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Abstract

Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only
a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept

of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains
predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its'very
nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification
of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we pro-
vide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and
discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed

molecular diagnostics will allow treatment selection following the paradigm of precision medicine.
Keywords: Epigenetics, Cancer, CVD, Precision medicine, Network medicine, Algorithms, Epi-drugs

Introduction

Despite advances in early detection, therapeutic strat-
egies, and supportive care, cancer and cardiovascular
diseases (CVDs) remain the leading causes of morbidity
and mortality worldwide [6, 140], WHO reveals leading
causes of death and disability worldwide: 2000-2019,
Cancer (who.int)). In 2015, then US President Barak
Obama launched a precision medicine initiative [105]
with the goal of refining the current standard of care. To
achieve this goal, noninvasive biomarkers are needed that
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can diagnose diseases on a mechanistic level, as well as
novel or repurposed drugs that are able to target precisely
these mechanisms. Integration of clinical with genom-
ics or even multi-omics datasets such as transcriptomics
and proteomics [146] has revealed novel disease-specific
molecular pathways in cancer [12, 43, 102] and CVDs
[76]. However, the connection of hereditary genetic
determinants (which may allow patient stratification)
and the individual risk for cancer or CVDs is lacking.
This "missing heritability" eludes us due to the complex
interplay of multiple factors in complex diseases, includ-
ing epigenetics, which has already been shown to pro-
vide new insights into oncogenesis [30, 31, 45, 102] and
CVD [98-101]. Epigenetic modifications may bridge the
gap between the genome and the environment reveal-
ing early signs of disease onset even in the early phase of
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fetal development, where epigenetic factors have been
associated with an increased risk of CVDs in later life
(transgenerational effect) [36, 98—101].

Epigenetics comprises regulatory mechanisms that do
not affect the DNA sequence but alter chromatin com-
paction to modulate gene expression [46]. DNA meth-
ylation, regulation of chromatin accessibility, and histone
tail modifications are key moderators of vital cellular
processes, such as differentiation, survival, and response
to external stimuli [46]. These mechanisms individually
or in combination are often related to pathogenesis and
offer an opportunity to improve disease diagnosis and to
predict clinical outcomes [17]. As epigenetic modifica-
tions are partially reversible, chromatin-acting epi-drugs
can be used to treat complex human diseases. DNA
methyl transferase inhibitors (DNMTi), histone deacety-
lase inhibitors (HDACI), and enhancer of zeste 2 poly-
comb repressive complex 2 subunit inhibitors (EZH2i)
have rapidly reached considerable clinical relevance. For
the treatment of hematologic malignancies, one epige-
netic biomarker [124] and eight epi-drugs Table 1 have
been approved by the FDA and are currently in clinical
trials for different solid malignancies Table 2. In contrast,
there are, as yet, no approved epi-drugs for CVDs, how-
ever, more than twenty Phase 3—4 randomized trials are
currently ongoing to evaluate the epigenetic efficacy of
the so-called “repurposed” drugs against CVDs, includ-
ing metformin, statins, and apabetalone, a bromodomain
inhibitor with quinazoline structure [98, 99] Table 2.

The historically limited success in the discovery of
epigenetic biomarkers and epi-drugs using a reduction-
ist approach calls for a paradigm shift toward network
medicine (NM), which combines big data, advanced bio-
informatic tools, network science, systems biology, artifi-
cial intelligence, and clinical biometric data to investigate
the pathogenesis of complex diseases such as cancer
and CVDs. By considering the molecular perturbations
of integrated biological pathways rather than a single
molecular defect ([15, 75, 92, 64, 120, 123]), NM can lev-
erage molecular interaction networks for advancing diag-
nosis, prognosis, and treatment Fig. 1 [15, 75, 120, 123].
In this way, NM paves the way toward precision medicine
and personalized therapy [54]. Focusing thus far mostly
on genomics and transcriptomics, NM has recently been
applied to the study epigenetic mechanisms such as
DNA methylation changes in the pathogenesis of cancer
(mostly) and CVDs Fig. 1.

The goal of this review is to present clinical applica-
tions of epigenetics in cancer and CVDs. Additionally,
we discuss how NM can gradually be advanced from the
bench to bedside via epigenetics. With this overview,
we provide information and insights for both basic sci-
entists and physicians who work at the interface of these
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new applications of clinical epigenetics and Network
Medicine.

Epi-therapy in cancer: a new frontier

for the emergence of precision medicine advanced
therapies

Approved epi-treatments against hematopoietic cancers
The main classification for epigenetic mediators divides
them into writers, readers, and erasers [18]. DNMTs and
HATSs are “writers,” as they add a methyl or acetyl group
on chromatin. These residues can be removed by the
“erasers” such as HDACs or KDMs. Chromatin modifica-
tions may be interpreted by “readers,” such as the CBX
(chromodomain) or BRD (bromodomain) family mem-
bers. Writers, readers, and erasers comprise highly stud-
ied targets, some of which have led to the identification
and development of FDA-approved drugs entering into
the clinics.

DNMTi and HDACi are the epi-compounds most
used for treatment. DNA hypermethylation is frequently
associated with cancer development, and the two DNM-
Tis, azacitidine (Vidaza) and decitabine (Dacogen), were
approved for myelodysplastic syndromes (MDS) treat-
ment in 2004 and 2006, respectively. These hypomethyl-
ating agents are currently the first-line therapy for MDS,
when stem cell transplantation is unsuitable. Admin-
istered at a daily dose of 75 mg/m? for 7 days (azaciti-
dine) and 5-20 mg/m? for 5/7 days (decitabine), these
treatments are more effective than previously investi-
gated drugs [110]. However, azacitidine has some limi-
tations, including a low response rate, short duration of
action, and aggravation of thrombocytopenia, leading
to its co-administration with other therapies (Table 2,
NCTO01488565). Azacitidine is currently also under
investigation as a treatment option in solid malignancies
(see Sect. 2.4 for further information).

Decitabine is well tolerated and although the most
significant effects have been observed in hematologic
malignancies, it also displays a good activity against
solid tumors. Different Phase I/II clinical trials are cur-
rently underway, including co-administration studies
with HDACi for patients with advanced solid tumors
(NCT01023737, NCT02453620, NCT03925428,
NCT03590054, NCT01281176) or with cisplatin for
resistant ovarian cancer [87]. Decitabine has shown
numerous beneficial effects in solid tumors, leading to
further investigation of methylation status as a prognos-
tic marker in solid cancers. The FDA has approved sec-
ond-generation HDACI, including vorinostat (Zolinza),
belinostat (Beleodaq), romidepsin (Istodax), and panobi-
nostat (Farydak) for treatment of cutaneous T-cell lym-
phoma (CTCL), peripheral T-cell lymphoma (PTCL), and
multiple myeloma (MM).
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Mutations in R132 and R172 in isocitrate dehydro-
genase 1 and 2 (IDH1/2) have been found in approxi-
mately 20% of acute myeloid leukemias (patients with a
devastating prognosis [109]. These mutations produce
an abnormal conversion of a-ketoglutarate (D-2-kg) in
a- hydroxyglutarate (2-HG), leading to a dysfunction of
the enzymes using 2-kg as a cofactor, such as TETs and
KDM enzymes, associated with DNA hypermethylation,
“aberrant gene expression,” increase of proliferation and
cell differentiation [95]. Recently, the FDA approved the
first IDH1/2 inhibitors (NCT01915498 NCT02074839)
against AML. Enasidenib (IDHIFA), targeting IDH?2,
and ivosidenib (TIBSOVO), IDHI1, are administrated
orally, blocking 2-HG in the blood of AML patients with

IDH mutations. The patients treated with these agents
showed a complete response (CR) or CR with partial
hematological recovery after 8.2 months of treatment,
response was superior with ivosidenib (32.8%) superior
to the enasidenib treatment (23%). Ivosidenib has been
approved in 2019 for AML patients older than 75 years or
for patients in whom chemotherapy cannot be used.

Clinical breakthroughs after more than one decade

of HDAC inhibitors use

Vorinostat, an HDACi used as an oral agent for CTCL
since 2006 and now tested in clinical trials for solid
tumors, displays low toxicity and high efficacy, making it
a first-line drug for the treatment of this lymphoma. The
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majority of adverse effects are fatigue and gastrointesti-
nal symptoms. Hematological abnormalities are observed
only at the highest dose.

Like vorinostat, romidepsin is one of the first drugs to
be used for CTCL. Romidepsin is a potent class I HDACi
and its ability to inhibit class II HDACs at higher con-
centrations suggests that it may act as a broad-spectrum
HDAC: [52]. Unlike other drugs, this molecule induces a
change in electrocardiographic patterns, after adminis-
tration, with flattening of ST and T waves and depression
of the ST segment. Six patients with mild cardiovascu-
lar disorders died after romidepsin treatment in Phase
II studies. This drug also shows significant activity in
patients with PTCL and in CTCL patients with stage I1IB
or higher disease presentations [107]. To date, romidep-
sin has proved unsuccessful as monotherapy in squamous
cell carcinoma of the head and neck (SCCHN) [57] and
in metastatic castration-resistant prostate cancer (CRPC)
[94] showing limited adverse effects such as fatigue, nau-
sea, and vomiting.

Belinostat, approved in 2014 for PTCL treatment [74],
generally displays no major adverse effects, but in rare
cases induces liver damage. Belinostat is currently in sev-
eral clinical trials Table 1.

Panobinostat was been approved in 2015 for multiple
myeloma (MM) as a second-line therapy in patients not
responding to bortezomib. The limitation of panobi-
nostat has been the low efficacy when given as a single
agent; thus, it is administered in combination with bort-
ezomib and dexamethasone. MM patients treated with
panobinostat in combination with bortezomib have a
significant increase in survival (NCT01023308). Addi-
tionally, when studied in a Phase III trial in non-Hodgkin
lymphoma patients, panobinostat-induced adverse events
in 22% of the patients with severe vomiting and diarrhea
(NCT01034163), and hepatic abnormalities in chronic
myeloid leukemia (CML) (NCT00449761), although it
shows promising anticancer effects, alone or in combina-
tion [88].

Although HDAC: are excellent candidates for integra-
tive network analysis due to their extensively studied
molecular mechanisms, no network-based approaches
were reported for repurposing this class of drugs to
other cancer types. However, by using a meta-analytical
approach Rafehi et al. integrated ENCODE data with
microarray expression profiles showing HDACi-medi-
ated suppression of EP300 target genes, including genes
implicated in diabetes mellitus [108].

Epi-treatments being investigated for solid cancers

Mutations and overexpression of EZH2 have been asso-
ciated with prostate, breast, liver, skin, lung, and gastric
cancers, as well as with lymphoma and melanoma [1, 7, 8,
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58, 60, 114, 129, 139]. Tazemetostat (Tazverik, Epizyme,
Inc), acting as a selective competitor of S-adenosyl-L-
methionine, is a first-in-class EZH2 inhibitor, admin-
istered orally against hematological and solid tumors.
On June 18, 2020, the FDA granted approval to tazem-
etostat in adults with relapsed/ refractory (R/R) folli-
cular lymphoma (FL) carrying an EZH2 mutation who
have received at least two prior systemic therapies, or
for those patients who have no alternative options. The
cobas EZH2 Mutation Test (Roche Molecular Systems,
Inc.) as a diagnostic test was also approved, based on
two open-label, single-arm cohorts of a multicenter trial
(E7438-G000-101, NCT01897571) in patients with FL
after at least two prior systemic therapies.

Tazemetostat was also studied as a single agent in a
Phase II clinical trial for patients with relapsed or refrac-
tory non-Hodgkin lymphoma [73], rare aggressive forms
of lymphoma [85], follicular lymphoma in refractory
patients in combination with atezolizumab (Tecentriq),
diffuse large B-cell lymphoma (DLBCL), and is currently
in the recruitment phase for prostate cancer in com-
bination with enzalutamide or abitarerone/prednisol
(NCT04179864). In combination with R-CHOP, a stand-
ard chemotherapy regimen, tazemetostat, is in ongoing
studies as a first-line treatment for newly diagnosed high-
risk elderly patients with DLBCL.

Ongoing clinical trials with epi treatments against cancer

Several chromatin-acting drugs are being investigated
in clinical trials; see Table 2 for a complete overview.
DNMTi and HDACi administration produces a syner-
gistic effect on methylation state, with an increase in
repression of pro-oncogenic and activation of apoptotic
genes [96, 106, 145]. Clinical trials in different phases
testing the combined administration of both classes of
drugs are yielding excellent results [19]. Although toxic-
ity appears more frequently in older patients, azacitidine
proved effective in MDS and in AML (NCT01074047),
where it represents an excellent replacement therapy
for patients who are not candidates for more aggressive
therapies (65-74 years) and for those with cytogenet-
ics indicating an increased risk. The HDACi entinostat,
a generally well-tolerated drug, is currently in Phase
II trials for co-administration with azacitidine and
nivolumab in patients with metastatic non-small lung
cell cancer (NCT01928576), and in melanoma and
lymphoma in co-administered with pembrolizumab
(NCT03179930,NCT03765229). Activity of the EZH2
inhibitor CPI-1205 in combination with the antiandro-
gen enzalutamide (Xtandi) is being tested in Phase I/II
trials as second-line treatment of metastatic castration-
resistant prostate cancer patients (NCT03480646), and
showing excellent tolerance and considerable anticancer
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activity, prompting further studies. The DOT1L inhibi-
tor pinometostat (EPZ-5676) is part of an ongoing Phase
I/II study for the treatment of AML and MLL (mixed-
lineage leukemia) (NCT03701295,NCT03724084).
Tranylcypromine, an LSD1 inhibitor, is under investiga-
tion in at least 26 studies. A recent interventional study
testing tranylcypromine with all-trans retinoic acid
(ATRA) in AML and MDS found no serious side effects
(NCT02273102), leading now to the more intensive eval-
uation study of its anticancer effects.

Osteosarcoma (OS) patients are generally treated with
combination chemotherapy comprising cisplatin, doxo-
rubicin, and high-dose methotrexate, with addition of
ifosfamide [130]. However, a fundamental problem is the
long duration of treatment, which leads to undesirable
effects [118]. Several clinical trials in initial stages involve
single or co-administration of epi-drugs [37]. EZH2 is a
positive regulator of the growth of metastasis and prog-
nosis of OS [38]. In January 2020, tazametostat (Tazverik)
was quickly approved by the FDA for advanced meta-
static and locally epithelioid sarcoma treatment in adults
and pediatric patients (16 years), based on the successful
results obtained in a phase 2 study (NCT02601950).

Additionally, tazametostat is in Phase 2 clinical trial
against OS with mutations of EZH2, SMARCBI1 and
SMARCA?2 (NCT03213665) in pediatric patients.

Despite the steady rise in the number of clinical stud-
ies that include epi-drugs as anticancer agents, only a few
agents and combinations have proven useful for broad
clinical use. Thus, a joint approach involving basic sci-
entists and physicians for the development of clinically
useful protocols is needed to improve our understand-
ing of epigenetic mechanisms and how they can be tar-
geted most effectively. This goal is particularly important
for solid malignancies, where the use of chromatin-tar-
geting drugs has not yet been shown to provide benefit
over standard treatments. With respect to hematologi-
cal malignancies, the clearly lower efficacy cannot only
be attributed to limited knowledge of the oncogenic
mechanism. Possible additional factors might include dif-
ferences in solid tumor heterogeneity or in the 3D struc-
tures of solid malignancies where cancer cells in poorly
vascularized tumor areas are difficult to reach with drugs.
For all of these reasons and others to be uncovered, net-
work medicine strategies may prove fundamental for an
understanding of (epi)based treatments and for assessing
responses, especially in treatment-resistant phenotypes.

Network medicine in the clinical setting of cancer
prevention and diagnosis

Integrating drug discovery and pathology with net-
work medicine analysis provides rational and effi-
cient approach to identify novel treatments and allows
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repurposing clinically approved drugs for human dis-
eases, with implications for personalized medicine.
Recent examples illustrate how network medicine has
been adapted in the field of epigenetics for diagnosis,
precision medicine, and patient stratification in terms of
prognosis Table 3.

Network medicine and biomarkers in cancer prevention,
diagnosis, management and prognosis

DNA methylation is the most widely investigated epi-
genetic mechanism in network analysis Fig. 1. Changes
in DNA methylation in promoter or other regulatory
regions can reveal associations to cancer develop-
ment and drug resistance [2, 26, 47, 82] and allow pre-
dictions with high accuracy (reviewed in [111]). For
instance, Capper et al. [23] trained a random forest clas-
sifier to distinguish between tumor entities of the cen-
tral nervous system. The resulting epigenetic signatures
typically consist of many features with unknown mecha-
nistic explanation. Moreover, given that features tend to
be highly correlated, they can often be replaced in a sig-
nature without a loss of accuracy. A consequence of this
often-observed lack of robustness [133] is that we can-
not distinguish between surrogates and features causally
involved in the disease. For functional enrichment analy-
sis, features (e.g., CpGs or regulatory regions such as pro-
moters, repressors, or enhancers) are typically mapped
to the closest gene using tools such as GREAT [89]. Such
a gene-mapping is also necessary to leverage existing
networks such as protein—protein interaction (PPI) or
gene-regulatory networks in epigenomics data analy-
sis, where the putative target gene with the closest tran-
scription start site is considered. West et al. showed that
such a mapping strategy can be used to extract subnet-
works of cancer-related differentially methylated genes
[135]. Subsequently, Jiao et al. proposed the functional
epigenetic modules (FEM) method [67], which revealed
HAND?2 as a methylation hotspot in the endometrium
and indicator of drug response in progesterone treatment
[69]. Kim and Sun [71] showed that PPI networks are
beneficial in network-regularized feature selection after
dimension reduction. Li et al. used principal component
analysis for feature reduction and sparse canonical cor-
relation analysis to infer edge weights for gene pairs. A
network-based pathway-extending approach using DNA
methylation and gene expression data identified altered
pathways [77]. Rather than relying on a PPI network as
prior information, disease-specific regulatory networks
can be inferred directly from epigenomic data. With
their epigenetic module based on differential networks
(EMDN) algorithm, Ma et al. used The Cancer Genome
Atlas Program (TCGA) data to construct both a co-
expression and a co-methylation network [84]. Bartlett
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et al. [11] used canonical correspondence analysis of
methylation profiles to score pairs of interacting genes
to construct a gene co-regulatory network. Edges signifi-
cantly associated with survival were used to extract sub-
networks that exhibited functional enrichment relevant
to the cancer context investigated here. Recently, a deep
neural network (DNN) algorithm applied to DNA meth-
ylation data from 7339 patients across 18 different TCGA
tumors classified the origin of cancer [143]. Using cross-
talk between genetic modules, Cui et al. [35] created a co-
methylation network based on DNA methylation data.
The K-shell algorithm, applied to three types of cancer,
invasive breast carcinoma, skin cutaneous melanoma,
and uterine corpus endometrial carcinoma, identified the
main genes in the modules that are predictive of prog-
nosis and classification. In invasive breast carcinoma,
this network method identified ten genes responsible for
metastasis and tumor progression. RCHYI was found at
the junction of two modules, closely related to the his-
tone lysine demethylase KDM1B, which plays a key role
in methylation and silencing. In addition to the methyla-
tion state, modification of the methylene group on DNA
can be associated with cancer diagnosis. The conversion
of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5hmC) was studied in 30 glioblastomas using the OxyBS
algorithm with an enrichment analysis via Genomic
Regions Enrichment of Annotations Tool (GREAT). The
results implicate the depletion of 5hmC in various cancer
types, which is associated with an increase in prolifera-
tion markers [68]. Despite these promising early results
in the network-based integration of DNA methylation in
oncology, clinical translation of epigenomics-based net-
work medicine methods is still lacking. In particular, the
integration of epigenomics data in a multi-omics context
remains challenging. A weighted correlation network
analysis (WGCNA) of 201 patients in a TCGA prostate
cancer dataset revealed hypermethylation of FOXD1 as
an unfavorable marker for survival [141]. The combina-
tion of mRNA expression and DNA methylation data-
sets in WGCNA and downstream gene ontology (GO)
enrichment using single sample gene set enrichment
analysis (ssGSEA) yielded a 13-gene epigenetic signature
associated with survival of breast cancer patients. This
panel of genes considered upregulation of known cancer-
related pathways (e.g.,, mTOR signaling) to distinguish
high- from low-risk cancer cases [9]. The genomes of 200
clinically annotated adult cases of de novo AML were
studied using whole-genome or whole-exome sequencing
as well as RNA-seq, microRNA-seq, and DNA methyla-
tion profiling. A potential driver mutation in DNA meth-
ylation and RNA-seq (e.g., in DNMT3A, NPM1, CEPBA,
IDHI1/2, and RUNXI) promoting AML pathogenesis
in individual patients was found in all AML samples
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(Cancer Genome Atlas Research et al. [22]. The tool
SWItchMiner (SWIM) was applied to RNA-sequencing
data from TCGA [90] to characterize disease etiologies
and to identify potential therapeutic targets [103]. In
glioblastoma multiforme (GBM), SWIM revealed new
insights into the molecular mechanism determining the
stem-like phenotype of glioblastoma cells [49]. Here
SWIM implicated FOSL1 as a putative master regulator
of a core of four master neurodevelopmental transcrip-
tion factors (i.e., SOX2, SALL2, OLIG2, POU3F2), whose
induction was demonstrated to be sufficient to repro-
gram fully differentiated glioblastoma cells into stem-like
cells [125]. More recently, SWIM was used in conjunc-
tion with network analysis to enhance disease module
discovery [104]. Corces et al. [34] generated high-quality
ATAC-seq data for 410 TCGA samples and identified
cancer- and tissue-specific DNA regulatory elements in
23 cancer types. These chromatin accessibility profiles
allowed the classification of cancer subtypes with a newly
recognized prognostic importance. A gene co-expression
network associated with ATAC-seq analysis was built by
Dravis et al. [39] to analyze breast cancer biomarkers.
Here, SOX10 was identified as the major transcription
factor that binds to genes responsible for neural activity.

Network medicine in cancer patient stratification using
single-cell analyses

Network medicine has enabled the identification of
molecular markers defining cancer subtypes [81]. Sinkala
et al. stratified 185 patients with pancreatic cancer into
two groups via proteomics data. Next, they built patient-
similarity networks for each of the molecular data types
in TCGA which they then integrated into a joint network
using similarity network fusion (SNF) [121]. SNF clus-
tered the patients into two subtypes based on their joint
molecular profiles. In a subsequent step, the K-nearest
neighbor (KNN) algorithm and support vector machines
(SVM) were used to identify representative biomarkers
for these clusters in individual data types.

While it has not yet entered clinical practice, single-
cell epigenetics is an exciting new frontier that allows for
studying small and previously unrecognized cell popula-
tions such as stem cells Table 4 [56, 122], preimplantation
embryos [144], and the heterogeneity of subpopulations
of human tissues [53, 83]. Single-cell epigenetics also has
the potential to be applied in the diagnosis and prog-
nosis in cancer treatment, where identifying the muta-
tional profile might potentially impact disease evolution
and response to treatment. Several sequencing proto-
cols are developed in Table 4, including the single-cell
bisulfite sequencing (scBS-seq) method to determine
the DNA methylome of cell populations [122]. Recent
single-cell approaches combine the methylome with
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Table 4 Epi-single-cells technique developed for cancer studies

Technique

Function and description

DNA methylation in single cells
scBS-seq

scRRBS-seq
MID-RRBS
PBAT
MRSE

RGM

The first technique developed for methylome analysis. It degrades 90% of DNA and does not distin-
guish 5mC from 5hmC

Technique for methylome analysis.Compared to scBS-seq, reduces DNA loss
RRBS in a microfluidic support, obtaining an efficient bisulfite conversion with high DNA recovery
Technique for methylome analysis.It does not involve DNA fragmentation. This goes to reduce the loss

Using the restriction enzymes to recognize methylation sites coupled with PCR amplification, reduced
costs, and reaction times

It uses a fluorescence reporter to analyze dynamic changes in the state of endogenous methylation,
discriminating completely the methylated genome from the single allele

scCGl-seq
scTRIO-seq

Endonuclease-based method, which improves coverage and efficiency
scTrio-seq that can be used to simultaneously analyze the genomic copy-number variations (CNVs),

DNA methylome, and transcriptome of an individual mammalian cell

ScMAB-seq

Methylome technique that use enzymes for DNA conversion. Distinguishes 5mC and 5hmC from 5fC

(5-formylcytosine) and 5-caC (5-carboxycytosine)

scAba-seq

DNA methylation analysis with gene expression
scMT-seq; sScM&T-seq

scTRIO-seq

scNMT-seq

Single-cell histone modification sequencing

Methylome technique used to specifically detect 5hmC by restriction enzyme. It has low efficiency

Methylation associated with transcription
Gene promoter and hypo- and hyper-methylation study
Nucleosome, methylation, and transcription

Method used to analyze protein interactions with DNA
Technologies that isolate the DNA sequences attached to histones with specific marks or transcription

Technique that gives the possibility to improve the data obtained with DNA and RNA sequencing,

with the information of chromatin accessibility

scChip-seq
scChil-seq; scCUT&Tag-seq; scChlil-seq; scChlC-seq

factors
SCATAC-seq
scCOOL-seq

ploidy
ISH-PLA

Detection of chromatin status/nucleosome localization, DNA methylation, copy number variation, and

Technique for RNA regulation study, gives information on histone modification by imaging, cell phe-

notype, and cell-cell interaction

RNA transcription profiling [63]. Moreover, single-cell
chromatin accessibility profiling with scATAC-seq has
provided the opportunity to recognize different popula-
tions within the same tumor and to discriminate cancer
cell populations and their heterogeneity [21]. Recently,
scTRIO-seq, which allows parallel profiling of genomic,
transcriptomic, and DNA methylation in single cells, has
led to the identification of two different hepatocellular
carcinoma (HCC) subpopulations in the same patient.
Based on the DNA and transcriptome of 25 HCC cells,
Yu Hou et al. found two distinct populations differing in
DNA copy numbers, DNA methylation, or RNA expres-
sion levels, of which the smaller tumors expressed more
invasive cell markers [61]. scATAC-seq, used to identify
co-varying transcription factor-cell surface marker pairs,
was combined with scRNA-seq for cell surface marker
expression to detect efficiently CD24-labeled chronic
leukemia cells as co-varying with chromatin accessibil-
ity changes linked to GATA transcription factors [79]. A
positive correlation was found between CD24 and GATA

levels, characterized by high genetic and epigenetic
variability, conferring resistance to imatinib mesylate
treatment.

Network medicine for identification of cancer treatment
response vs resistance

In the last 50 years, the identification of epigenetic molec-
ular alterations acting as drivers of cancer development
and progression have transformed the clinical practice of
oncology from non-specific cancer cell elimination with
nonspecific chemotherapies to a more cancer-selective
approach that leverages molecular profiles [12]. Predict-
ing drug resistance, and therefore, modifying treatment
according to the phenotypic response of the tumor,
remains a major challenge. Several resources, such as the
Genome of Drug Sensitivity in Cancer (GDSC) database,
provide information required to check tumor resistance
to specific drugs (https://www.cancerrxgene.org/). Tech-
nologies for large-scale genomic and epigenomic profil-
ing allowed the full (bulk) characterization of different


https://www.cancerrxgene.org/

Sarno et al. Clin Epigenet (2021) 13:66

tumors, revealing that they share similar driver mutations
and enzymatic alterations [117]. For example, upregula-
tion of SETDB1 and SETDB2 was found in resistant cells
exhibiting a loss of H3K4me3 and H3K27me3 and an
increase in H3K9me3 [3]. HDAC deregulation produced
an aggressive phenotype in lung cancer cells resistant to
doxorubicin [40]. The resistance to epigenetic therapies
for a subpopulation of leukemia stem cells found in AML
models [50] was not driven by genetic evolution, but was
due to epigenetic plasticity [72]. Epigenetic modifications
to centrosome proteins led to tumor development and
drug resistance. The Manteia [127] gene ontology analy-
sis data system reported a correlation between lysine
acetyltransferase (KAT) 2A/B alteration and serine/
threonine-protein kinase PLK4 overexpression, produc-
ing resistance to tamoxifen and trastuzumab [51]. ChIP-
seq and DNA methylation profiles were used to study
epigenetic profiles in drug-resistant melanoma, lung,
and colon cancers. Thirteen genes associated with the
interferon (IFN) pathway were found to be regulated by
histone modifications, including the histone methyltrans-
ferase EZH2 [3]. Recent trials found that the response
to a targeted drug depends on the anatomical cancer
type. For example, BRAF-mutated melanoma, NSCLC,
and hairy cell leukemia satisfactorily responded to van-
detanib, a drug that targets the BRAF V600E mutation,
while BRAF-mutated CRC does not [117]. Falcone et al.
used a network approach based on the SWIM algorithm
[44] to compare pairs of BRAF-mutated cancers and
found a great number of switch genes suggesting that the
cancer network of each tumor is different. A number of
putative targetable kinases encoded by switch genes were
reported in lung adenocarcinoma and thyroid cancer,
while only one was found in colorectal cancer. Interest-
ingly, the results were in accordance with clinical trial
data showing a better response rate to vemurafenib in
papillary thyroid cancer patients (overall response rate
of 38.5%) than in colorectal cancer patients (ORR 4.8%)
[44]. These results highlight the limit of the reductionist
approach where typically one gene is implicated with one
disease, as this strategy does not reflect the complexity
of complex diseases such as cancer and CVDs in which
many potential disease genes interact.

Yildirim et al. [138] built a drug—target network, in
which each drug was connected to its target proteins, and
two complementary projections of it: a drug network, in
which nodes are drugs and two drugs are connected to
each other if they share the same targets, and a target—
protein network, in which the nodes are proteins and
they are connected together if are targeted by the same
drug. The authors observed that new drugs tend to tar-
get the already validated target proteins and that many
clinically FDA-approved drugs do not target known
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disease-associated genes but are rather palliative drugs.
A strategy aimed to increase the efficacy and to reduce
the risk of adverse effects of monotherapy, is the therapy
with a combination of multiple drugs. By analyzing the
network-based relationship between drug pairs, their
targets, and the proteins in the disease modules Cheng
et al. revealed that drugs used in combination with syner-
gistic effect have their drug—target modules overlapping
with disease modules but well separated to each other
in the human interactome [30, 31]. Additionally, Tang
et al. [126] developed a logic-based network pharmacol-
ogy modeling approach, called TIMMA (Target Inhibi-
tion interaction using Minimization and Maximization
Averaging), based on the integration of drug—target
interaction profiles and single-drug sensitivities, to pre-
dict synergistic drug combinations. By applying TIMMA
to the single-drug sensitivity profiles and to the kinome-
wide drug—target interaction of 41 kinase inhibitors in
MDA-MB-231 cell line, the authors found a synergistic
target interaction between inhibition of Aurora B, a key
regulator of mitosis, and ZAK, a key regulator of p38
MAPK pathway, findings also confirmed in vitro.

Twin Convolutional Neural Network for Drugs in
SMILES format (tCNNS) creates a drug correlation net-
work using the SMILES chemical representation and
information on the cell phenotype [80]. Pharmacologi-
cal dose—response prediction can be also obtained by
DeepDR based on mutation data from TCGA, a pre-
trained expression encoder, and a predictor network
for drug response. From 9.059 tumor samples, DeepDR
predicted cancer drug resistance and personalized ther-
apy [32]. For resistant tumor treatment, one of the main
unanswered questions is whether the cell acquires muta-
tions during development, or whether there is a small
group of cells within the same population that survives
therapy. Single-cell analysis specifically allows for study-
ing the complexity of a population [70]; however, the use
of NM in epigenetics for the prediction of response ver-
sus treatment is only its inception [104].

Epi-therapy in cancer: can Network Medicine help
physicians at the bedside?

Integrating network medicine with anticancer drug dis-
covery programs would make a significant contribution
to improving patient health. Recently, whole-genome
bisulfite sequencing (WGBS) integrated with whole-
genome sequencing (WGS) and RNA-seq was applied to
100 metastatic prostate biopsies to sequence the methy-
lome whole genome, and transcriptome, respectively
[142]. In 22% of resistant metastases, DNA methylation
analysis identified an epigenetic subtype associated with
hypermethylation and mutation of TET2, DNMT3B,
IDH1, and BRAD, and regions where methylation is
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associated with AR, MYC, and ERG expression. NM has
also been used in this context to predict potential impli-
cations of therapeutics. The administration of DNMT],
such as azacitidine or decitabine, which are used for
myelodysplastic syndrome (MDS) treatment, may be
advantageous in resistant metastases associated with
hypermethylated gene promoters. Pursuing a strategy
that allows for the identification of tumor subtype tar-
gets or a specific resistance mechanism may make it pos-
sible to repurpose drugs used in the treatment of other
diseases.

Epigenetics and risk stratification of CVDs: network
medicine is on the horizon

Metabolic syndrome, diabetes, and foodome project

A notable expansion of the prevalence of metabolic syn-
drome (MS) has impact on the global risk of CVDs, in
particular in aging Western world populations, which are
prone to a high-fat diet and a sedentary lifestyle [42]. MS
arises from complex crosstalk between genetic and epi-
genetic factors underlying obesity, in particular central
abdominal obesity, that can strongly increase the risk for
coronary heart disease (CHD), type 2 diabetes mellitus
(T2D), and cancer [42, 64, 98, 99]. In clinical practice, a
panel of five well established cardiometabolic risk fac-
tors including abdominal obesity, increased triglycerides,
decreased HDL cholesterol, hypertension, and hyper-
glycemia is assessed by physicians, and at least three of
these must be present [42]. However, in precision medi-
cine and personalized therapy, individual DNA methyla-
tion profiles might not only represent a promising tool
for the prediction, diagnosis, and prognosis of obesity
and MS, but also for improving treatments to lose body
weight [113]. DNA methylation changes are key molec-
ular drivers underlying the risk of MS upon detrimental
exposures (e.g., nutritional patterns), especially during
early development as well as during postnatal life, offer-
ing a possible framework by which to explain the “miss-
ing heritability” of MS [36, 113]. Recently, a targeted
DNA pyrosequencing and logistic regression analysis has
revealed a significant positive relationship between DNA
methylation levels at specific CpG islands in promoters
of the PPARx and LPL genes and serum triglyceride lev-
els (TQ) in visceral adipose tissue samples from 53 MS
patients in comparison with 55 healthy subjects [24]. In
addition, a negative association linked methylation levels
of the tumor necrosis factor gene with TG, glucose levels,
HDL-c, and blood pressure suggesting a relevant factor
potentially involved in preventing MS occurrence [24].

A study using the Illumina Methylation EPIC Bead-
chip on 1999 blood samples isolated in the Coronary
Artery Risk Development in Young Adults (CARDIA)
study has unveiled a strong positive association between
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accelerated epigenetic aging and both the MS severity
score and the risk of developing MS, after adjusting for
known risk factors [97]. This observation led to suggest
that pharmacological and non-pharmacological interven-
tions targeting the epigenetic aging process at the molec-
ular level may potentially prevent MS.

Network analysis would be of paramount importance
to understand the underlying molecular determinants
and pathogenic processes that guide in the development
of new predictive biomarkers and prevention tools. Thus
far, network analysis has already been applied to sepa-
rate MS components, mainly in T2D [48, 98, 99, 119] and
obese-T2D patients [62], and to construct gene regula-
tory networks, these analyses, however, did not consider
epigenetic factors.

The epigenetic clock and nutritional epigenomics may
contribute to aging as well as age-related diseases [4].
Thus, mapping food-related chemical profiles (diet) and
molecular pathways is the main goal of the network-
based “Foodome” project (https://www.barabasilab.com/
projects). Foodome emphasizes the use of digital eating
patterns (“barcode”) to define the personalized exposures
to nutritional-chemical compounds [10]. Merging the
barcode with genetic profiles and clinical data might fuel
innovative platforms that can provide insights into the
molecular basis for the “diet-mutation-disease risk” axis
useful for precision medicine [10]. Since epigenetics plays
a important role in the diet-genome crosstalk under-
lying vascular damage and CV risk, even during fetal
development [36, 98, 99, 101], the “individual foodome”
could be integrated in longitudinal cohort studies inves-
tigating how epigenetic features change over time and in
response to different nutritional exposures leading to the
onset of CVDs.

Coronary heart disease (CHD)

Endothelial and systemic inflammation plays a relevant
role in disease pathophysiology, and changes in DNA
methylation levels of targeted genes may be causal or
predispose to disease, contributing to destabilization
and rupture of atherosclerotic plaques leading to acute
cardiovascular events [64, 65, 101, 115]. A recent study
has emphasized the possible role of a DNA methylation-
based risk score in optimizing the traditional predictors
of CVD risk [136]. In addition, there is a possible cor-
relation between blood-based methylation levels in the
unique CGI regulating the human leukocyte antigen-G
(HLA-G) gene, which encodes for an anti-inflammatory
molecule with immunomodulatory properties, and car-
diac computed tomography angiography (CCTA) fea-
tures in patients with obstructive in comparison with
non-obstructive CHD [116]. Hypomethylation of a spe-
cific fragment of CGl-associated HLA-G gene positively
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correlated with coronary calcium score and was pre-
dictive for disease severity suggesting that methylation
might not only have a critical role in disease severity
but also a role as noninvasive biomarker(s) improving
the prognostic value of CCTA [116]. The WGCNA and
Comb-p algorithms have been applied to the identifica-
tion of blood-based differentially methylated regions
(DMRs) and disease modules associated with incident
CHD events in two independent cohorts (discovery set:
2129 women, replication set: 2726 subjects) [137]. This
study has identified two modules highly enriched for
development and immune-related processes. In addition,
a multivariate analysis has revealed a positive correlation
with BMI, highly sensitive C reactive protein (hsCRP),
and TG [137]. Three DMRs annotated to the sodium/
hydrogen exchanger 1 (SLC9A1), solute carrier family 1
neutral amino acid transporter member 5 (SLC1A5), and
trinucleotide repeat containing adaptor 6C (TNRC6C)
genes significantly replicated across the two cohorts,
providing possible useful predictive biomarkers [137].
However, the possible cause—effect relationship between
methylation changes in these genes and CV risk needs to
be determined.

Pulmonary arterial hypertension (PAH)

PAH is a rare and incurable disease characterized by
vasoconstriction and consequent elevated pulmonary
artery pressure owing to three main endophenotypes,
endothelial dysfunction, cell proliferation/migration, and
inflammation triggered by an interplay between genetic
and epigenetic risk factors with exposure to detrimental
environmental stimuli [25, 86, 100]. Data regarding the
potential clinical relevance of differential epigenetic fac-
tors in PAH, mainly changes in DNA methylation, have
been increasing in the past few years, and network-ori-
ented approaches are helping to prioritize novel candi-
date genes and drug targets [100]. Recently, an integrated
regulatory network has been constructed by integrating
chromatin with transcriptomic and interaction profiling
in pulmonary arterial endothelial cells (PAECs) obtained
from end-stage PAH patients at the time of lung explant
and control subjects [112]. As a result, an in-depth
remodeling of active enhancers marked by H3K27ac and
regulated by specific transcription factors may trigger
perturbation of angiogenesis and endothelial-to-mesen-
chymal transition processes in PAECs in response to spe-
cific growth factor signals, as experimentally confirmed
for target genes such as nitric oxide synthase 3 (NOS3)
[112]. However, further studies will investigate a possible
correlation between key gene regulatory networks and
underlying PAH severity or responsiveness to vasodila-
tory therapy.
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Heart failure (HF) and heart transplantation (HTx)

Heart failure (HF) affects approximately 20% of general
population and contributes to 11% of deaths with an
estimated incidence that will rise by 25% over the next
15 years [16]. HF can develop asymptomatically for years,
and once diagnosed, the effectiveness of most drug ther-
apy interventions are modest. Nonetheless, the recent
tremendous impact, both of SGLT2 inhibitors and angio-
tensin—neprilysin inhibition, will likely reduce HF mor-
tality [66, 132]. However, the development of novel early
biomarkers useful for stratification and/or as prognostic
markers is a priority in the clinical setting of HF. Based
on the ejection fraction (EF) value, we can classify three
clinical phenotypes: HF with reduced EF (HFrEF), HF
with mid-range EF (HFmrEF), and HF with preserved EF
(HFpEF) [98]. An epigenetic-based phenotype mapping
strategy of HFrEF, HFmrEF, and HFpEF patients seems to
be a possible option to identify noninvasive biomarkers
discriminating differential HF subgroups and/or novel
drug targets to test in clinical trials aimed at establishing
specific therapeutic strategies for each phenotypic pro-
file [99]. However, the availability of cardiac biopsy from
living patients and controls in humans is scarce; thus,
most pathogenic studies are based on animal models.
A pioneer multi-omics study integrated the methylome
and transcriptome of left-ventricular biopsies and whole
peripheral blood samples of 41 patients with HFmrEF
caused by dilated cardiomyopathy and compared to 31
patients who underwent routine left-heart myocardial
biopsy after receiving transplantation, as a control group.
The promoter DNA hypomethylation of the natriuretic
peptide A and B (NPPA and NPPB) genes regulates over-
expression of these genes providing a novel putative class
of HF biomarkers easily detectable in peripheral blood
[91].

Graft surveillance after heart transplantation is a chal-
lenge in the management of transplanted patients, and
current guidelines indicate that invasive endomyocar-
dial biopsy is the gold standard to diagnose and monitor
organ rejection. Ideally, graft rejection may be diagnosed
and predicted by noninvasive biomarkers present in the
peripheral blood or other biological fluids [99]. Specifi-
cally, an increasing interest in circulating epigenetic mol-
ecules is providing novel findings that may aid physicians
in a more accurate risk stratification [99]. DNA meth-
ylation is a pivotal contributor to a balanced immune
response toward the graft, due to regulation by both the
innate and adaptive immune systems, with primarily T
cells as the key players of alloreactivity and targets for
immunosuppressive drugs [27, 28]. Interestingly, FOXP3
gene expression was significantly higher in biopsy sam-
ples of rejectors collected before rejection in comparison
with non-rejectors, and showed the tendency to predict
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rejection events [20]. Longitudinal studies could evaluate
the possible role of this biomarker in the clinical setting
of HTx.

Repurposed drugs and epitherapy in CVDs:
network medicine can improve the current
reductionist approach to reach the goal

of personalized treatments

As the discovery and development of novel drugs is a
highly expensive time-consuming process, the repurpos-
ing of “old” drugs to treat CVDs is increasingly becoming
an attractive goal. The repurposing of both metformin
and statins has been widely evaluated in large controlled
clinical trials for the prevention and treatment of CHD,
PAH, HF, and complications after HTx Table 2. Met-
formin proved in 1994, is the first-line oral drug for treat-
ment of T2D and obesity (www.ncbi.nlm.nih.gov/books/
NBK409379). Metformin has glucose-lowering effects by
acting on several molecular pathways and also represents
an agonist of the SIRT1 enzyme [98, 99]. Additionally,
the first statin (lovastatin) received FDA approval in 1987
and now 6 statins, including simvastatin and pravastatin
(semi-synthetic), as well as fluvastatin, atorvastatin, rosu-
vastatin, and pitavastatin (synthetic), have been intro-
duced to the market providing first-line of oral drugs
prescribed for dyslipidemias and prevention of athero-
sclerotic plaque development [41]. Basically, statins block
the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase enzyme leading to lipid-lowering effects
and also showing epigenetic interference (HDACi). The
cardio-protective and anti-inflammatory effects of met-
formin and statins have also been widely demonstrated
in patients affected by CVDs [98, 99, 101]; however, large
controlled trials are needed to establish whether these
beneficial effects are conferred by the glucose and lipid-
lowering effects, by interference with specific epigenetic-
sensitive pathways, such as inflammatory pathways or
by both. Another example of drug repurposing includes
tocilizumab (Actemra), a monoclonal anti-IL-6 antibody
approved by FDA in 2010 for treatment of rheumatoid
arthritis. In addition, there are a few examples of prop-
erly defined epi-drugs under clinical evaluation for treat-
ment of CVDs. One of the most promising is apabetalone
(RVX-208), inhibiting selectively the bromodomain and
extra-terminal domain (BET) family of proteins binding
to acetyl groups in order to normalize acetylation imbal-
ance underlying cardiac dysfunction in T2D, CHD, PAH,
and HF Table 2.

Ongoing and completed clinical trials

In contrast to cancer patients, epitherapy has not yet
reached clinical practice in the management of CVDs.
However, exploring the website http://clinicaltrial.gov/,
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we retrieved a large number both of ongoing observa-
tional and interventional clinical trials (Phase 3 and 4)
of these agents in CVDs Table 2 demonstrating the great
interest in translating epigenetic findings from the bench
to bedside to treat patients affected by CVDs.

Diabetes and CHD

A completed double-blinded, randomized, placebo-con-
trolled Phase 3 trial (NCT02773927) compared the effect
of metformin/agave inulin in comparison with agave inu-
lin on adiponectin levels in patients with metabolic syn-
drome by grouping patients into in four clusters: group
A, metformin plus agave inulin; group B, metformin plus
placebo of agave inulin; group C, agave inulin plus pla-
cebo of metformin; group D, placebo of agave inulin plus
placebo of metformin. To date, there are no published
results from this trial. Metformin is also currently under
investigation in a Phase 2, observational, prospective
clinical trial (NCT01884051) enrolling 1.899 participants,
in which the primary endpoints are measures of insulin
resistance, urinary, and plasma oxidant stress markers,
right ventricle lipid content, oxidative metabolism, and
drug safety. As secondary endpoints, the quantification
of lung metabolism, [18F]-fluorodeoxyglucose uptake,
blood-based expression of the bone morphogenic pro-
tein receptor (BMPR) 2, right ventricle ejection fraction
and volumes using magnetic resonance imaging, insulin
resistance, and 6-min walking distance (6MWD) is evalu-
ated. Additionally, the preliminary results from an ongo-
ing Phase III trial (NCT02586155) have demonstrated
possible efficacy in preventing myocardial damage in
high-risk T2D-CHD patients under high-intensity statin
therapy combined with RVX 208 (daily dose 100 mg cap-
sule plus atorvastatin and rosuvastatin).

Pulmonary arterial hypertension

At the molecular level, trimetazidine can switch the
metabolic cellular state from beta-oxidation toward glu-
cose oxidation by inhibiting synthesis or carnitine-facili-
tated transport of fatty acids so that cardiomyocytes can
obtain more energy [131]. Recently, it has been reported
that trimetazidine may exert its cardio-protective role
in women by affecting the DNA methylation profile of
the cyclin dependent kinase inhibitor 2b (CDKNZ2B)
gene [27, 28]. Trimetazidine is being studied in a rand-
omized controlled trial (NCT03273387) which aims to
determine if 3 months of treatment (35 mg twice a day)
combined with standard therapy can alter right ventri-
cle function in PAH patients. The primary endpoint will
be a change in right ventricular function, as quantified
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by cardiac magnetic resonance imaging (MRI). Sec-
ondary endpoints will contain modifications in cardiac
fibrosis quantified by T1 cardiac MRI mapping, func-
tional class, and plasma levels of lactate dehydrogenase
(LDH). However, tocilizumab is being investigated in
the “Therapeutic Open-Label Study of Tocilizumab in the
Treatment of Pulmonary Arterial Hypertension study”
(NCT02676947), a single-arm study aimed at investi-
gating whether treatment with tocilizumab in a dose
of 8 mg/kg monthly for 6 months may alter pulmonary
vascular resistance in PAH patients [59]. The primary
endpoints will be a change in pulmonary vascular resist-
ance (PVR) and safety, with secondary endpoints includ-
ing 6MWD, N-terminal pro-B-type natriuretic peptide
(NT-pro-BNP), symptom burden, and quality of life. This
trial is still ongoing Apabetalone is under investigation
in a single-arm trial in a two-center study enrolling PAH
patients combining the standard therapy with 100 mg of
apabetalone twice a day for 16 weeks (NCT03655704).

Heart failure (HF) and heart transplantation (HTx)

An interesting example of drug repurposing arises from
the randomized, double-blind, placebo-controlled cross-
over intervention DoPING-HFpEF trial (EU Clinical Trial
Register: 2018-002170-52; NTR registration: NL7830),
which will evaluate the possible cardio-protective effects
of trimetazidine in patients affected by HFpEF [131]. A
large randomized, double-blind study enrolling 6.975 HF
patients with monitored EF provided evidence for which
assumption of 1 g per day of long-chain omega-3 poly-
unsaturated fatty acids (PUFA) is associated with a small
reduction (9%) in mortality and admission to the hospital
for CV events in HF patients [128]. Dietary supplemen-
tation of PUFA may aid in normalizing circulating lipid
levels, exerting beneficial systemic anti-inflammatory
effects, preventing cardiac injury by affecting blood-
based global DNA methylation levels [98, 101].

Which additional clinical benefits would the network
medicine approach add?

The interactome may reveal differential pathogenic
molecular drivers in each patient that are, in part,
responsible for current limitations of the one-size-fits-all
approach ([15, 64, 76, 86]). Indeed, CVD patients treated
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with optimized standard-of-care regimens can still show
high residual morbidity and mortality risk [5]). Thus,
interactome-based selection before enrolling subjects
in a clinical trial may aid in selecting more homogene-
ous study populations in which to test a specific drug
therapy. NM approaches would potentially resolve this
heterogeneity by combining the interactome with bio-
chemical and molecular assays and clinical information,
potentially providing noninvasive biomarkers as well as
drug targets ([14, 64, 98, 100, 120]). A network-oriented
paradigm of CVD pathogenesis would have the power
of repurposing existing FDA-approved compounds by in
silico prediction of targeted disease modules to speed up
the discovery of putative novel personalized treatments
[29]. Moreover, repurposing bioinformatic tools could
offer new molecular mechanisms of existing drugs. As an
example, the seed connector algorithm (SCA) has been
applied to GWAS-derived CHD seed proteins and has
suggested that the neuropilin-1 (NRP1) would be poten-
tially a novel candidate disease gene [134]. Since NRP1 is
the target of the anti-angiogenic agent pegaptanib, which
is indicated for the treatment of neovascular age-related
macular degeneration, the SCA algorithm approach
suggested its possible repurposing for atherosclerotic
diseases [134]. In addition, the use of network-based
proximity measures would allow to quantify the relation-
ship between CVD modules and drug targets helping to
chart novel associations and discriminate if a candidate
repurposed drug may be therapeutically effective or lead
to unwanted side effects [55]. Similarly, another proxim-
ity score has highlighted a relevant role for dysregulation
of the immune system in MS development, suggesting
the repurposing of ibrutinib, a BTK inhibitor prescribed
for hematological malignancies, to counteract the inflam-
matory state [93].
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Concluding remarks network medicine’s role

in clinical medicine, challenges and a pathway
forward to the new of precision medicine

The management of hematological malignancies has
already seen a major benefit from epigenetics with nine
epi-drugs currently approved by the FDA. Although
clinical epigenetics is far less advanced in CVDs, large
clinical trials show the promising results with respect to
the effectiveness of drug repositioning and epitherapy
in the treatment of MS, T2D, CHD, PAH, HF, and HTx.
Therefore, in areas relevant to the cause of death, such
as CVDs, there need to be more expeditious ways to
repurpose drugs as we look toward the era of precision
medicine.

The reasons for this gap may also be due to the differ-
ent procedures for approval of clinical studies in cancer
versus CVD. Several epigenome-wide association studies
have revealed molecular pathways involved in the patho-
genesis of cancer and CVDs that may offer robust bio-
markers for precision medicine and personalized therapy.
Novel technological developments as well as the applica-
tion of NM may change our view of the role and analysis
of epigenome deregulation in disease. The development
and use of bioinformatics (and tools of artificial intelli-
gence) hints at a deep change when dealing with human
health, disease identification and handling.

NM applications may improve our mechanistic under-
standing of tumorigenesis and the dynamics of driver
and contributing (epi)mutations within the 3D structure
of the cell and of tissues. The indication that a cytosine
is first methylated and then hydroxymethylated suggests
that the order of (some) epigenome changes should be
possibly integrated mining the epigenome landscape in
health and disease. Furthermore, different chromatin

Table 5 Network medicine approach in cancer and CVDs
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complexes (such as the readers and some erasers) use
metabolic co-factors in their reactions, suggesting that,
among the regulatory networks, the availability of those
cofactors might, in turn, also regulate the prioritization
of events. Indeed, the integration of genome and epig-
enome information together with the metabolic status
of the cells might, in principle, be a necessary step for-
ward to stratify better epi-biomarkers and epi-targets in
disease.

Studying the role of spatiotemporal regulation of chro-
matin with integrative network approaches may repre-
sent the next step forward for personalized medicine,
allowing drug-based fine-tuning of the epigenome. While
a small number of computational tools already lever-
age epigenetic profiling data in a network context, most
existing approaches are limited to promoter methylation,
neglecting the influence of regulatory regions distal to
promoters. Recently, the EpiRegio database established a
link between cis- or trans-regulatory elements and their
target genes [13]. In combination with disease-specific
molecular profiling data, network enrichment [78] or
disease module discovery [33] can be employed on such
networks to reveal more distal and complex regulatory
interactions for developing clinically relevant insights
into epigenetic mechanisms in diseases in the future.
However, these approaches are not yet well understood
by physicians. Learning workshops on this groundbreak-
ing field are necessary for the fields of cardiology and
oncology. Interpreting the developments of epigenome
deregulation to the clinic may also need a further under-
standing of the use of epi-drugs. For example, physicians
should be aware that the reduced locus-selective speci-
ficity may lead to (epi)genome undesired effects. Novel
drug discovery approaches targeting DNA mutations
might be a more focused solution, as indicated for the

Network medicine System validation

Data obtained

FEM Endometrial tumor samples and 23 healthy
controls
OxyBS Fresh frozen glioblastoma specimens from 30

subjects diagnosed between 2004 and 2012

DNA methylation of HAND2 gene in 90% of
tumors

5-Hydroxymethylcytosine patterns are strongly
related to transcription, localizes to disease-

Jiao et al. [67], Jones et al. [69]

Johnson et al. [68]

critical genes and are associated with patient
prognosis

Discovery of association between hyper-
methylation and somatic mutations in TET2,

Zhao et al. [142]

DNMT3B, IDH1 and BRAF in epigenomic
subtype

WGBS +WGS Biopsy 100 castration-resistant prostate metas-
tases
WGCNA Blood samples isolated from 2627 subjects

enrolled in FHS cohort

Differences in circulating DNA methylation
signatures located in regulatory regions of

Westerman et al. [137]

SLCOAT, SLCTA5, TNRC6C genes may be use-
ful biomarkers to predict incident CHD

Abbreviations: FEM: Functional Epigenetic Modules; OxyBS: oxidative bisulfite and bisulfite; WGBS: whole-genome bisulfite sequencing; WGS: whole-genome
sequencing; WGCNA: weighted correlation network analysis; FHS: Framingham Heart Study
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EZH2 inhibitors discussed in the previous sections. In
addition, methods such as “the proteolysis targeting chi-
mera (PROTAC)” might produce specific drugs, perhaps
able to (re)modulate the function of non-enzymatic chro-
matin complexes.

A future challenge will, thus, be to integrate such
notions in a network context together with other modali-
ties such as transcriptomics, proteomics, and miRNA
expression as well as with clinical information. We expect
that integrative network analysis will reveal regula-
tory patterns that can be exploited for diagnosis, prog-
nosis, and treatment selection. We need to encourage
the scientific integration of basic scientists and physi-
cians in the field of clinical epigenetics. A relevant role
is also played by innovative technology assets applied to
the clinical setting and management of patient. None of
NM approaches has yet reached clinical application, but
some have been validated with excellent results in ex-vivo
patients Table 5. Therefore, the final step will be to evalu-
ate the potential of novel NM platforms in large clinical
trials to test their reliability value in diagnosing, prognos-
ticate, and treating cancer and CVDs, as two of the major
causes of death worldwide.
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