is the first study to 
demonstrate cross-lagged effect patterns between DNA 
methylation and cardiometabolic traits at multiple time 
points during a long period. The ALT-SR model we used 
is a well-studied cross-lagged effect model used to sepa-
rate between- and within-person effects. Second, we 
used twins in our study, who are naturally matched in 
many genetic and environmental risk factors and have 
unique value to study DNA methylation. Moreover, the 
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study population is based on the Swedish Twin Regis-
try (STR) [35], which is the largest nationwide twin reg-
istry in the world and has reliable and continuous data 
resources for research. Therefore, multiple analyses 
could be performed to evaluate the causal role of DNA 
methylation in CVD. However, some limitations should 
be addressed. First, the study was performed in a rela-
tively small sample for both EWAS analysis and ALT-SR 
analysis. Researchers have suggested that 98 MZ twins 
are needed to reach a power of 80% in detecting a 10% 
mean difference of DNA methylation between discord-
ant twins at an EWAS significant threshold of 1 ×  10–6 
[36]. For the growth model, it was suggested that a sam-
ple size of at least 100 is more preferable; however, three 
or more repeated measurements per person are also rec-
ommended to get a well-fitting model [37]. Although the 
sample size is not very large, the model fit measurements 
from the ALT-SR analysis (Additional file 1: Table S9A–
S11G, Additional file 1: Table S13A–S13G) and consistent 
findings from our EWAS study compared with previous 
studies (for example, cg17901584 and cg27243685, which 
were identified in our EWAS analysis on lipids (Addi-
tional file  1: Table  S12), were also reported in previous 
large sample EWAS study [8]) implied a relatively robust 
and reliable result under the current sample size. In addi-
tion, because of the lack of statistical power caused by 
the small sample size, we did not analyze more detailed 
CVD categories. Second, the study population is an older 
cohort with a mean baseline age of 73 years and of Euro-
pean ancestry, so the results may not be generalizable 
to other populations. Third, a large portion of the CpG 
sites were excluded from the analyses (only 255,356 CpGs 
remaining) after the quality control, which could poten-
tially lead to exclusion of regions of relevance in CVD. 
This limitation might have impacted on the results and 
conclusions of the research. Finally, results from DNA 
methylation data could not alone provide a full picture of 
the biological mechanisms underlying CVD. Therefore, 
the directions for our future research should be using 
better coverage data such as that from whole genome 
bisulfite sequencing [38], and integration of multi-omics 
data to provide a deeper understanding of the association 
between different risk factors and CVD.

Conclusions
The cross-lagged effects and mediation effects discovered 
in this study provide insights into the complex associa-
tions between DNA methylation and CVD. We show that 
DNA methylation levels of CVD-related CpGs are more 
likely to determine the levels of cardiometabolic traits, 
than the opposite. We further discovered that the asso-
ciation between DNA methylation at a few of these CpGs 
and CVD may be mediated by cardiometabolic traits. 

Further research is needed to investigate the epigenetic 
basis of CVD risk as well as the role of DNA methylation 
as a biomarker of CVD for disease prevention, interven-
tions, and prognosis.

Methods
Study population
The study population is based on SATSA, a sub-study of 
the STR. The study design, population characteristics, 
and data collection of SATSA can be found in previous 
publications [12, 39]. Briefly, SATSA collected longitu-
dinal information on aging-related phenotypes in up to 
ten repeated waves of assessments between 1984 and 
2014 in twin pairs in Sweden. Assessment in each wave 
included a questionnaire survey and an IPT, where the 
latter was the source of DNA methylation and cardiomet-
abolic traits in this study. Each IPT consisted of a physi-
cal examination, structured cognitive tests, and blood 
sample collection, except for the fourth IPT where only a 
telephone survey was implemented. Blood samples were 
used for biochemical testing, genetic, and epigenetic 
testing.

Cardiovascular disease ascertainment
Identification of diagnoses of CVD was conducted by 
linking the Swedish National Patient Register and Causes 
of Death Register to SATSA through the unique personal 
identity number (ID) assigned to all Swedish residents, 
here the follow-up in the registers was throughout 2016. 
CVD in this study included non-stroke CVD and stroke. 
Non-stroke CVD was defined as any of the following 
diagnosis in the two registry databases: angina pectoris, 
arteriosclerosis, intermittent claudication, ischemic heart 
disease, myocardial Infarction. Stroke was recorded as 
overall stroke, which included all types of stroke in the 
registry database, and was also specified by subtypes 
including ischemic and hemorrhagic stroke. Previous 
studies revealed little overlap for DNA methylation in 
non-stroke CVD and stroke [40]. Moreover, stroke is a 
heterogeneous disease and ischemic stroke is the main 
type of overall clinical stroke; therefore, they were ana-
lyzed separately. International Classification of Diseases 
(ICD) codes for the classification of CVD are listed in 
Additional file 1: Table S17.

Definition and measurement of cardiometabolic traits 
and other covariates
Blood lipids, BP, height, and weight were measured in 
each IPT. BP measurement value (mmHg) after resting 
for five minutes was used. BMI was calculated as weight 
(kg) divided by height (meters) squared. Measurement 
methods or procedures have been described in previous 
studies [41, 42]. The participants’ smoking status was 
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self-reported at each IPT and was categorized as non-
smoker, ex-smoker, and current smoker. The variable 
of statin use was also derived from self-reported inves-
tigation of IPT as well as the Swedish Prescribed Drug 
Register.

DNA methylation measurements
Genome-wide DNA methylation was repeatedly meas-
ured in participants over different IPTs: IPT3 (1992–
1994), IPT5 (1999–2001), IPT6 (2002–2004), IPT8 
(2008–2010), IPT9 (2010–2012), and IPT10 (2012–2014). 
Genomic DNA was isolated from peripheral whole blood 
samples, and DNA methylation was measured using 
Infinium HumanMethylation450 BeadChips and the Illu-
mina EPIC Human Methylation Microarray. Methylation 
data was processed for quality control, normalization and 
adjustment for cell counts and batch effects, and details 
can be found in previous studies [39]. Briefly, quality con-
trol was conducted to filter out CpGs and samples if: (1) 
the probes had a detection p value greater than 0.05; (2) 
the probes had SNPs overlapping the CpG site; (3) sam-
ples had mislabeled gender based on sex chromosome 
data; and (4) samples had poor correlation with genotyp-
ing information. CpGs present and passing quality con-
trol on both arrays were included in the analysis, leaving 
255,356 CpGs for the analysis. After background correc-
tion and normalization of the raw data, cell counts and 
batch effect-adjusted methylation beta values were used 
in the data analysis.

Statistical analysis
In participants diagnosed with CVD, if IPT date hap-
pened earlier than CVD diagnosed date, the diagnosis 
of CVD was coded as 0 (no CVD), otherwise coded as 
1 (had CVD). Formula “LDL = TC – HDL − TG/5” was 
used to impute the missing values of LDL. Statin use was 
coded as 1 if the participant was recorded using statin at 
least once, otherwise coded as 0. The statistical analysis 
was performed in three steps (Fig. 4).

Step 1: EWAS of CVD
A linear mixed-effect model was used to test the associa-
tion, where DNA methylation level of each CpG site was 
entered as a dependent variable, CVD was independent 
variable with a fixed effect, personal ID nested within 
twin ID was entered as a random effect. and personal ID 
nested within twin ID was entered as a random effect. 
Repeated measured age (continuous variable), sex (binary 
variable, female was coded as 1, male was coded as 0) and 
repeated measured smoking (non-smoker was coded as 1, 
ex-smoker was coded as 2, and current smoker was coded 
as 3) were covariates as fixed effects. The epigenome-
wide significance threshold was Bonferroni-corrected 

and set to P value less than 2 × 10–7. CpGs were selected 
for the following analysis if they reached this significance 
level or were among the top 20 ranked CpGs with the 
lowest P values if they did not reach the significance level. 
We further assessed the association between DNA meth-
ylation level of CVD-related CpGs and CVD onset using 
two methods, case-only analysis and survival analysis. 
In case-only analysis, we restricted the analytic sample 
to those who had been diagnosed with CVD after any of 
their IPT dates. We then fitted a linear mixed model with 
the onset age of CVD as dependent variable, methylation 
level of CVD-related CpGs as independent variable with 
fixed effect, and twin ID as the random effect. Since some 
participants may have several measurements of DNA 
methylation eligible for this analysis, we chose the first 
measurement, last, random selected and the mean levels 
of DNA methylation, to fit the model separately. Covari-
ates were chosen and entered into the model in the same 
way as in the EWAS step. In the survival analysis, base-
line was the first IPT measurement of DNA methylation 
and participants were excluded if they had the diagnosis 

Fig. 4  Flow chart of the statistical analyses. CVD cardiovascular 
diseases. Rounded rectangle represents the statistical steps, and 
right-angled rectangle represents the statistical contents under each 
step
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of CVD before baseline. End of follow-up was defined 
by the diagnosis date or December 31, 2016, which was 
the last date of CVD diagnosis in the registry database. 
Participants who died without any CVD diagnosis or sur-
vived until the last date of CVD diagnosis were censored. 
Attained age was used as the underlying time scale. Defi-
nition of independent variable and covariates (sex and 
smoking status) were the same as in the above case-only 
analysis.

Step 2: ALT‑SR
The ALT-SR model has the advantage, compared to a 
traditional cross-lagged model, to separate the between-
person and within-person associations between con-
structs and therefore allow us to estimate the directional 
relations between DNA methylation and cardiometabolic 
traits over time from the cross-lagged parameters. The 
fitted model is shown in Fig.  5. As defined in a stand-
ard structural equation model, the manifest variables 
(observed in the study) are in the rectangle, and the 
latent variables (not observed) are in the circle, double 
head arrows are the variance or covariance of variables, 
single head arrows are either factor loading (from latent 
variables to manifest variable) or regressions. “mval” 
is the abbreviation for DNA methylation and “rf” is the 
abbreviation of risk factor, representing cardiometa-
bolic traits; therefore, mval.IPT3 to mval.IPT9 mean 
the observed level of DNA methylation at different time 
points for one specific CpG site, and rf.IPT3 to rf.IPT9 
represent the observed level of one specific cardiometa-
bolic trait at different time points. The ALT-SR model 
comprised two parts, the autoregressive model (AR) and 
the latent growth curve model (LGM), where LGM was 
initially modeled, followed by AR analysis. In LGM, the 
expected trajectory was established by two latent vari-
ables: the intercept measuring the individual baseline 
level (for example, mval.i and rf.i mean the baseline levels 
of DNA methylation and cardiometabolic traits, respec-
tively) and the slope (denoted as mval.s and rf.s) meas-
uring the changing rate over time for each person. Since 
we fit a linear growth model for both DNA methylation 
and cardiometabolic traits, the factor loading from latent 
intercept to manifest variable at different time points is 
all equal to 1, and the factor loading from latent slope to 
manifest variables is set as 0, 2, 3, 5, and 6 at IPT3, IPT5, 
IPT6, IPT8, and IPT9, respectively. In AR, there are two 
sets of regression paths based on the latent residuals of 
two constructs (DNA methylation of one specific CpG 
site and one specific cardiometabolic trait): autoregres-
sive path (e.g., e.mval.IPT3 → e.mval.IPT5 → e.mval.
IPT6 → e.mval.IPT8 → e.mval.IPT9) indicating the 
within-person changes of each of the two constructs 
over time, and cross-lagged path (e.g., e.mval.IPT3 → e.

rf.IPT5, e.rf.IPT3 → e.mval.IPT5) indicating whether 
DNA methylation at one time point predicts within-
person changes of cardiometabolic traits at the adjacent 
later time point, and/or vice versa. Therefore, a3–a8 are 
labeled as the autoregressive parameters of DNA meth-
ylation, c3–c8 are labeled as the autoregressive param-
eters of cardiometabolic traits, b3–b8 are labeled as the 
parameters of cross-lagged effect of cardiometabolic 
traits on DNA methylation, and d3–d8 are labeled as 
parameters of cross-lagged effect from DNA methylation 
to cardiometabolic traits. We constrained the variance 
and covariance of the latent residuals of DNA methyla-
tion and cardiometabolic traits to be equal across time 
except for the first occasion, but let the autoregressive 
and cross-lagged associations to be freely estimated over 
time. We also included time-independent covariates 
that influence the growth curve estimates, here sex and 
baseline age were the common covariates when fitting 
the ALT-SR for different CpGs and different cardiometa-
bolic traits, and we also included statin use when fitting 
the model for lipids. We used chi-square value (relevant 
P value > 0.05), root-mean-square error of approxima-
tion (RMSEA) less than 0.06, comparative fit index (CFI) 
larger than 0.95 as the threshold to suggest a well-fit 
model [43]. The relatedness of twins was adjusted in the 
model by using the cluster option in the Lavaan package 
in R. Moreover, DNA methylation data scared in IPT10, 
HDL, and LDL data were missing in IPT3 (Additional 
file 1: Table S1); we therefore fitted the ALT-SR model for 
TC, TG, SBP, DBP, and BMI at 5 time points (IPT3, IPT5, 
IPT6, IPT8, IPT9) and fit the model for HDL and LDL at 
4 time points (IPT5, IPT6, IPT8, and IPT9) in model con-
vergence. Rescaling was only performed for methylation 
data by multiplying the raw DNA methylation data by 10 
in order to get a converged model.

In order to avoid potential bias caused by the selec-
tion of CpGs, we also selected the top-ranked CpGs from 
EWAS analysis specific for these cardiometabolic traits 
to do the sensitivity analysis for cross-lagged effect. Simi-
larly, we performed EWAS analysis on cardiometabolic 
traits separately and then fit the ALT-SR model to assess 
the cross-lagged effect between specific trait-related 
CpGs and that specific trait. Except the specific cardio-
metabolic trait was entered as independent variable with 
fixed effect in mixed model of EWAS analysis, the other 
settings for both EWAS and ALT-SR analysis, the crite-
rion of selecting CpGs, and the process of calculation 
were the same as the analyses for CVD.

Step 3: Mediation analysis
Longitudinal mediation analysis based on findings from 
the LGM framework was conducted to explore the 
putative mediation effect of one construct in the path 
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Fig. 5  Bivariate autoregressive latent trajectory model with structured residuals. This figure illustrates a bivariate autoregressive latent trajectory 
model with structured residuals (ALT-SR). The manifest variables (observed in the study) are denoted as rectangles, and the latent variables (not 
observed) are denoted as circles, double headed arrows are the variance or covariance of variables, single headed arrows are either factor loadings 
(from latent variables to manifest variable) or regressions. “mval” is the abbreviation for methylation value and “rf” is the abbreviation for risk factor. 
So mval.IPT3 to mval.IPT9 represents the observed level of DNA methylation at different time points for one specific CpG site, and rf.IPT3 to rf.IPT9 
represents the observed level of one specific cardiometabolic trait at different time points. ALT-SR comprised two parts, the autoregressive model 
(AR) and the latent growth curve (LGM), where LGM is initially modeled, followed by AR analysis. In LGM, the expected trajectory is established by 
two latent variables, the intercept (denoted as mval.i and rf.i) measuring the individual baseline levels of DNA methylation and cardiometabolic 
traits, respectively, and the slope (denoted as mval.s and rf.s) measuring the changing rate over time for every person. Since we fit a linear growth 
model for both DNA methylation and cardiometabolic traits, the factor loadings from latent intercept to manifest variables at different time 
points are all equal to 1, and the factor loadings from latent slope to manifest variables are set to 0, 2, 3, 5 and 6 at IPT3, IPT5, IPT6, IPT8, and IPT9, 
respectively. The AR part has two sets of regression paths based on the latent residuals of DNA methylation and the specific cardiometabolic trait, 
respectively: the autoregressive path (e.g., e.mval.IPT3 → e.mval.IPT5 → e.mval.IPT6 → e.mval.IPT8 → e.mval.IPT9) indicating the within-person 
changes of each of the two constructs over time, and the cross-lagged path (e.g., e.mval.IPT3 → e.rf.IPT5, e.rf.IPT3 → e.mval.IPT5) indicating whether 
DNA methylation at one time point predicts within-person changes of cardiometabolic traits at an adjacent later time point, and/or vice versa. 
Therefore, a3–a8 represent the autoregressive parameters of DNA methylation, c3–c8 represent the autoregressive parameters of cardiometabolic 
traits, b3–b8 represent the parameters of cross-lagged effect of cardiometabolic traits on DNA methylation, and d3–d8 represent the parameters 
of cross-lagged effect from DNA methylation to cardiometabolic traits. The variance and covariance of the latent residuals of DNA methylation and 
cardiometabolic traits are constrained to be equal across time except for the first occasion. We include time-independent covariates that influence 
the growth curve estimates; here sex and baseline age are common covariates when fitting the ALT-SR for different CpGs and cardiometabolic traits 
and include statin use as another time-independent variable when fitting the model for lipids. The relatedness of twins in the model is also adjusted 
for. Variance of mval.i, mval.s, rf.i, rf.s, e.mval.IPT3-e.mval.IPT9, e.rf.IPT3-e.rf.IPT9 is not displayed in the figure
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connecting the other construct to CVD. Analysis was 
restricted to observations where IPT date of measure-
ments happened earlier than the diagnosed date of 
CVD. A mediation path was established in the frame-
work of LGM, that is DNA methylation and trait grew 
by time, the random intercept of two constructs’ growth 
model correlated with each other and then based on the 
findings from ALT-SR, for example (Additional file 20: 
Figure S19), we assumed that we found DNA methyla-
tion has cross-lagged effect on cardiometabolic traits; 
mediation path would be established connecting DNA 
methylation (either intercept or slope of DNA methyla-
tion growth curve) to CVD with the slope of cardio-
metabolic traits as mediators. Therefore, × 1 and × 2 
are the direct effects from the intercept (representing 
baseline level) and the slope (representing the growth 
rate) of DNA methylation growth model of one specific 
CpG to CVD, respectively. × 3 and × 4 are the direct 
effects from the intercept and the slope of one specific 
cardiometabolic trait growth model to CVD, respec-
tively. × 4  *  m1 represents the indirect path from the 
baseline level (intercept of the growth model) of DNA 
methylation to CVD mediated by the trait, × 4  *  m2 
represents the indirect path from the growth (slope 
of growth model) of DNA methylation to CVD medi-
ated by the trait. Total effect of one path was the sum 
of direct effect and indirect effect on that path. Defini-
tions of manifest variables, latent intercept and latent 
slope, covariates, and abbreviations were set the same 
as in ALT-SR model. Rescaling was performed for the 
raw DNA methylation data in the same way as in the 
second step.

All analyses were conducted separately in non-stroke 
CVD, overall stroke, and ischemic stroke. Bonferroni 
correction was applied in all the analyses to adjust the 
significance level for multiple comparisons. All analy-
ses were performed with R software (4.0.3); specifically, 
we used the Lavaan package (0.6–7) for the ALT-SR and 
mediation analysis, and we use Ωnyx to create ALT-SR 
path diagram in Fig. 5 and mediation path in Additional 
file 20: Figure S19 [44].
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Additional file 3: Figure S2. Manhattan plot of EWAS study on overall 
stroke. Model was adjusted for age, sex and smoking status.

Additional file 4: Figure S3. Manhattan plot of EWAS study on 
ischemic stroke. Model was adjusted for age, sex and smoking status.

Additional file 5: Figure S4. Autoregressive and cross-lagged effect 
between DNA methylation of non-stroke CVD-related CpGs and cardio-
metabolic traits in MZ sample. Each point represents one significant effect 
(P value was set to 3×10−4). The X-axis represents the effect at different 
adjacent time points, for example, IPT3→IPT5 means the effect of one 
variable at IPT3 on the other variable at IPT5. The Y-axis represents the 
standardized estimation coefficient from the regression model. The left 
part of the figure is the autoregressive effect, and the right part is the 
cross-lagged effect. “DNAm→DNAm” (gray plus sign) represents autore-
gressive effect of DNA methylation, “Trait→Trait”(blue circle) represents 
autoregressive effect of trait, “Trait→DNAm”(brown square) represents 
cross-lagged effect from trait to DNA methylation, and “DNAm→Trait” (red 
triangle) represents cross-lagged effect from DNA methylation to trait. MZ, 
Monozygotic twins; DZ, Dizygotic twins.

Additional file 6: Figure S5. Autoregressive and cross-lagged effect 
between DNA methylation of non-stroke CVD-related CpGs and cardio-
metabolic traits in DZ sample. Each point represents one significant effect 
(P value was set to 3×10−4). The X-axis represents the effect at different 
adjacent time points, for example, IPT3→IPT5 means the effect of one 
variable at IPT3 on the other variable at IPT5. The Y-axis represents the 
standardized estimation coefficient from the regression model. The left 
part of the figure is the autoregressive effect, and the right part is the 
cross-lagged effect. “DNAm→DNAm” (gray plus sign) represents autore-
gressive effect of DNA methylation, “Trait→Trait”(blue circle) represents 
autoregressive effect of trait, “Trait→DNAm”(brown square) represents 
cross-lagged effect from trait to DNA methylation, and “DNAm→Trait” (red 
triangle) represents cross-lagged effect from DNA methylation to trait. MZ, 
Monozygotic twins; DZ, Dizygotic twins.

Additional file 7: Figure S6. Autoregressive and cross-lagged effect 
between DNA methylation of overall stroke-related CpGs and cardio-
metabolic traits in MZ sample. Each point represents one significant effect 
(P value was set to 3×10−4). The X-axis represents the effect at different 
adjacent time points, for example, IPT3→IPT5 means the effect of one 
variable at IPT3 on the other variable at IPT5. The Y-axis represents the 
standardized estimation coefficient from the regression model. The left 
part of the figure is the autoregressive effect, and the right part is the 
cross-lagged effect. “DNAm→DNAm” (gray plus sign) represents autore-
gressive effect of DNA methylation, “Trait→Trait” (blue circle) represents 
autoregressive effect of trait, “Trait→DNAm” (brown square) represents 
cross-lagged effect from trait to DNA methylation, and “DNAm→Trait” (red 
triangle) represents cross-lagged effect from DNA methylation to trait. MZ, 
Monozygotic twins; DZ, Dizygotic twins.

Additional file 8: Figure S7. Autoregressive and cross-lagged effect 
between DNA methylation of overall stroke-related CpGs and cardiometa-
bolic traits in DZ sample. Each point represents one significant effect (P 
value was set to 3×10−4). The X-axis represents the effect at different adja-
cent time points, for example, IPT3→IPT5 means the effect of one variable 
at IPT3 on the other variable at IPT5. The Y-axis represents the standardized 
estimation coefficient from the regression model. The left part of the 
figure is the autoregressive effect, and the right part is the cross-lagged 
effect. “DNAm→DNAm” (gray plus sign) represents autoregressive effect 
of DNA methylation, “Trait→Trait” (blue circle) represents autoregressive 
effect of trait, “Trait→DNAm” (brown square) represents cross-lagged 
effect from trait to DNA methylation, and “DNAm→Trait” (red  
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triangle) represents cross-lagged effect from DNA methylation to trait. MZ, 
Monozygotic twins; DZ, Dizygotic twins.

Additional file 9: Figure S8. Autoregressive and cross-lagged effect 
between DNA methylation of ischemic stroke-related CpGs and cardio-
metabolic traits in MZ sample. Each point represents one significant effect 
(P value was set to 3×10−4). The X-axis represents the effect at different 
adjacent time points, for example, IPT3→IPT5 means the effect of one 
variable at IPT3 on the other variable at IPT5. The Y-axis represents the 
standardized estimation coefficient from the regression model. The left 
part of the figure is the autoregressive effect, and the right part is the 
cross-lagged effect. “DNAm→DNAm” (gray plus sign) represents autore-
gressive effect of DNA methylation, “Trait→Trait” (blue circle) represents 
autoregressive effect of trait, “Trait→DNAm” (brown square) represents 
cross-lagged effect from trait to DNA methylation, and “DNAm→Trait” (red 
triangle) represents cross-lagged effect from DNA methylation to trait. MZ, 
Monozygotic twins; DZ, Dizygotic twins.

Additional file 10: Figure S9. Autoregressive and cross-lagged effect 
between DNA methylation of ischemic stroke-related CpGs and cardio-
metabolic traits in DZ sample. Each point represents one significant effect 
(P value was set to 3×10−4). The X-axis represents the effect at different 
adjacent time points, for example, IPT3→IPT5 means the effect of one 
variable at IPT3 on the other variable at IPT5. The Y-axis represents the 
standardized estimation coefficient from the regression model. The left 
part of the figure is the autoregressive effect, and the right part is the 
cross-lagged effect. “DNAm→DNAm” (gray plus sign) represents autore-
gressive effect of DNA methylation, “Trait→Trait” (blue circle) represents 
autoregressive effect of trait, “Trait→DNAm” (brown square) represents 
cross-lagged effect from trait to DNA methylation, and “DNAm→Trait” (red 
triangle) represents cross-lagged effect from DNA methylation to trait. MZ, 
Monozygotic twins; DZ, Dizygotic twins.

Additional file 11: Figure S10. Mediation effect between DNA meth-
ylation and non-stroke CVD mediated by cardiometabolic traits in all 
sample. Each point represents one significant effect (P value was set to 
3×10−4 for multiple testing) identified from mediation analysis among 
one specific CpG site, one specific cardiometabolic trait, and one specific 
outcome. The x axis represents the categories of direct effect, indirect 
effect and total effect, and the y axis represents the estimates of the 
three effects. "x1” (red) and “x2” (purple) represent direct effect from the 
intercept and the slope of DNA methylation at one specific CpG to CVD, 
respectively. “x3” (gold) and “x4” (orange) represent the direct effect from 
the intercept and the slope of one specific trait to CVD, respectively. “mirs” 
(x4*m1 in the mediation model, green) represents the indirect effect from 
the intercept of DNA methylation at one specific CpG to CVD mediated by 
one specific trait. “msrs” (x4*m2 in the mediation model, pink) represents 
the indirect effect from the slope of DNA methylation at one specific CpG 
to CVD mediated by one specific trait. “total_mi” (brown) represents the 
total effect from the intercept of DNA methylation at one specific CpG 
to CVD and equals to “x1+x4*m1”. “total_ms” (blue)  represents the total 
effect from the slope of DNA methylation at one specific CpG to CVD and 
equals to “x2+x4*m2”.

Additional file 12: Figure S11. Mediation effect between DNA 
methylation and non-stroke CVD mediated by cardiometabolic traits in 
MZ sample. Each point represents one significant effect (P value was set 
to 3×10−4 for multiple testing) identified from mediation analysis among 
one specific CpG site, one specific cardiometabolic trait, and one specific 
outcome. The x axis represents the categories of direct effect, indirect 
effect and total effect, and the y axis represents the estimates of the 
three effects. "x1” (red) and “x2” (purple) represent direct effect from the 
intercept and the slope of DNA methylation at one specific CpG to CVD, 
respectively. “x3” (gold) and “x4” (orange) represent the direct effect from 
the intercept and the slope of one specific trait to CVD, respectively. “mirs” 
(x4*m1 in the mediation model, green) represents the indirect effect from 
the intercept of DNA methylation at one specific CpG to CVD mediated by 
one specific trait. “msrs” (x4*m2 in the mediation model, pink) represents 
the indirect effect from the slope of DNA methylation at one specific CpG 
to CVD mediated by one specific trait. “total_mi” (brown) represents the 
total effect from the intercept of DNA methylation at one specific CpG to 
CVD and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect  

 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”. MZ, Monozygotic twins; DZ, Dizygotic twins.

Additional file 13: Figure S12. Mediation effect between DNA meth-
ylation and non-stroke CVD mediated by cardiometabolic traits in DZ 
sample. Each point represents one significant effect (P value was set to 
3×10−4 for multiple testing) identified from mediation analysis among 
one specific CpG site, one specific cardiometabolic trait, and one specific 
outcome. The x axis represents the categories of direct effect, indirect 
effect and total effect, and the y axis represents the estimates of the 
three effects. "x1” (red) and “x2” (purple) represent direct effect from the 
intercept and the slope of DNA methylation at one specific CpG to CVD, 
respectively. “x3” (gold) and “x4” (orange) represent the direct effect from 
the intercept and the slope of one specific trait to CVD, respectively. “mirs” 
(x4*m1 in the mediation model, green) represents the indirect effect from 
the intercept of DNA methylation at one specific CpG to CVD mediated by 
one specific trait. “msrs” (x4*m2 in the mediation model, pink) represents 
the indirect effect from the slope of DNA methylation at one specific CpG 
to CVD mediated by one specific trait. “total_mi” (brown) represents the 
total effect from the intercept of DNA methylation at one specific CpG to 
CVD and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”. MZ, Monozygotic twins; DZ, Dizygotic twins.

Additional file 14: Figure S13. Mediation effect between DNA methyla-
tion and overall stroke mediated by cardiometabolic traits in all sample. 
Each point represents one significant effect (P value was set to 3×10−4 for 
multiple testing) identified from mediation analysis among one specific 
CpG site, one specific cardiometabolic trait, and one specific outcome. 
The x axis represents the categories of direct effect, indirect effect and 
total effect, and the y axis represents the estimates of the three effects. 
"x1” (red) and “x2” (purple) represent direct effect from the intercept and 
the slope of DNA methylation at one specific CpG to CVD, respectively. 
“x3” (gold) and “x4” (orange) represent the direct effect from the intercept 
and the slope of one specific trait to CVD, respectively. “mirs” (x4*m1 in the 
mediation model, green) represents the indirect effect from the intercept 
of DNA methylation at one specific CpG to CVD mediated by one specific 
trait. “msrs” (x4*m2 in the mediation model, pink) represents the indirect 
effect from the slope of DNA methylation at one specific CpG to CVD 
mediated by one specific trait. “total_mi” (brown) represents the total 
effect from the intercept of DNA methylation at one specific CpG to CVD 
and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”.

Additional file 15: Figure S14. Mediation effect between DNA methyla-
tion and overall stroke mediated by cardiometabolic traits in MZ sample. 
Each point represents one significant effect (P value was set to 3×10−4 for 
multiple testing) identified from mediation analysis among one specific 
CpG site, one specific cardiometabolic trait, and one specific outcome. 
The x axis represents the categories of direct effect, indirect effect and 
total effect, and the y axis represents the estimates of the three effects. 
"x1” (red) and “x2” (purple) represent direct effect from the intercept and 
the slope of DNA methylation at one specific CpG to CVD, respectively. 
“x3” (gold) and “x4” (orange) represent the direct effect from the intercept 
and the slope of one specific trait to CVD, respectively. “mirs” (x4*m1 in the 
mediation model, green) represents the indirect effect from the intercept 
of DNA methylation at one specific CpG to CVD mediated by one specific 
trait. “msrs” (x4*m2 in the mediation model, pink) represents the indirect 
effect from the slope of DNA methylation at one specific CpG to CVD 
mediated by one specific trait. “total_mi” (brown) represents the total 
effect from the intercept of DNA methylation at one specific CpG to CVD 
and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”. MZ, Monozygotic twins; DZ, Dizygotic twins.

Additional file 16: Figure S15. Mediation effect between DNA methyla-
tion and overall stroke mediated by cardiometabolic traits in DZ sample. 
Each point represents one significant effect (P value was set to 3×10−4 for 
multiple testing) identified from mediation analysis among one specific 
CpG site, one specific cardiometabolic trait, and one specific outcome. The 
x axis represents the categories of direct effect, indirect effect and  
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total effect, and the y axis represents the estimates of the three effects. 
"x1” (red) and “x2” (purple) represent direct effect from the intercept and 
the slope of DNA methylation at one specific CpG to CVD, respectively. 
“x3” (gold) and “x4” (orange) represent the direct effect from the intercept 
and the slope of one specific trait to CVD, respectively. “mirs” (x4*m1 in the 
mediation model, green) represents the indirect effect from the intercept 
of DNA methylation at one specific CpG to CVD mediated by one specific 
trait. “msrs” (x4*m2 in the mediation model, pink) represents the indirect 
effect from the slope of DNA methylation at one specific CpG to CVD 
mediated by one specific trait. “total_mi” (brown) represents the total 
effect from the intercept of DNA methylation at one specific CpG to CVD 
and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”. MZ, Monozygotic twins; DZ, Dizygotic twins.

Additional file 17: Figure S16. Mediation effect between DNA methyla-
tion and ischemic stroke mediated by cardiometabolic traits in all sample. 
Each point represents one significant effect (P value was set to 3×10−4 for 
multiple testing) identified from mediation analysis among one specific 
CpG site, one specific cardiometabolic trait, and one specific outcome. 
The x axis represents the categories of direct effect, indirect effect and 
total effect, and the y axis represents the estimates of the three effects. 
"x1” (red) and “x2” (purple) represent direct effect from the intercept and 
the slope of DNA methylation at one specific CpG to CVD, respectively. 
“x3” (gold) and “x4” (orange) represent the direct effect from the intercept 
and the slope of one specific trait to CVD, respectively. “mirs” (x4*m1 in the 
mediation model, green) represents the indirect effect from the intercept 
of DNA methylation at one specific CpG to CVD mediated by one specific 
trait. “msrs” (x4*m2 in the mediation model, pink) represents the indirect 
effect from the slope of DNA methylation at one specific CpG to CVD 
mediated by one specific trait. “total_mi” (brown) represents the total 
effect from the intercept of DNA methylation at one specific CpG to CVD 
and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”.

Additional file 18: Figure S17. Mediation effect between DNA methyla-
tion and ischemic stroke mediated by cardiometabolic traits in MZ 
sample. Each point represents one significant effect (P value was set to 
3×10−4 for multiple testing) identified from mediation analysis among 
one specific CpG site, one specific cardiometabolic trait, and one specific 
outcome. The x axis represents the categories of direct effect, indirect 
effect and total effect, and the y axis represents the estimates of the 
three effects. "x1” (red) and “x2” (purple) represent direct effect from the 
intercept and the slope of DNA methylation at one specific CpG to CVD, 
respectively. “x3” (gold) and “x4” (orange) represent the direct effect from 
the intercept and the slope of one specific trait to CVD, respectively. “mirs” 
(x4*m1 in the mediation model, green) represents the indirect effect from 
the intercept of DNA methylation at one specific CpG to CVD mediated by 
one specific trait. “msrs” (x4*m2 in the mediation model, pink) represents 
the indirect effect from the slope of DNA methylation at one specific CpG 
to CVD mediated by one specific trait. “total_mi” (brown) represents the 
total effect from the intercept of DNA methylation at one specific CpG to 
CVD and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”. MZ, Monozygotic twins; DZ, Dizygotic twins.

Additional file 19: Figure S18. Mediation effect between DNA methyla-
tion and ischemic stroke mediated by cardiometabolic traits in DZ sample. 
Each point represents one significant effect (P value was set to 3×10−4 for 
multiple testing) identified from mediation analysis among one specific 
CpG site, one specific cardiometabolic trait, and one specific outcome. 
The x axis represents the categories of direct effect, indirect effect and 
total effect, and the y axis represents the estimates of the three effects. 
"x1” (red) and “x2” (purple) represent direct effect from the intercept and 
the slope of DNA methylation at one specific CpG to CVD, respectively. 
“x3” (gold) and “x4” (orange) represent the direct effect from the intercept 
and the slope of one specific trait to CVD, respectively. “mirs” (x4*m1 in the 
mediation model, green) represents the indirect effect from the intercept 
of DNA methylation at one specific CpG to CVD mediated by one specific 
trait. “msrs” (x4*m2 in the mediation model, pink) represents the indirect 

effect from the slope of DNA methylation at one specific CpG to CVD 
mediated by one specific trait. “total_mi” (brown) represents the total 
effect from the intercept of DNA methylation at one specific CpG to CVD 
and equals to “x1+x4*m1”. “total_ms” (blue) represents the total effect 
from the slope of DNA methylation at one specific CpG to CVD and equals 
to “x2+x4*m2”. MZ, Monozygotic twins; DZ, Dizygotic twins.

Additional file 20: Figure S19. Example of Mediation model. This figure 
demonstrates an example of the mediation path assuming that the 
effect of DNA methylation on CVD (outcome) is mediated by one specific 
cardiometabolic trait. A mediation path is established in the framework of 
LGM, that is DNA methylation and trait grow by time, the random inter-
cept of the two constructs correlate with each other, the mediation path 
is established connecting DNA methylation (either intercept or slope of 
DNA methylation growth curve) to CVD with the slope of cardiometabolic 
traits as mediators. Besides of the mediation path indicating the indirect 
effect of one construct on the outcome mediated by the other construct, 
the direct effects path is established from the parameters of LGM of either 
construct to outcome. We include sex and baseline age as the common 
time-independent covariates that influence the growth curve estimates in 
the analysis for all the cardiometabolic traits, and include statin use when 
fitting the model for lipids.The manifest variables (observed in the study) 
are in the rectangle, and the latent variables (not observed) are in the 
circle, double head arrows are variance or covariance of variables, single 
head arrows are either factor loading (from latent variable to manifest 
variable) or regressions. “mval” is the abbreviation for methylation value 
and “rf” is the abbreviation of risk factor. mval.IPT3 to mval.IPT9 mean the 
observed level of DNA methylation at different time points for one specific 
CpG site, and rf.IPT3 to rf.IPT9 represent the observed level of one specific 
cardiometabolic trait at different time points. mval.i and mval.s represent 
the intercept and slope of the growth model of DNA methylation on 
one specific CpG site, rf.i and rf.s represent the intercept and slope of the 
growth model of the trait. Since we fit a linear growth model for both 
DNA methylation and cardiometabolic traits, the factor loading from 
latent intercept to manifest variable at different time points are all equal 
to 1, and the factor loading from latent slope to manifest variables are set 
as 0, 2, 3, 5 and 6 at IPT3, IPT5, IPT6, IPT8 and IPT9, respectively. x1 and x2 
are the direct effects from the intercept (representing baseline level) and 
the slope (representing growth rate) of DNA methylation growth model 
of one specific CpG to CVD, respectively. x3 and x4 are the direct effects 
from intercept and slope of one specific cardiometabolic trait growth 
model to CVD, respectively. x4*m1 represents the indirect path from the 
baseline level (intercept of the growth model) of DNA methylation to CVD 
mediated by the trait, x4*m2 represents the indirect path from the growth 
(slope of growth model) of DNA methylation to CVD mediated by the trait. 
Variance of mval.i, mval.s, rf.i, rf.s, mval.IPT3-mval.IPT9, rf.IPT3-rf.IPT9 were 
not displayed in the figure.
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