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for nervous system‑related genes in CRC​
Glenn Rademakers1†, Maartje Massen1†, Alexander Koch1†, Muriel X. Draht1, Nikkie Buekers1, 
Kim A. D. Wouters1, Nathalie Vaes1, Tim De Meyer2, Beatriz Carvalho3, Gerrit A. Meijer3, James G. Herman4, 
Kim M. Smits1, Manon van Engeland1 and Veerle Melotte1,5*   

Abstract 

Purpose:  Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening 
modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate 
stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to 
DNA methylation.

Methods:  DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adeno-
carcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five 
best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool sam-
ples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined 
with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and 
clusterProfiler.

Results:  GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combina-
tions of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic 
potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway 
and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in 
the set of best performing CRC-specific biomarkers.

Conclusion:  In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for 
the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related 
pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC.
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Introduction
Colorectal cancer (CRC) is the third most common type 
of cancer and the second cause of cancer-related mortal-
ity worldwide [1]. Implementing screening programs for 
early CRC detection leads to substantial reductions in 
CRC incidence and mortality [2]. Colonoscopy and the 
fecal immunochemical test (FIT) are the most widely 
used modalities for CRC screening [3, 4], but both have 

Open Access

*Correspondence:  veerle.melotte@maastrichtuniversity.nl
†Glenn Rademakers, Maartje Massen and Alexander Koch have 
contributed equally to this work
1 Department of Pathology, GROW – School for Oncology 
and Developmental Biology, Maastricht University Medical Center, P.O. 
Box 616, 6200 MD Maastricht, The Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9459-123X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-021-01067-9&domain=pdf


Page 2 of 12Rademakers et al. Clin Epigenet           (2021) 13:80 

limitations. The invasive nature of colonoscopy is associ-
ated with risks of bleeding, bowel perforation, low par-
ticipation rates and high costs, while the sensitivity and 
specificity of FIT are suboptimal [5, 6]. To improve the 
current FIT, alterations in CRC-derived DNA found in 
bodily fluids (e.g., blood and feces) have been evaluated 
[7]. Three DNA methylation markers (SEPTIN9, NDRG4 
and BMP3) have been incorporated in FDA-approved 
screening tests for early CRC detection [8]. Two assays 
detect SEPTIN9 methylation in blood (Epi proColon® 2.0 
CE and Colovantage®) with a sensitivity of 58.6–81.0% 
and a specificity of 80.0–99.0% [9–18]. The multitarget 
stool DNA test Cologuard®, combining KRAS mutations, 
BMP3 and NDRG4 methylation and an immunochemical 
assay for human hemoglobin [19, 20], reported a sensitiv-
ity of 92.3% and specificity of 86.6% [19, 21].

The observation that only 0.8% of the reported DNA 
methylation markers have been translated into a com-
mercial product illustrates the complexity of translating 
laboratory discoveries to clinical applications [8]. Rea-
sons for this include flawed study designs, suboptimal 
marker identification and methodological issues [8]. To 
improve clinical translation, we previously recommended 
(1) to critically evaluate the genomic location of DNA 
methylation biomarkers and (2) to use publicly available 
(epi)genomics databases [8].

Here, we applied these recommendations to optimize 
the implementation of early CRC detection DNA meth-
ylation biomarkers using publicly available data from The 
Cancer Genome Atlas (TCGA) [22]. Five candidate DNA 
methylation biomarkers were identified that were further 
validated in CRC tissue and stool samples. Many of the 
identified candidate markers were involved in nervous 
system-related pathways, indicating a role for the nerv-
ous system in colorectal carcinogenesis.

Methods
For more detailed information, see supplemental 
methods.

Gene discovery analysis
The following TCGA data sets for colon adenocarcinoma 
were used: clinical patient data, level 3 Infinium 450  k 
DNA methylation data and level 3 Illumina HiSeq RNA-
seq V2 gene expression data (upper quartile normal-
ized RSEM expression estimates). Methylation and gene 
expression data were available for 12,263 genes.

TCGA methylation data were selected for the Infinium 
450  k probes located in promoter CpG islands (i.e., the 
region from − 1000 bp to + 500 bp around the transcrip-
tion start site) that were unmethylated in normal sam-
ples (median β over all normal samples < 0.20) (Fig.  1, 
“Introduction” section). Because a clinically relevant 

early detection marker needs to identify all tumor stages, 
we compared normal samples (n = 37) with stage I and 
II tumor samples (n = 146) and stage III and IV tumor 
samples (n = 116) using a one-sided Mann–Whitney test 
(μ = − 0.25). Resulting P values were corrected using false 
discovery rate (FDR) correction and only probes with an 
FDR < 0.05 and a difference in median β < − 0.25 were 
retained (Fig.  1, “Methods” section). Probes for which 
at least one other differentially methylated probe was 
located within 750 bp up or downstream were selected. 
Next, downregulated genes in the tumor samples were 
identified in the RNA-seq expression data (normal tissue: 
n = 41, primary tumor tissue: n = 285) with the one-sided 
Mann–Whitney test (μ = 1), using an FDR cutoff of 0.05 
(Fig. 1, “Results” section). The results of both differential 
methylation analyses were combined with the results of 
the differential gene expression analysis yielding a list of 
236 genes (Fig. 1, “Discussion” section) [8].

To ensure tumor-specificity of the methylation, we 
evaluated methylation of the selected probes in normal 
samples from fourteen TCGA cancer types, i.e., breast 
cancer, colon adenocarcinoma, lung squamous cell car-
cinoma, prostate adenocarcinoma, head and neck squa-
mous cell carcinoma, lung adenocarcinoma, bladder 
urothelial carcinoma, kidney renal clear cell carcinoma, 
kidney renal papillary cell carcinoma, liver hepatocellular 
carcinoma, thyroid carcinoma, uterine corpus endome-
trial carcinoma, colorectal adenocarcinoma and esopha-
geal carcinoma. For every probe and tissue type, the 
percentage of methylated (median β > 0.20) samples was 
calculated. Only probes for which the maximal fraction 
of methylated samples was lower than 25% in each tissue 
type were retained (Fig. 1, Sect. 5), revealing 221 genes. 
All analyses were performed using the R programming 
language (version 3.2.3).

Tissue samples
Formalin-fixed, paraffin-embedded tumor tissue (CRC) 
and matching normal tissue was retrospectively collected 
from the tissue archives of the Pathology Department of 
the Maastricht University Medical Center (MUMC) for 
34 patients diagnosed between 1995 and 2003 (Addi-
tional file  1: Table  S1). This study was approved by the 
Medical Ethical Committee of the MUMC (MPTC 
2015–12).

Collection of FIT and stool samples
Stool samples from colonoscopy-negative controls 
(n = 50) were prospectively obtained from a workplace-
based CRC screening study at MUMC. Stool samples 
from CRC 121 patients (n = 43) were prospectively col-
lected in the noninvasive markers for CRC (NIM) study 
at MUMC. Both studies were approved by the Medical 



Page 3 of 12Rademakers et al. Clin Epigenet           (2021) 13:80 	

Ethical Committee of the MUMC (METC 04-088, 
METC 08-2-038) and written informed consent was 
obtained from all patients. Population characteristics 
are shown in Table 1.

Participants collected one bowel movement in stool 
collection container (Exact Sciences) just before the 
bowel preparation for the colonoscopy. Directly after, 
stabilization buffer (Exact Sciences) was added. Simul-
taneously, FIT (OC-Sensor, Eiken Chemical, Tokyo, 
Japan) was performed, according to the manufac-
turer’s instructions. A quantitative concentration of 
50 ng Hb/ml test buffer was set as threshold for a posi-
tive FIT. The FIT and stool samples were delivered to 

the laboratory within 72  h after collection, stored at 
− 20  °C and further processed as previously described 
[23].

Methylation data and statistical analyses
Methylation frequencies of the selected genes were 
determined in carcinoma and matched normal tissues 
and compared with McNemar’s test. A receiver operat-
ing characteristic (ROC) curve analysis and area under 
the curve (AUC) were established to assess their diag-
nostic utility. For the AUC, a 95%-confidence interval 
was estimated using a nonparametric method. The qMSP 
cutoff value for each marker was determined based on 

Fig. 1  Pipeline to select candidate methylation markers using The Cancer Genome Atlas (TCGA) database. Marker discovery is based on a selection 
procedure using methylation data (right section) and gene expression data (left section). The DNA methylation analysis resulted in a list of Infinium 
450 k probes that were: (1) located in promoter CpG islands, (2) unmethylated in normal colon tissue, and (3) hypermethylated in tumor samples 
over all four stages cancer development. This list was compared with a list of genes downregulated in tumor compared to normal samples, and we 
checked the methylation status of the remaining probes in normal samples from 14 different cancer types, resulting in a list of 221 genes. Finally, we 
designed and tested primers for the probes with the highest sensitivity and specificity based on the TCGA data, resulting in the top five potential 
early detection markers for CRC​



Page 4 of 12Rademakers et al. Clin Epigenet           (2021) 13:80 

the highest likelihood ratio (see Additional file  1: Sup-
plementary methods). Promoter methylation was consid-
ered positive if the methylation value was higher than the 
predetermined cutoff. Next, the best performing marker 
panel was identified. The Pearson chi-square test was 
used to compare methylation frequencies in fecal DNA 
between CRC patients and healthy subjects. All statisti-
cal analyses were performed using IBM SPSS Statistics 
23, R programming language (version 3.2.3) or Graphpad 
Prism (version 5.03).

Gene ontology and pathway analyses
Gene ontology enrichment analyses using Gorilla [24] 
and clusterProfiler [25] were performed on the 221 dif-
ferentially methylated and downregulated genes com-
pared to the background gene set (12, 263 genes). Gene 
ontology analyses were performed on three different 
subsets of gene ontologies: cellular component, molec-
ular function and biological process. The number of 
nervous system-related gene ontologies in the enriched 

sets was compared with the frequency of these ontolo-
gies in the complete set of ontologies (Gene Ontology 
Consortium http://​geneo​ntolo​gy.​org/, link to the ontol-
ogy file: http://​purl.​oboli​brary.​org/​obo/​go/​go-​basic.​
obo). To identify the number of neuronal-related gene 
ontologies, we used neuronal-related keywords (‘neuro,’ 
‘neuron,’ ‘neuronal,’ ‘neural,’ ‘nervous,’ ‘axon,’ ‘dendritic,’ 
‘synaptic,’ ‘synapse,’ ‘learning,’ ‘memory,’ ‘brain,’ ‘hip-
pocampus’) and applied the Fisher’s Exact test to com-
pare the frequencies of the neuronal-related ontologies 
(R version 3.2.3).

In addition, pathway analysis was performed using 
three major pathway databases (Reactome, KEGG and 
PantherDB) using the ToppFun application (http://​
toppg​ene.​cchmc.​org) [26]. Pathways identified with 
a cutoff value of P < 0.05 were considered for further 
analysis. As standard methods to correct P values for 
multiple testing tend to be conservative, these correc-
tions were not applied.

Table 1  Clinicopathological features of the stool samples obtained from a hospital-based series

Tissue retrieved retrospectively from the tissue archive of the department of Pathology of the Maastricht University Medical Center
±  P < 0.000 compared to normal, one-way ANOVA was used

Patient demographics Normal (N = 50 |n (%)|) Carcinoma 
(N = 42 |n 
(%)|)

Sex

 Male 24 (48.0) 28 (66.7)

 Female 26 (52.0) 14 (33.3)

Age (years)

 Median (± StDev) 55.5 (± 3.7) 70.5 (± 10.5)

Histological type

 Adenocarcinoma – 31 (73.8)

 Signet ring cell carcinoma – 1 (2.4)

 Mucinous adenocarcinoma – 2 (4.8)

 High-grade neuroendocrine carcinoma – 1 (2.4)

 Unknown 7 (16.6%)

Differentiation grade

 Poor – 6 (14.3)

 Moderate/well – 25 (59.5)

 Unknown – 11 (26.2)

T-stage

 Stage 1 – 0 (0.0)

 Stage 2 – 7 (16.7)

 Stage 3 – 24 (57.1)

 Stage 4 – 10 (23.8)

 Unknown – 1 (2.4)

Location

 Proximal – 14 (33.3)

 Distal – 25 (59.5)

 Unknown/other – 3 (7.2)

http://geneontology.org/
http://purl.obolibrary.org/obo/go/go-basic.obo
http://purl.obolibrary.org/obo/go/go-basic.obo
http://toppgene.cchmc.org
http://toppgene.cchmc.org
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Results
In silico identification of early CRC detection DNA 
methylation markers using publicly available TCGA data
A multistep in silico gene discovery analysis was used to 
identify novel candidate DNA methylation markers for 
early CRC detection (Fig. 1). The list of Infinium Human 
Methylation 450  K BeadChip probes (n = 485,577) was 
initially reduced to 71,481 probes based on location in 
promoter CpG islands and the absence of methylation 
in normal samples. Based on their methylation status, 
2257 probes/673 genes in stage I/II and 1578 probes/496 
genes in stage III/IV were identified. This list was com-
bined with 3756 genes identified as downregulated in 
tumor compared to normal samples, resulting in 899 
probes/236 genes. Finally, to select tumor specific probes, 
all 899 probes were investigated in normal samples of 
fourteen other cancer types, resulting in 518 probes/221 
genes (Fig.  1). The top twenty genes with the highest 
sensitivity and 100% specificity were selected for further 
investigation.

Methylation frequencies of the best performing genes 
in CRC tissue
After performing MSPs on 34 matched CRC and normal 
colon tissue samples, we obtained MSP data for ten genes 
(dropouts due to unsuccessful and suboptimal MSP 
primer design). We identified GDNF, HAND2, SLC35F3, 
SNAP91 and SORCS1 as the five best performing tissue 
candidates and selected these markers for further qMSP 
analysis. Methylation frequencies for these genes dif-
fered between CRC and normal tissue (P < 0.0001 for all 
genes) with high methylation in CRC; SORCS1 (91.2%), 
SLC35F3 (88.2%), SNAP91 (85.3%), GDNF (76.5%) and 
HAND2 (73.5%) (Additional file  2: Figure  S1). In the 
matched normal tissue samples, methylation was lower; 
HAND2 (8.8%), SNAP91 and SORCS1 (both 5.9%), and 
GDNF and SLC35F3 (both 2.9%) %) (Additional file  2: 
Figure  S1). This in  situ validation of in silico identified 
DNA methylation markers shows the potential of public 
data for biomarker discovery.

Sensitivity and specificity for the best performing genes 
in fecal DNA of CRC patients
The diagnostic performance of the five identified DNA 
methylation markers in fecal DNA was assessed in stool 
samples from 50 healthy subjects and 43 CRC patients. 
The AUCs for GDNF, HAND2, SLC35F3, SNAP91 and 
SORCS1 in stool were 0.726 [95%-CI 0.619–0.834], 0.722 
[95%-CI 0.615–0.829], 0.736 [95%-CI 0.632–0.841], 0.799 
[95%-CI 0.704–0.893] and 0.707 [95%-CI 0.597–0.817], 
respectively (Fig.  2a). For all markers, the highest likeli-
hood ratio was observed at 98.0% specificity. Using this 

fixed specificity of 98.0%, SNAP91 had the highest sensi-
tivity (46.5% [95%-CI 31.2–62.4%], cutoff = 112.6 copies/
µl) followed by GDNF (sensitivity: 41.9% [95%-CI 27.0–
57.9%], cutoff = 21.16 copies/µl) and SORCS1 (sensitiv-
ity: 41.9% [95%-CI 27.0–57.9%], cutoff = 110.0 copies/
µl), SLC35F3 (sensitivity: 39.5% [95%-CI 25.0–55.6%], 
cutoff = 63.82 copies/µl) and HAND2 (sensitivity: 32.6% 
[95%-CI 19.1–48.5%], cutoff = 79.02 copies/µl) (Fig.  2b). 
The association between the methylation status and clin-
icopathological features is shown in Table 2.

To determine the best diagnostic panel, all possible 
marker combinations were analyzed. The panel detect-
ing GDNF or SNAP91 methylation was the optimal panel 
with 48.8% sensitivity [95%-CI 33.9–63.7%] and 98.0% 
specificity (AUC 0.727 [95%-CI 0.621–0.834], Fig.  2c, 
d). Without predetermined cutoffs, a panel of SLC35F3 
and SNAP91 appeared the best performing marker panel 
(sensitivity 65.1%, specificity 82.0%, AUC 0.827 [95%-
CI 0.701–0.954], Fig. 2e, f ). Other marker combinations 
were observed with higher sensitivities (67.4–81.4%), 
however, but with reduced specificities (65.3–81.6%).

The performance of the in silico identified DNA 
methylation markers and NDRG4 in combination with FIT
To determine the added diagnostic value to currently 
applied diagnostic assays, the marker panel was com-
bined with our previously identified and established 
methylation marker NDRG4 [27] and the FIT.

Adding NDRG4 methylation (Fig.  3a, b) to the panel 
leads to a slightly higher AUC (0.745; [95%-CI 0.624–
0.867]) and sensitivity (51.2% [95%-CI 36.3–66.1%]) with-
out changes in specificity (98.0%), as compared to GDNF 
and SNAP91 methylation alone (Additional file  3: Fig-
ure S2a, S2b). No other panel outperformed the GDNF/
SNAP91/NDRG4 panel.

Using a cutoff of 50  ng Hb/ml buffer, FIT sensitivity 
for CRC detection was higher than any of the described 
single markers or marker panels alone; sensitivity 81.4% 
[95%-CI 69.8–93.0%] at a specificity of 98.0%, AUC 0.946 
(Fig.  3c, d). Combinations of single markers and FIT 
showed higher sensitivities (86.0% [95%-CI 75.7–96.4%] 
for GDNF, SNAP91 and SORCS1, and 83.7% [95%-CI 
72.7–94.8%] for SLC35F3 but with a lower specificity 
(96.0%) (Additional file 3: Figure S2c).

When combining the best performing marker 
panel (GDNF/SNAP91/NDRG4) with FIT, the AUC 
reached 0.940 and the sensitivity increased to 86.0% 
[95%-CI 75.6–96.4%] at 96.0% specificity (Fig.  3d, e), 
which is higher compared to the marker panel alone 
(37% increase) and slightly higher than the FIT alone 
(4.6% increase). Interestingly, the panel combining 
SNAP91/NDRG4/FIT achieved the same performance 
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Fig. 2  Early detection methylation marker validation using fecal DNA from healthy controls and CRC patients. a Receiver operating characteristic 
(ROC) curve for marker validation of GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 on fecal DNA to determine optimal sensitivity/specificity. The 
jagged lines indicate the different ROC curves for each independent marker. The dashed line represents the line of no discrimination between good 
and bad classification. b Methylation frequency (%) of single markers in fecal DNA of healthy controls (white bar) and CRC patients (black bar). The 
exact number of methylated samples is indicated in the table below for both groups (methylated samples/total number samples). For the healthy 
control group, the specificity is given; for carcinomas the sensitivity was determined. Pearson’s chi-square test was used to calculate P values. c ROC 
curve for the best performing marker panel (GDNF/SNAP91) based on the cutoffs for GDNF and SNAP91. The jagged (green) line indicates the ROC 
curve for this specific panel. The gray line represents the line of no discrimination between good and bad classification. d Methylation frequency of 
the GDNF/SNAP91 marker panel in fecal DNA of healthy controls (white bar) and carcinomas (dark gray bar). Fisher’s exact test was used to calculate 
P values. e ROC curve for the best performing marker panel (SLC35F3/SNAP91) without cutoff. f Methylation frequency of the SLC35F3/SNAP91 
marker panel in fecal DNA of healthy controls (white bar) and carcinomas (dark gray bar). Fisher’s exact test was used to calculate P values
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(Fig. 3f ) with no other panels outperforming this combi-
nation (Additional file 1: Table S2).

Gene ontology enrichment and pathway analysis of DNA 
methylation markers for CRC​
When investigating gene functions, we observed that 
twelve out of the top twenty (60.0%) genes were related to 
the nervous system based on their gene ontologies (Addi-
tional file 1: Table S3), resembling the previously identi-
fied neuronal-specific expression of NDRG4 [27–29].

Gene ontology enrichment analyses were performed 
to investigate whether neuronal-related gene ontolo-
gies were also enriched in the 221 genes (Fig.  1). Using 
GOrilla, 46 biological process ontologies were found 
to be enriched, including seventeen neuronal-related 
ontologies (37.0%). Using clusterProfiler, 20/32 (62.5%) 
of the enriched ontologies were neuronal-related. Addi-
tionally, multiple neuronal-related cellular component 
ontologies were found to be enriched: 12/23 (52.2%) and 
8/10 (80.0%), respectively. No neuronal-related molecu-
lar function ontologies were enriched in our target gene 
set. To put these numbers into context, we compared the 
frequency of neuronal gene ontologies between our lists 
of enriched gene ontologies and the complete set of all 
47,133 ontologies. For the biological process ontologies, 

4.7% of all ontologies were nervous system related in the 
complete set compared to 37.0% (GOrilla) and 62.5% 
(clusterProfiler) in the enriched set (Fig.  4a). Similar 
to the biological process ontologies, the frequency of 
neuronal-related cellular component ontologies was 
increased in the enriched set (52.2–80.0%) as only 5.5% of 
all ontologies were neuronal-related in the complete set 
(Fig. 4a).

Using the ToppFun tool (ToppGene Suite) and three 
major pathway databases (Reactome, KEGG and Pan-
therDB), pathway analyses were performed on the 221 
genes confirming that neuronal-related pathways are 
highly prominent. Analysis of the Reactome database 
revealed 14/40 neuronal-related pathways (35.0%). 
Higher percentage of nervous system-related pathways 
were observed in the KEGG (12/21 (57.1%)) and Pan-
therDB (10/11 (90.9%)) pathway databases. More spe-
cifically, analysis using the Reactome database revealed 
pathways involved in synaptic protein interactions 
related to the following genes: SYT9, DLGAP3, NLGN4X, 
GRIN2A. Both the Reactome and KEGG databases iden-
tified pathways linked to neurotransmitter release with 
genes like RIMS1, SLC18A2 and SLC18A3 (Fig.  4b). 
Similarly, the PantherDB and the KEGG pathway data-
bases analyses primarily identified pathways involved 

Table 2  Promoter methylation markers in colorectal carcinomas compared with clinicopathological features

Pearson’s chi-square (sex, stage and tumor location) and independent samples t tests (age) were used to calculate P values

GDNF HAND2 SLC35F3 SNAP91 SORCS1

M U M U M U M U M U

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Tumors

 Number 17 (40.5) 25 (59.5) 11 (26.2) 31 (73.8) 15 (35.7) 27 (64.3) 19 (45.2) 23 (54.8) 17 (40.5) 25 (59.5)

Sex

 Male 11 (64.7) 17 (68.0) 8 (72.7) 20 (64.5) 10 (66.7) 18 (66.7) 11 (57.9) 17 (73.9) 10 (58.9) 18 (72.0)

 Female 6 (35.3) 8 (32.0) 3 (27.3) 11 (35.5) 5 (33.3) 9 (33.3) 8 (42.1) 6 (26.1) 7 (41.1) 7 (28.0)

 P value 0.824 0.620 1.000 0.273 0.374

Cancer stage

 Stage I 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Stage II 5 (31.3) 2 (8.0) 2 (20.0) 5 (16.1) 3 (21.4) 4 (14.8) 6 (33.3) 1 (4.3) 4 (25.0) 3 (12.0)

 Stage III 8 (50.0) 16 (64.0) 5 (50.0) 19 (61.3) 7 (50.0) 17 (63.0) 8 (44.5) 16 (69.6) 8 (50.0) 16 (64.0)

 Stage IV 3 (18.7) 7 (28.0) 3 (30.0) 7 (22.6) 4 (28.6) 6 (22.2) 4 (22.2) 6 (26.1) 4 (25.0) 6 (24.0)

 P value 0.153 0.818 0.721 0.047 0.523

Tumor location

 Proximal 0 (0.0) 14 (60.9) 1 (9.1) 13 (46.4) 0 (0.0) 14 (56.0) 0 (0.0) 14 (66.7) 0 (0.0) 14 (60.9)

 Distal 16 (100.0) 9 (39.1) 10 (90.9) 15 (53.6) 14 (100.0) 11 (44.0) 18 (100.0) 7 (33.3) 16 (100.0) 9 (39.1)

 P value 0.000 0.029 0.000 0.000 0.000

Age (years)

 Mean age (± SD) 71 (± 7.6) 70 (± 12.2) 73 (± 7.7) 70 (± 11.2) 70 (± 9.6) 71 (± 11.1) 70 (± 9.0) 71 (± 11.7) 70 (± 9.0) 71 (± 11.5)

 P value 0.927 0.333 0.812 0.663 0.885
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Fig. 3  NDRG4 methylation and FIT performance in fecal DNA and combined with the previously established marker panel. a ROC curve for NDRG4. 
The jagged (green) lines indicate the ROC curve. The gray line represents the line of no discrimination between good and bad classification. b 
Methylation frequency (%) of NDRG4 methylation markers in fecal DNA of healthy controls (white bar) and carcinomas (dark gray bar). Pearson’s 
chi-square test was used to calculate P value. c The performance of FIT within the study population containing normal (n = 50) and carcinoma 
(n = 43) samples. d ROC curve for FIT alone and for FIT with GDNF/SNAP91/NDRG4. The green lines indicate the ROC curve for FIT alone while the 
purple line indicates the ROC for FIT/NDRG4/SNAP91. The gray line represents the line of no discrimination between good and bad classification. e, 
f The best performing marker panels GDNF/SNAP91/NDRG4 (e) and SNAP91/NDRG4 (f) in combination with FIT. For all figures, the 95% CI is shown 
with the error bars. Pearson’s chi-square test was used to calculate P values
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Fig. 4  Gene ontology enrichment and pathway analysis of the full set (n = 221) of identified methylation markers. a Comparisons of the frequency 
of neuro-related gene ontologies in the complete set of gene ontologies (yellow bar) versus the enriched sets obtained via analysis by GOrilla 
(green) and clusterProfiler (dark blue). The three major subsets of gene ontologies have been accounted for: cellular component (CC), biological 
process (BP) and molecular function (MF). b Pathway analysis was performed using the ToppGene tool based on 221 genes with potential as 
early detection biomarkers. ToppGene links, gene lists with pathways described in three major pathway databases (KEGG pathway, Reactome and 
PantherDB). Nervous system-related genes are highlighted in green, nervous system-related pathways in orange and genes and pathways with a 
neuronal background are linked with black lines, other with gray lines
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in neurotransmitter (receptor) signaling, particularly 
involving muscarinic acetylcholine, glutamate, GABA, 
serotonin and dopamine signaling (PRKCB, GNAO1, 
CACNA1A). Additionally, genes involved in synaptic 
vesicle trafficking were identified such as: RIMS1 and its 
family member RIMS2 next to SYT6, a family member of 
the aforementioned SYT9.

Discussion
Here, we used the publicly available TCGA data to 
identify novel DNA methylation markers for early, 
noninvasive detection of CRC [8]. All five identified 
methylation markers (GDNF, HAND2, SLC35F3, SNAP91 
and SORCS1) were highly methylated in CRC samples 
but not in normal tissue. GDNF, HAND2, SNAP91 and 
SORCS1 have already been reported to be methylated in 
CRC tissue compared to normal tissue [30–33]. In stool 
samples from CRC patients, sensitivities decreased, rang-
ing from 32.6% (HAND2) to 47.7% (SNAP91) at 98.0% 
specificity. This might be caused by the large amounts of 
bacterial DNA, multiple PCR-inhibiting substances such 
as polysaccharides, cell debris, proteins and bile salts in 
stool [34, 35], and the small amounts of human DNA. 
The sensitivity could possibly be improved by using 
more sensitive methods for DNA methylation detection, 
such as the Discrimination of Rare EpiAlleles by Melt 
(DREAMing) technique [36] or digital PCR analyses [37].

Before biomarkers can be developed for use in clinical 
practice, comparison to the current golden standard is 
essential to draw conclusions on their diagnostic value 
[19, 20, 27, 38–40]. Combining our markers with FIT 
yielded a slightly improved CRC detection rate using a 
fixed specificity; however, this needs to be validated in 
larger populations. The addition of our previously iden-
tified marker, NDRG4, improved the performance of 
the stool-based panel. Future studies aiming to specifi-
cally identify DNA methylation markers complemen-
tary to NDRG4 using the publicly available TCGA data 
might even further improve the panel performance. 
Moreover, complementing our DNA methylation bio-
markers with, for example, protein [41] or genetic [42] 
stool biomarkers could increase diagnostic perfor-
mance. Finally, it should be considered that the perfor-
mance of the DNA methylation markers in this study 
was based on the highest likelihood ratio, correspond-
ing to 98.0% specificity. This was associated with lower 
sensitivities ranging from 32.9 to 46.5%. However, 
within the research field of biomarker development, 
there is ample discussion on how the selection of cutoff 
values should be performed [43]. Although data-driven 
methods to maximize the diagnostic value of biomark-
ers are suggested, e.g., likelihood ratio and Youden 
index, decision-driven cutoff values matching a specific 

sensitivity or specificity are also used [43]. Using a pre-
determined cutoff matching a lower specificity could 
lead to an increase in sensitivity as the choice of cutoff 
is always a trade-off between sensitivity and specificity 
[43].

Among the in silico identified, potential diagnostic 
DNA methylation biomarkers, we found a significant 
enrichment of nervous system-related pathways and 
gene ontologies. This is in accordance with previous 
data [31, 44]. Note that gene ontologies are structured 
as a hierarchical tree, meaning that different ontolo-
gies often share a significant number of genes and that 
they are therefore not independent. This impedes a 
statistical interpretation of the differences in the fre-
quencies of neuro-related ontologies. Nevertheless, 
these results paint an intriguing picture of the poten-
tial role of the nervous system in CRC. Interestingly, all 
five of the markers assessed in this study are related to 
the nervous system, either by expression location, bio-
logical role or association with neurodegenerative dis-
ease. Previously, we observed that NDRG4, one of the 
Cologuard® markers [27], is specifically expressed in 
nervous systems [28]. Although the role of the nerv-
ous system in CRC is understudied, several landmark 
papers have shown the importance of nerves in differ-
ent types of cancer, promoting cancer growth, migra-
tion and invasion [32, 45–49]]. However, further studies 
are necessary to elucidate why the promoter regions of 
these neuronal genes are frequently methylated in CRC 
and whether this has biological consequences. Finally, 
further validation of our identified genes as CRC bio-
markers is needed to investigate their added value to 
current screening tests. Moreover, their potential to 
detect early stage lesions, e.g., advanced adenomas, is 
yet to be studied.
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