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Abstract 

Background:  DNA methylation is a key epigenetic modification that can directly affect gene regulation. DNA meth-
ylation is highly influenced by environmental factors such as cigarette smoking, which is causally related to chronic 
obstructive pulmonary disease (COPD) and lung cancer. To date, there have been few large-scale, combined analyses 
of DNA methylation and gene expression and their interrelations with lung diseases.

Results:  We performed an epigenome-wide association study of whole blood gene expression in ~ 6000 individuals 
from four cohorts. We discovered and replicated numerous CpGs associated with the expression of cis genes within 
500 kb of each CpG, with 148 to 1,741 cis CpG-transcript pairs identified across cohorts. We found that the closer a 
CpG resided to a transcription start site, the larger its effect size, and that 36% of cis CpG-transcript pairs share the 
same causal genetic variant. Mendelian randomization analyses revealed that hypomethylation and lower expression 
of CHRNA5, which encodes a smoking-related nicotinic receptor, are causally linked to increased risk of COPD and 
lung cancer. This putatively causal relationship was further validated in lung tissue data.

Conclusions:  Our results provide a large and comprehensive association study of whole blood DNA methylation 
with gene expression. Expression platform differences rather than population differences are critical to the replication 
of cis CpG-transcript pairs. The low reproducibility of trans CpG-transcript pairs suggests that DNA methylation regu-
lates nearby rather than remote gene expression. The putatively causal roles of methylation and expression of CHRNA5 
in relation to COPD and lung cancer provide evidence for a mechanistic link between patterns of smoking-related 
epigenetic variation and lung diseases, and highlight potential therapeutic targets for lung diseases and smoking 
cessation.
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Background
The effects of environmental exposures on downstream 
phenotypes are mediated in part by DNA methylation 
[1]. DNA methylation was long thought to inhibit gene 
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expression [2]. Recent studies, however, have revealed 
a more complex picture. DNA methylation levels have 
been shown to be inversely correlated with gene expres-
sion across the genome and throughout multiple cell 
types, but site-specific analyses have revealed positive 
correlations of DNA methylation with the expression of 
some genes [3]. CpG sites, locations in the genome where 
a cytosine is followed by a guanine nucleotide, are often 
methylated, and CpG sites whose methylation is asso-
ciated with altered gene expression are referred to as 
expression quantitative trait methylation sites (eQTMs). 
CpG sites that are positively correlated with gene expres-
sion may act by different mechanisms compared with 
CpGs that are inversely correlated with expression. As a 
general feature across different cell types, CpG sites that 
are inversely correlated with gene expression are signifi-
cantly more likely to be found in transcriptional repressor 
CCCTC-binding factor (CTCF) binding sites, enhancers, 
and promoters, particularly non-CpG island (CGI) pro-
moters, whereas positively correlated CpG sites are more 
likely to be found in gene bodies [4].

DNA methylation has been studied genome-wide in 
relation to a wide range of phenotypes, with numerous 
associations having been reported, including with cancer, 
autoimmune disease, diabetes, cardiovascular disease, 
and neurological diseases [5–10]. Association, however, 
does not prove causation. Most disease-associated meth-
ylation changes have been found to be a consequence of 
the traits studied and are not causal of disease [11, 12]. 
Moreover, DNA methylation is determined by a com-
plex interplay of genetic and environmental factors. In 

particular, current and prior cigarette smoking have a 
profound influence on the methylation levels of thou-
sands of CpGs [13]. Mendelian randomization (MR) 
has been proposed as a means to infer causal relations 
between DNA methylation and disease outcomes [14]. 
This approach uses a genetic proxy as an instrument to 
represent DNA methylation and to evaluate the likeli-
hood of a causal association between DNA methylation 
and disease.

To address a knowledge gap regarding how cigarette 
smoking affects DNA methylation and gene expression 
and leads to smoking-related disease outcomes, we per-
formed an epigenome-wide association study (EWAS) of 
whole blood gene expression in ~ 6000 individuals from 
four cohort studies and identified thousands of CpG-
transcript pairs. Our study had the following aims: (i) 
identify CpGs associated with gene expression (eQTMs), 
(ii) explore the functional annotations of eQTMs, (iii) 
conduct colocalization analyses to investigate how 
genetic influences on DNA methylation contribute to 
altered gene expression, and (iv) use MR to infer causal 
effects of CpGs and expressed genes on smoking-related 
lung diseases (Fig. 1).

Results
eQTMs from discovery and replication data sets
To systematically assess the association between DNA 
methylation and variation in gene expression, we ana-
lyzed DNA methylation and genome-wide transcription 
in whole blood from 4,170 participants in the Framing-
ham Heart Study (FHS). Clinical characteristics of 

Fig. 1  Flowchart of the study design and major findings
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the study sample are summarized in Additional file  2: 
Table  S1. After adjusting for biological and technical 
covariates (see Methods for details), we identified 16,416 
cis CpG-transcript pairs (CpG site and the associated 
transcript [eGene] located within 500  kb) and 198,960 
trans CpG-transcript pairs (CpG site residing > 500  kb 
from the eGene) with statistically significant associations. 
We found that 3% (12,177) of all 401,189 CpG sites tested 
(see Methods for exclusions of CpGs) were cis eQTMs 
and were associated with expression levels of 15% (2704) 
of all 17,873 transcripts studied (P ≤ 1E−8, Bonfer-
roni correction, Additional file  2: Table  S2). Another 
6% (24,992) of all 401,189 CpG sites tested were trans 
eQTMs and were associated with 10% (1713) of all tran-
scripts (P ≤ 1E−12, Bonferroni correction, Additional 
file 2: Table S3).

We sought independent external replication of all sig-
nificant CpG-transcript pairs from three cohorts with 
whole blood DNA methylation data and Illumina array-
based gene expression: KORA (Kooperative Gesund-
heitsforschung in der Region Augsburg—Cooperative 
Health Research in the Region of Augsburg, n = 783) 
study, InCHIANTI (Invecchiare in Chianti, n = 500) 
study, and BLSA (Baltimore Longitudinal Study of Aging, 
n = 150). Following meta-analysis of the three replication 
studies, 10% of the 16,416 cis CpG-transcript pairs from 
the discovery sample replicated (at P < 0.05/16,416), with 
98% of pairs from discovery showing consistent direc-
tions of effect in the meta-analysis of replication cohorts 
(1672 Affymetrix probes matched up with 1881 Illumina 
probes, Additional file  2: Table  S4). None of the trans 
CpG-transcript pairs discovered in the FHS replicated in 
the meta-analysis of the other three cohorts after Bonfer-
roni correction (at P < 0.05/198,960) and fewer than 6% 
replicated (pairwise comparisons) between the Illumina 
platform cohorts. Therefore, we focused this report on cis 
CpG-transcript pairs. To account for the correlation of 
CpG sites within the same genomic region, we conducted 
a conditional analysis to identify non-redundant CpGs 
for a given transcript (see Methods). After adjusting for 
nearby CpG sites, we identified 3,379 non-redundant cis 
CpG-transcript pairs (at P < 1E−8) that were the focus 
of subsequent analyses (Additional file 2: Table S5). Due 
to the large platform differences and the limited sample 
size of the Illumina cohorts, our subsequent analyses 
were performed using the 3,379 non-redundant cis CpG-
transcript pairs from FHS discovery. The meta-analyzed 
results from all four cohorts are provided in Additional 
file 2: Tables S6.

Functional annotations of eQTMs
The proportion of inter-individual variation in eGene 
expression explained by cis eQTMs ranged from just 

under 1% to 75%, with a median R2 of 2%. We found that 
most CpGs reside in close proximity to their associated 
transcripts (76% are within 100  kb of the transcription 
start or end site) and the shorter the distance between 
a CpG and its paired transcript, the larger the effect size 
(Pearson correlation r = −0.1, P = 1.2E−08, Fig. 2).

We found that cis eQTMs are significantly enriched 
in CpG island shores (regions within a short distance 
from the CpG islands, P < 1E−4, Chi-square test) but 
not islands (regions with a high frequency of CpG 
sites, Fig.  3), and no significant enrichment was found 
in enhancers. We conducted further annotation using 
eFORGE (experimentally derived Functional Element 
Overlap analysis of ReGions from EWAS) [15] to view 
tissue-specific regulatory components of cis eQTMs 
across 21 cell lines. We found that cis eQTMs are signifi-
cantly enriched in blood cell lines (monocytes, T cells, 
and natural killer cells, among others), indicating a highly 
tissue-specific pattern (Fig. 4).

Among the 3,379 unique, non-redundant cis CpG-
transcript pairs, we identified 2,264 (67%) with negative 
and 1115 (33%) with positive associations. To explore 
whether the negatively and positively associated eQTMs 
reflect different functions in relation to regulation of 
gene expression, we performed separate Gene Ontol-
ogy enrichment analyses [16] for each type of associa-
tion (Additional file  2: Table  S7). Although some genes 
were enriched in common biological processes such as 
immune response, of note, the 271 genes that were posi-
tively associated with DNA methylation were enriched in 
negative regulation of biological processes (Fisher’s exact 
test P = 1.8E−05), whereas the 594 genes that were nega-
tively associated with DNA methylation were enriched in 
positive regulation of biological processes (Fisher’s exact 
test P = 8.1E−10).

Colocalization of cis eQTMs and eQTLs
DNA methylation can change gene expression without 
altering DNA sequence. Recent findings suggest that a 
large portion of this epigenetic regulation is also under 
genetic control [17]. To identify cis CpG-transcript pairs 
regulated by genetic variants, we conducted a Bayes-
ian test of colocalization using the coloc package in R to 
test whether a CpG site and its corresponding transcript 
within the same genomic region shared the same senti-
nel variant [18] (see Methods). Among the 3,379 non-
redundant cis CpG-transcript pairs from discovery, 2177 
shared at least one SNP for both the corresponding cis 
eQTL variants (gene expression was associated with a 
SNP) [19] and cis mQTL variants (DNA methylation was 
associated with a SNP) in FHS participants at FDR < 0.05. 
Using all SNPs shared by CpG sites and their correspond-
ing transcripts, we conducted a colocalization test for 
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each pair to determine the probability that the two asso-
ciation signals (mQTL and eQTL) were due to the same 
cis variant (see Methods). For 780 (36%) out of 2,177 cis 
CpG-transcript pairs with shared SNPs, we observed a 
probability of > 80% that an mQTL variant colocalized 
with an eQTL variant (Additional file 2: Table S8).

Cigarette smoking and DNA methylation
Many studies have confirmed that environmental expo-
sures can induce epigenetic changes, i.e., alter DNA 
methylation. To further investigate the epigenetic mecha-
nisms linking exposures to health outcomes, we explored 
the DNA methylation signatures of cigarette smoking 
and linked them to alterations in nearby gene expres-
sion using the cis CpG-transcript pairs from discovery. 
We previously reported that 2,622 CpG sites were dif-
ferentially methylated in current versus never smokers 
[13]. Intersecting these CpG sites with all 16,416 cis CpG-
transcript pairs from discovery (see Methods, Additional 
file  2: Table  S2), we identified 160 CpGs that differed 
between current versus never smokers that also are cis 
eQTMs (Fisher’s exact test, P = 3.3E−16, Additional 
file  2: Table  S9). To explore whether these smoking-
related cis eQTM sites are under parallel genetic control 
along with nearby gene expression, we conducted colo-
calization analysis of cis mQTL variants and cis eQTL 

Fig. 2  Distance between the CpG site and the transcriptional start or end site vs the proportion of expression variance explained by the CpG. The 
correlation of distance of the CpG from the transcriptional start site with the proportion of variation in expression explained by the CpG. X-axis is the 
distance (measured by base pair) between the CpG locus and the transcriptional start/end site of the gene. Y-axis is the proportion of expression 
variance explained by the CpG (measured by R2)

Fig. 3  Distribution of cis eQTMs in the human genome. Annotation 
of the cis eQTMs from the ENCODE. The percentage of annotation in 
different functional categories was compared with 450 K CpGs in the 
array and enrichment was tested using the Chi-square test, which 
revealed cis eQTMs were significantly enriched in CpG island shores, 
but not in islands (P < 1E−4)
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variants for the corresponding CpG-transcript pairs. 
Among the 109 cis CpG-transcript pairs that shared at 
least one SNP (i.e., an eQTL variant matched a mQTL 
variant), we identified colocalization (probability > 80%) 
for 22 cis CpG-transcript pairs. Among the 22 cis CpG-
transcript pairs with colocalizing genetic signals for CpG 
mQTLs and transcript eQTLs, DNA methylation levels of 
14 CpGs were decreased in current versus never smokers 
(11 of these CpGs were associated with increased gene 
expression and three with decreased gene expression) 
and methylation levels of eight CpGs were increased in 
current smokers (five of these CpGs were associated with 
increased gene expression and three with decreased gene 
expression) (Table 1 and Additional file 2: Table S10).

Cigarette smoking is a strong environmental and life-
style risk factor that is linked to many diseases [20]. To 
investigate the hypothesis that smoking confers disease 
risk by altering DNA methylation with resultant effects 
on expression of key cis genes, we intersected the mQTL 
and eQTL variants associated with cis CpG-transcript 
pairs with SNPs associated with smoking-related diseases 
from published GWAS [20]. We identified six SNPs that 
regulate smoking-related CpG sites and that also have 
been reported to be associated with chronic obstructive 

pulmonary disease (COPD) and lung cancer—two prom-
inent smoking-related diseases (Table  2). Because these 
CpG sites also were associated with nearby gene expres-
sion (i.e., they are cis eQTMs), these results suggest that 
smoking may promote disease by altering DNA meth-
ylation of key CpGs and thereby regulate expression 
of nearby genes. For example, CpGs in CHRNA5 have 
been found to be related to smoking [21]. We identi-
fied an intronic variant, rs17486278, whose C allele was 
associated with lower DNA methylation of a smoking-
associated CpG in CHRNA5 (cg22563815), with reduced 
expression of CHRNA5, and with increased risk of COPD 
based on GWAS [22] (Fig. 5).

We identified smoking-related CpGs at three gene loci 
(within 1 Mb of CpG site) that also harbor GWAS signals 
for COPD or lung cancer (Table  2). To further explore 
epigenetic links between cigarette smoking and smoking-
related lung diseases, we conducted MR [23] using four 
CpGs at these three gene loci (Table 2)—cg19696491 and 
cg22563815 for CHRNA5, cg03234777 for AMICA1, and 
cg26850624 for AHRR—with the methylation of the CpG 
as the exposure, cis mQTLs of these CpGs as the instru-
mental variables, and lung cancer or COPD as the out-
comes [24]. At P < 0.05, we found that lower methylation 
of two CpG sites at the CHRNA5 locus was associated 
with increased risk of lung cancers (adenocarcinoma and 
squamous cell) and COPD, and lower methylation of a 
CpG in AMICA1 was associated with higher risk for lung 
cancer (adenocarcinoma but not squamous cell cancer; 
Table 3). We found no causal association between meth-
ylation of AHRR and lung cancer or COPD. The inferred 
causal relations between DNA methylation and lung 
cancer were further validated using mQTLs from lung 
tissue [25] and GWAS from UK Biobank [26] (Table 3). 
To explore the effects of gene expression of CHRNA5, 
AMICA1, and AHRR on lung diseases, we conducted MR 
using expression of these three genes as the exposure, 
cis eQTLs of these genes from FHS whole blood [19] as 
the instrumental variables, and lung disease traits as the 
outcomes. At P < 0.05, we found that lower expression of 
CHRNA5 was associated with higher risk of lung cancer 
(Table 4), but not for COPD. The inferred causal relation 
between gene expression and lung cancer was further 
tested using cis eQTLs in lung tissue from GTEx [27] as 
the instrumental variable, expression of CHRNA5 as the 
exposure, and lung cancer as the outcome. This analysis 
revealed consistent causal effects of CHRNA5 on lung 
cancer.

Smoking has profound effects on DNA methylation, 
and the CHRNA5 locus has been reported to be related 
to nicotine addiction [28]. To further explore the genetic 
and environmental effects on CHRNA5, we conducted 
bidirectional MR analyses of methylation of CHRNA5 in 

Fig. 4  Enrichment of DNase 1 hypersensitive sites (DHSs) in cis 
eQTMs across multiple tissues. Tissue-specific regulatory enrichment 
of cis eQTMs across 21 cell lines using eFORGE
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relation to cigarette smoking (see Methods). In the first 
test (CpG → smoking), we used methylation of CpGs 
at the CHRNA5 locus (cg19696491, cg22563815) as the 
exposures, cis mQTLs for these CpGs as the instrumental 
variables, and pack-years of smoking as the outcome. At 
P < 0.05, we found that reduced methylation of cg19696491/
cg22563815 at CHRNA5 significantly increases smoking 
exposure in a causal manner. In the second test (smok-
ing → CpG), we used pack-years of smoking as the expo-
sure, pruned GWAS SNPs for smoking from UK Biobank 
as the instrumental variable, and methylation of CHRNA5 

as the outcome. At P < 0.05, we found that greater pack-
years of smoking significantly decreases methylation of 
cg19696491/cg22563815 at CHRNA5 (Table  5). Bidirec-
tional MR revealed that the association of CHRNA5 with 
risk of lung cancer is causally influenced by both genetic 
and environment effects (Fig. 6).

Discussion
We conducted a comprehensive assessment of the associ-
ation of DNA methylation sites with gene expression and 
generated a resource of thousands cis CpG-transcript 

Table 1  Colocalization of smoking related eQTMs with eQTLs

*  Number of SNPs associated with both DNA methylation and gene expression in the tested genome locus

CpG Genes Colocalization Locus eQTM-T (directionality) Number of SNPs* Probability of 
colocalization

cg23813257 IL32 16p13.3  − 9.82 66 1.00

cg02532700 PVALB 22q13.1  − 12.20 67 1.00

cg25174412 C12orf75 12q23.3 5.90 30 1.00

cg07027613 RBP5 12p13.31 7.09 117 1.00

cg12619504 MGAT4B 5q35  − 5.91 140 1.00

cg14656441 NDUFS5 1p34.2-p33 6.86 273 1.00

cg01360605 LOC284757 20q13.33  − 7.25 108 1.00

cg09099830 ITGAL 16p11.2  − 6.33 53 1.00

cg13935577 BTBD11 12q23.3 7.35 235 0.99

cg26105649 NTPCR 1q42.2  − 17.18 484 0.99

cg13834112 ANPEP 15q25-q26 7.81 52 0.99

cg26403843 RNF145 5q33.3  − 6.04 81 0.98

cg26724967 IL32 16p13.3  − 17.33 102 0.98

cg16526047 ISG15 1p36.33  − 7.05 41 0.98

cg16649298 WDR60 7q36.3 6.23 198 0.97

cg13707943 FAM102A 9q34.11  − 7.39 214 0.97

cg04521626 PLD2 17p13.1 6.73 102 0.97

cg16608652 B3GALT2 1q31  − 7.50 2 0.97

cg14018141 CD300A 17q25.1 6.98 27 0.95

cg21913886 TMEM51 1p36.21  − 5.85 293 0.92

cg06478823 ACSM3|ERI2 16p13.11  − 5.79 416 0.92

cg11465630 C21orf33 21q22.3  − 7.89 277 0.88

Table 2  Smoking-related disease GWAS SNPs associated with methylation and gene expression

SNPs Trait SNP-associated CpG sites Beta of 
SNP-CpG 
association

SNP-associated 
expression of 
genes

Beta of SNP–
gene expression 
association

Beta of CpG–
gene expression 
association

rs8034191 Lung cancer cg19696491 0.011 CHRNA5 0.052 0.71

rs17486278 
(rs11858836

rs8034191)

Chronic obstructive 
pulmonary disease

cg22563815 0.013 0.05 0.88

rs57221529 Lung disease severity in 
cystic fibrosis

cg26850624 0.030 AHRR 0.26 1.81

rs1056562 Lung adenocarcinoma cg03234777 0.0097 AMICA1 0.15 1.51
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Fig. 5  Genetic effects on smoking-related CpG sites and gene expression and the risk of COPD. Relations between genetic variant (rs17486278), 
DNA methylation (cg22563815) and gene expression (CHRNA5). Cg225638115 was found to be differentially methylated between current smokers 
and never smokers. This CpG is associated with the expression of CHRNA5. The CpG and CHRNA5 both are under genetic control of rs17486278, 
which has been found to be associated with COPD in previous GWAS

Table 3  Mendelian randomization results of lung cancer as the outcome using DNA methylation as the exposure

Outcome Exposure Beta se P value Tissue origin

Lung cancer cg03234777  − 3.81 1.24 2.17E − 03 FHS Whole blood

Lung adenocarcinoma cg03234777  − 4.96 1.95 1.09E − 02 FHS Whole blood

Squamous cell lung cancer cg03234777  − 1.32 1.83 4.70E − 01 FHS Whole blood

Lung cancer cg19696491  − 5.28 0.77 5.05E − 12 FHS Whole blood

Lung adenocarcinoma cg19696491  − 5.65 1.16 1.18E − 06 FHS Whole blood

Squamous cell lung cancer cg19696491  − 3.93 1.21 1.11E − 03 FHS Whole blood

Lung cancer cg22563815  − 4.64 0.67 5.05E − 12 FHS Whole blood

Lung adenocarcinoma cg22563815  − 4.96 1.02 1.18E − 06 FHS Whole blood

Squamous cell lung cancer cg22563815  − 3.45 1.06 1.11E − 03 FHS Whole blood

Illnesses of father: lung cancer cg22563815  − 0.081 0.031 8.28E − 03 FHS Whole blood

Illnesses of father: lung cancer cg19696491  − 0.092 0.035 8.47E − 03 FHS Whole blood

Cancer code self-reported: lung cancer cg03234777  − 0.010 0.005 3.43E − 02 FHS Whole blood

Lung adenocarcinoma cg22563815  − 1.569 0.308 3.60E − 07 Lung tissue

Lung cancer cg22563815  − 1.456 0.203 7.04E − 13 Lung tissue

Squamous cell lung cancer cg22563815  − 1.127 0.319 4.04E − 04 Lung tissue

Lung adenocarcinoma cg19696491  − 2.051 0.416 8.35E − 07 Lung tissue

Lung cancer cg19696491  − 1.929 0.274 1.82E − 12 Lung tissue

Squamous cell lung cancer cg19696491  − 1.489 0.429 5.25E − 04 Lung tissue

Table 4  Mendelian randomization results of lung cancer using gene expression data as the exposure

Outcome Exposure Method Beta se P value Tissue origin

Lung cancer CHRNA5 Inverse variance weighted  − 1.50 0.23 6.80E − 11 FHS Whole blood

Squamous cell lung cancer CHRNA5 Inverse variance weighted  − 1.23 0.31 9.05E − 05 FHS Whole blood

Lung adenocarcinoma CHRNA5 Inverse variance weighted  − 1.58 0.42 1.48E − 04 FHS Whole blood

Lung cancer CHRNA5 Wald ratio  − 0.22 0.03 9.24E − 13 GTEx lung

Lung adenocarcinoma CHRNA5 Wald ratio  − 0.23 0.05 5.13E − 07 GTEx lung

Squamous cell lung cancer CHRNA5 Wald ratio  − 0.17 0.05 3.86E − 04 GTEx lung
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pairs that can be used to explore environmentally medi-
ated epigenetic effects on disease. We conducted inde-
pendent external replication of these findings. We found 
that the closer a CpG resided to a transcription start site, 
the larger its effect size is, and that the association of 
methylation with expression can be positive or negative. 
Moreover, using colocalization analyses, we found that 
36% of cis CpG-transcript pairs share the same causal 
variant (i.e., the mQTL variant for the CpG matches the 
eQTL variant for the transcript), indicating that in addi-
tion to previously described environmental influences on 
DNA methylation, genetic effects also play an important 
role in epigenetic regulation. Using these genetic effects 
as instrumental variables in MR analyses, we identified a 
putatively causal role of DNA methylation of CHRNA5 in 
COPD and lung cancer.
CHRNA5, the gene that encodes the acetylcholine 

receptor subunit alpha 5, has been reported to be asso-
ciated with tobacco addiction and lung cancer[29]. The 
possible molecular mechanism has been established by 
a chrna5 knockout-mouse model, which is analogous to 
individuals with reduced α5 receptor function[30]. Dra-
matically increased nicotine consumption was observed 
in mice with a null mutation in chrna5. This effect was 
reversed in knockout mice by re-expressing α5 subu-
nits in the medial habenula of the mouse brain. These 

findings suggest that nicotine activates α5-containing 
nicotinic acetylcholine receptors (nAChRs) to suppress 
nicotine intake. Our MR results further demonstrate that 
in humans, genetic variants in CHRNA5 affect smoking 
and lung cancer risk through effects on DNA methylation 
and gene expression of CHRNA5.

The low reproducibility rate of cis CpG-transcript pairs 
may be due to two factors. First, the smaller sample size 
of the replication panel limited the power to replicate. 
To address this issue, we repeated the discovery-replica-
tion experiment in the opposite direction, with discov-
ery from the meta-analysis of KORA, InCHIANTI, and 
BLSA (4446 cis CpG-transcript pairs) and replication in 
the FHS. This resulted in 57% of discovery cis CpG-tran-
script pairs from the meta-analysis of the three cohorts 
replicated in the FHS (at P < 0.05/4446), which confirmed 
the first assumption about replication of cis CpG-tran-
script pairs. Second, technical differences in the gene 
expression platforms (Affymetrix array in FHS versus 
Illumina array in the other cohorts) may restrict replica-
tion. Barnes et  al. reported that only 37% of genes had 
expression levels that were significantly correlated when 
measuring the same sample using an Affymetrix array 
versus Illumina gene expression array [31]. To address 
this, we explored the consistency of results among 
the cohorts that used an Illumina array for expression 

Table 5  Bidirectional Mendelian randomization results of DNA methylation of CHRNA5 and smoking

Exposure Outcome Instrumental variant Method beta se P value

cg19696491 Pack-years of smoking rs12915652 Wald ratio  − 1.50 0.21 4.94E − 13

cg22563815 Pack-years of smoking rs12915652 Wald ratio  − 1.32 0.18 4.94E − 13

Pack-years of smoking cg22563815 9 SNPs Inverse variance weighted  − 0.077 0.031 0.012

Pack-years of smoking cg19696491 9 SNPs Inverse variance weighted  − 0.067 0.026 0.01

Fig. 6  Genetic and environmental effects on methylation of CHRNA5 in relation to the risk of lung disease. The possible mechanism of methylation 
of CHRNA5 affecting the risk of lung disease is through both genetic control and environment influence. The MR test inferred the causal role of 
methylation of CHRNA5 on lung cancer and COPD. In another bidirectional MR test, the methylation of CHRNA5 and pack-years of smoking played 
causal roles with each other
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profiling and found that 50% (491/987) of the cis CpG-
transcript pairs from BLSA (the smallest sample size) 
replicated in the other two cohorts that used the same 
expression array, but none of them replicated in the FHS 
(Affymetrix expression array). Similar replication rates 
were observed among pairwise comparisons among Illu-
mina cohorts, suggesting that platform rather than popu-
lation differences is critical. On the other hand, the low 
replication of trans CpG-transcript pairs may be due to 
a lack of power to detect trans associations, substantial 
platform differences (as was the case for cis pairs), or 
because DNA methylation regulates only nearby rather 
than remote gene expression.

Tobacco exposure is a powerful environmental modi-
fier of DNA methylation [13] and a major risk factor 
for cancer, cardiovascular disease, COPD, and many 
other diseases [5–8]. While it is reasonable to hypothe-
size that environmental factors affect DNA methylation 
with downstream effects on gene expression that in turn 
impact disease risk, these relationships are seldom tested 
formally. In-depth exploration of the inter-relations 
between genetic variation, DNA methylation, and gene 
expression is needed to identify mechanisms underlying 
environmental effects on disease. To that end, we inte-
grated cis CpG-transcript pairs with their corresponding 
mQTLs and eQTLs, which enabled us to identify genetic 
variants that jointly regulate DNA methylation and gene 
expression. Finally, we integrated colocalization analy-
sis with large GWAS databases to explore the relations 
between cigarette smoking and lung diseases. Although 
many smoking-related CpG sites were not associated 
with altered gene expression, we identified three genes 
(CHRNA5, AMICA1, and AHRR) that exhibited inter-
connected smoking-DNA methylation–gene expres-
sion relationships (Table  2). Using MR, we inferred a 
causal role of lower methylation and lower expression of 
CHRNA5 with increased risk for lung cancer (Table  5). 
For example, carriers of the risk allele for nicotine addic-
tion (rs17486278) have lower methylation of cg19696491/
cg22563815 at CHRNA5, which increases smoking expo-
sure and the resultant risk of lung cancer. Individuals 
who do not carry the risk allele, however, may also be 
at increased risk for lung disease by virtue of smoking-
related altered methylation of CHRNA5, which in turn 
increases lung cancer risk. If these findings are tested and 
validated in the clinical setting, it is possible that they can 
be used as biomarkers to identify high-risk subgroups 
(e.g., carriers of the risk allele, those with hypomethyla-
tion or reduced expression of CHRNA5) or as therapeu-
tic targets for nicotine addiction treatment.

Causal inference analysis using MR is a powerful tool 
to distinguish causal from non-causal associations. Our 
previous cross-sectional study [17] reported that current 

cigarette smoking was associated with increased meth-
ylation of cg19696491 (CHRNA5), which is opposite to 
the MR results in the present investigation. When we 
limited analyses to individuals with fewer than 60 pack-
years of smoking, however, we found that pack-years 
was inversely correlated with methylation of CHRNA5 
(P = 0.0006, Additional file  1: Figure S1), which is con-
sistent with our MR results. We further conducted a 
longitudinal analysis of DNA methylation changes fol-
lowing smoking cessation among smokers in the FHS 
who quit during follow-up and found that methyla-
tion of cg1969649 (CHRNA5) was significantly higher 
(Beta = 0.01, P = 0.036) following cessation than when 
these individuals smoked.

There are several limitations to our study. First, the 
discovery and replication cohorts used different gene 
expression platforms, which impaired our ability to rep-
licate results from discovery. Second, DNA methylation 
and gene expression were profiled in whole blood, which 
may not reflect tissue-specific effects of DNA meth-
ylation on gene expression. Given the tissue-specific 
nature of eQTMs, our findings should be confirmed in 
additional disease-relevant tissues and cell types and 
validated in future studies. Finally, although colocaliza-
tion has been proposed as a methodology for describing 
shared genetic influences [32], it relies on a key assump-
tion of no more than two sentinel SNPs at a given locus, 
which may be inaccurate in some cases.

Our study is among the first investigations of the role of 
cigarette smoking on DNA methylation and gene expres-
sion and how these effects may promote smoking-related 
diseases. Taken together, our results show that whereas 
DNA methylation is an important epigenetic mechanism 
associated with gene expression, genetic variants play 
important dual roles in the regulation of DNA methyla-
tion and gene expression. We demonstrate that genetic 
variants associated with CpG-transcript pairs (i.e., 
mQTLs and eQTLs) can be integrated with smoking-
related GWAS variants to improve our understanding 
of the interplay between environmental effects and lung 
diseases, facilitating the prioritization of candidate genes 
implicated in the pathogenesis of disease.

Conclusions
By integrating genetic and epigenetic data, we found 
that altered DNA methylation and gene expression of 
CHRNA5 have putatively causal effects on lung dis-
eases. Using a bidirectional MR approach, we found 
evidence that DNA methylation and cigarette smoking 
have mutual effects on CHRNA5 that in turn influence 
risk for lung disease. Our findings highlight CHRNA5 as 
a potential therapeutic target for lung diseases and also 
for smoking cessation. The present study illustrated the 
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potential clinical utility of identifying high-risk indi-
viduals by virtue of genetic and epigenetic biomarkers; 
broader application might be achieved in other tumor 
types in relation to other environmentally mediated dis-
ease processes.

Methods
Discovery: Framingham Heart Study (FHS)
The FHS is a community-based prospective study, which 
consists of three generations of participants starting in 
1948. The 4170 participants in this study included FHS 
Offspring cohort (Exam 7; 1998–2001) and Third Gen-
eration cohort (Exam 1; 2002–2005) participants. Gene 
expression: Whole blood was collected in PAXgene™ 
tubes (PreAnalytiX, Hombrechtikon, Switzerland) and 
frozen at − 80  °C. RNA was extracted using the whole 
blood RNA System Kit (Qiagen, Venlo, Netherlands) and 
mRNA expression profiling was assessed using the Affy-
metrix Human Exon 1.0 ST GeneChip platform (Affym-
etrix Inc, Santa Clara, CA), which contains more than 5.5 
million probes targeting the expression of 17,873 genes. 
The Robust Multi-array Average (RMA) package[33] 
was used to normalize the gene expression values and 
remove any technical or spurious background variation. 
Linear regression models were used to adjust for techni-
cal covariates (batch, first principal component, and all 
probeset mean).

DNA methylation: DNA methylation status was 
assayed using the Infinium HumanMethylation450 Bead-
Chip (Illumina Inc., San Diego, CA). A total of 2,648 
samples from FHS offspring cohort were run in two labo-
ratory batches at the Johns Hopkins Center for Inherited 
Disease Research (laboratory batch #1) and the Univer-
sity of Minnesota Biomedical Genomics Center (labo-
ratory batch #2). A total of 1,522 samples from the FHS 
Third generation cohort (laboratory batch #3) were run 
by Illumina (San Diego, CA, USA). QC and normaliza-
tion were performed using the DASEN methodology 
implemented in the wateRmelon R package, and the 
final β values of each CpG for downstream analysis were 
output as previously described [13]. DNA methylation 
probes that contained polymorphic SNPs were removed 
[34]. Because of X-chromosome inactivation, only probes 
on autosomal chromosomes were analyzed. A total of 
401,189 CpGs were retained for further analysis.

Replication cohorts
KORA: The KORA (Kooperative Gesundheitsforschung 
in der Region Augsburg—Cooperative Health Research 
in the Region of Augsburg) study is a series of inde-
pendent population-based epidemiological surveys and 
follow-up studies of participants living in the region of 
Augsburg, Southern Germany. In the present study, we 

included 707 participants (356 males and 351 females 
aged 62–81  years) of the KORA F4 study for whom 
DNA methylation and gene expression data were avail-
able. KORA F4 (2006–2008, N = 3080) is a follow-up 
study of the KORA S4 survey (1999/2001, N = 4261). The 
applied standardized examinations have been described 
in detail elsewhere [35]. The KORA study has been con-
ducted according to the principles expressed in the 
Declaration of Helsinki. Written informed consent has 
been given by each participant. The study was reviewed 
and approved by the local ethics committee (Bayerische 
Landesärztekammer).

Gene expression: In the KORA F4 study, gene expres-
sion was assessed using the Illumina HumanHT-12_v3 
expression BeadChip, as described previously [36]. The 
gene expression data were quantile normalized and log2 
transformed. The gene expression data are available for 
download at ArrayExpress (E-MTAB-1708).

DNA methylation: Genome-wide DNA methylation 
in KORA F4 was assessed using the Illumina Human-
Methylation450 BeadChip as described elsewhere [37]. 
In brief, bisulfite converted genomic samples were ampli-
fied. After enzymatic fragmentation and application of 
the samples, the arrays were fluorescently stained and 
scanned using an Illumina HiScan SQ scanner. Data 
quality was assessed using GenomeStudio (version 
2010.3). The methylation data were preprocessed primar-
ily following the CPACOR pipeline[38]. Background cor-
rection was performed using the R package minfi, version 
1.6.0 [39] and signals with detection P values ≥ 0.01 or 
with less than three functional beads were set to missing. 
Observations with less than 95% of CpG sites providing 
reliable signals were excluded. Finally, data were quan-
tile normalized as described by [38], using the R pack-
age limma, version 3.16.5 [40]. Beta values representing 
the percentage of DNA methylation of a cytosine were 
calculated as the ratio of the methylated signal over the 
sum of the methylated and unmethylated signals. Fol-
lowing exclusion of cross-reactive probes [41], there 
were 442,279 CpG sites for investigation. Missing meth-
ylation values were imputed using a k-nearest neigh-
bors approach (k = 8). Annotations are based on UCSC 
Genome Browser on Human Feb. 2009 (GRCh37/hg19) 
Assembly (https://​genome.​ucsc.​edu/).

InCHIANTI
The InCHIANTI study [42] is a population-based, pro-
spective study of human aging in the Tuscany area of 
Italy. A total of 1,455 participants were enrolled at base-
line (1998–2000), with follow-up waves every 3  years. 
Extensive interviews, questionnaires, medical exami-
nations, physical tests and blood samples were taken at 
every wave. Ethical approval was granted by the Instituto 

https://genome.ucsc.edu/
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Nazionale Riposo e Cura Anziani institutional review 
board in Italy, and participants gave informed consent to 
participate.

Gene Expression: Peripheral blood specimens were 
collected at wave 4 (year 9, 2008–9) from 712 individu-
als, using the PAXgene technology to preserve levels 
of mRNA transcripts as they were at the point of col-
lection[43]. RNA was extracted from peripheral blood 
samples using the PAXgene Blood mRNA kit (Qiagen, 
Crawley, UK) according to the manufacturer’s instruc-
tions. RNA was biotinylated and amplified using the 
Illumina® TotalPrep™ -96 RNA Amplification Kit and 
directly hybridized with HumanHT-12_v3 Expression 
BeadChips that include 48,803 probes. Image data were 
collected on an Illumina iScan and analyzed using the 
Illumina and Beadstudio software (Illumina, San Diego, 
California, USA) as previously described[44]. All micro-
array experiments and analyses complied with MIAME 
guidelines.

DNA Methylation: CpG methylation data were gener-
ated for a subset of the InCHIANTI participants. Sam-
ples taken at baseline (year 0) and during follow-up wave 
3 (year 9, the ‘gene expression’ wave) were analyzed using 
the Illumina Infinium HumanMethylation450 Bead-
Chip. Briefly, genomic DNA was bisulfite converted 
using Zymo EZ-96 DNA Methylation Kit, followed by 
CpG analysis using the aforementioned Illumina 450  k 
array. Quality control of the samples included exclusion 
based on sex-discrepancy and call-rate thresholds. Nor-
malization of the arrays was performed using the ‘wateR-
melon’[45] R package (specifically the DASEN method), 
which includes quantile normalization between probe 
types and arrays. Samples having 5% of sites with a detec-
tion P value > 0.01 were removed. After exclusions, 506 
samples having robust data at two waves (9 years apart) 
were available for analysis. For more detailed methods, 
see Holly et al. [46].

BLSA
The Baltimore Longitudinal Study of Aging (BLSA) study 
is a population-based study aimed to evaluate contribu-
tors of healthy aging in the older population residing pre-
dominantly in the Baltimore-Washington DC area [47]. 
Starting in 1958, participants have been examined every 
one to four years depending on their age. There are ~ 1000 
active participants enrolled in the study including 150 
who have DNA methylation and gene expression data 
and were included in this investigation. The BLSA has 
continuing approval from the Institutional Review Board 
(IRB) of Medstar Research Institute.

Gene Expression: Gene expression profiling was con-
ducted using the same processes as the InCHIANTI 
study. In brief, peripheral blood samples were collected 

for the purposes of gene expression profiling between 
April 2008 and September 2012. RNA samples were 
extracted with PAXGene blood mRNA kits (Qiagen), 
and gene expression was assessed using the Illumina 
HumanHT-12 v4 expression BeadChip. Gene expression 
data were log2-transformed (values less than or equal to 0 
were imputed as 1) and quantile normalized for analysis.

DNA methylation: DNA methylation was conducted 
using a process consistent with that of the InCHIANTI 
study. Briefly, genomic DNA was extracted from whole 
blood using Gentra Puregene DNA purification system 
(Qiagen Inc., Germantown, MD). This was followed 
by bisulfite conversion using EZ DNA methylation kit 
(Zymo Research Corp., Irvine, CA), and genome-wide 
methylation was measured using the Illumina Infinium 
HumanMethylation450 BeadChip (Illumina Inc., San 
Diego, CA) following the manufacturer’s protocol. Qual-
ity control of the samples included exclusion based on 
sex-discrepancy and call-rate thresholds. Normalization 
of the arrays was performed using the ‘wateRmelon’[45] 
R package (specifically the DASEN method), which 
includes quantile normalization between probe-types 
and arrays. Samples having 5% of sites with a detection P 
value > 0.01 were removed.

Statistical analysis
eQTM analysis: First, we computed the residuals of the 
DNA methylation values using a linear mixed effect 
model adjusting for the following covariates: age, sex, 
Houseman’s white blood cell type proportions [48], DNA 
methylation-specific technical variables (e.g., chip, row, 
column). Then we computed 25 surrogate variables (SVs) 
for the residuals and computed the residuals of the resid-
uals. Second, we performed the same clean-up protocol 
on the gene expression dataset, adjusting for age, sex, 
Houseman’s white blood cell type proportions [48], and 
gene expression-specific technical variables (e.g., batch 
effect, RNA integrity number). We used surrogate varia-
ble analysis (SVA) to identify unknown confounders [48]. 
We chose the number of surrogate variables (SVs) by 
comparing the internal replication rate of CpG-transcript 
pairs using FHS data (splitting the full set into discovery 
and replication samples). We examined replication with 
0, 25, and 50 SVs and found that 25 SVs maximized the 
internal replication rate, thus we used 25 SVs to compute 
residuals. We then applied this protocol to each cohort. 
Due to differences in laboratory assays, we allowed each 
cohort to specify their own technical covariates to mini-
mize technical artefacts. Cis was defined as a 500-kb win-
dow around the transcript unit.

Conditional eQTM analysis: For each transcript, we 
performed a conditional analysis by adding the CpG 
site that is most associated (lowest P value) with the 
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transcript in the previous analysis as an independent 
variable. The same linear model of the previous analy-
sis was used with the added conditional CpG term. Beta 
coefficients, standard errors, t values, and P values were 
then collected.

Meta-analysis: Because only results at P < 1e−4 
were stored in some cohorts, regular meta-analysis 
approaches could not be used because they require 
complete availability of beta and standard error values 
for all cohorts. If only results for which the values are 
available are ignored, then meta-analysis results may be 
an underestimation. To remedy this situation, we used 
a method called MetaNSUE [49] to properly estimate 
the beta coefficients, standard errors, and P values of 
unstored/missing results and avoid underestimation. 
The method MetaNSUE does not distinguish random 
and fixed effects, but it accounts for the between-study 
heterogeneity and potential covariates by way of its 
maximum likelihood technique. This method is imple-
mented in the R package MetaNSUE.

Colocalization analysis: For each CpG-transcript pair, 
the colocalization analysis involved a two-step proce-
dure. Using FHS cis mQTL results, we first identified 
SNPs associated with CpG sites in 1 Mb region (upstream 
and downstream). Using FHS cis eQTL results [19], we 
then identified SNPs associated with transcripts in 1 Mb 
region. To estimate the probability that cis eQTLs and 
cis mQTLs residing in the same genomic location shared 
the same causal variant, we conducted a Bayesian test for 
colocalization of all pairs using all shared SNPs by the 
coloc package in R [18]. This method requires specifying 
a prior probability for a SNP being associated with gene 
expression only (p1), methylation level only (p2), and 
with both traits (p12). We applied the default P values, 
with p1 and p2 set to 1E−4, assuming that 1 in 10,000 
SNPs are causal for either trait, and p12 was set to 1E−5.

Smoking-related CpGs: 2,622 CpG sites that were dif-
ferentially methylated in current versus never smokers 
were derived from our previous publication [13]. Current 
smokers were defined as people who reported smoking 
at least one cigarette per day within 12 months prior to 
the blood draw, former smokers were defined as people 
who previously smoked at least one cigarette per day, 
but stopped more than 12  months prior to the blood 
draw, and never smokers were defined as people who 
never smoked. Pack-years was calculated based on self-
reported average number of cigarettes per day smoked 
divided by 20 multiplied by the number of years of smok-
ing, with zero assigned to never smokers. Because the 
smoking-related CpG lists did not account for the cor-
relation among CpGs, we leverage the 2,622 smoking-
related CpGs with 16,416 cis CpG-transcript pairs from 
all 450 K CpGs to maximize the overlap.

Mendelian Randomization: MR uses genetic variation 
as a natural experiment that mimic randomized control 
trials to infer causal relations between an exposure and 
an outcome using genetic data from observational studies 
and GWAS (Additional file  1: Figure S2). MR has three 
assumptions: (1) that the instrumental variable is robustly 
associated with the exposure, (2) that the instrumental 
variable acts independently of confounders, and (3) that 
the instrumental variable only influences the outcome 
via its effect on the exposure. Using SNPs significantly 
associated with DNA methylation or gene expression as 
genetic instruments for MR satisfies assumptions 1 and 
2. Using only cis-mQTLs and cis-eQTLs as instrumen-
tal variables satisfies assumption 3. MR was conducted 
in TwoSampleMR package[23] using DNA methylation 
or gene expression as exposure, separately. Two-sample 
(SNP-outcome association is from published GWAS 
and SNP-exposure association is from FHS mQTLs or 
eQTLs) MR was used to identify putatively causal CpG 
sites or genes for lung cancer. SNPs and lung cancer asso-
ciations were based on the published GWAS. Instrumen-
tal variables (IV) for each CpG or gene were composed 
of independent cis mQTLs or cis eQTLs pruned by LD at 
r2 < 0.001. For CpGs or genes with only one independent 
SNP after LD pruning, causal effect estimates were deter-
mined using the Wald ratio test. When multiple non-
redundant SNPs were present, we conducted multi-SNP 
MR using inverse-variance weighted estimates. Bidirec-
tional MR was first conducted using DNA methylation 
as exposure and pack-years of smoking as outcome and 
then vice versa. Summary statistics for SNP-pack years 
of smoking associations were obtained from UK Biobank 
GWAS [50]. Pruned SNPs (LD r2 < 0.001) were used as 
instrumental variables, and the associations between 
SNPs and methylation level were calculated in FHS.
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