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Developmental cannabidiol exposure 
increases anxiety and modifies genome‑wide 
brain DNA methylation in adult female mice
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Abstract 

Background:  Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently 
risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous 
work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and 
other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is respon-
sive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic 
perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting 
of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has 
not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have 
identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothe-
sized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epi-
genome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily 
from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at 
the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected 
to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing 
was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA 
methylation for direct and developmental exposure, respectively.

Results:  F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory 
behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thou-
sands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for 
neurogenesis, substance use phenotypes, and other psychologically relevant terms.

Conclusions:  These findings demonstrate for the first time that despite positive effects of direct exposure, develop-
mental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
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Background
Cannabidiol (CBD) is the primary non-psychomimetic 
compound found in cannabis (Cannabis sativa) and an 
FDA-approved treatment for childhood epilepsy that 
also shows therapeutic potential for several neuropsychi-
atric disorders. Use of both cannabis and CBD is rising 
in the USA with CBD sales  expected to reach 1.8 billion 
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dollars by 2022 [1], due in part to reports of their posi-
tive effects on psychological phenotypes. In rodent stud-
ies, exposure to CBD in adulthood has been shown to 
reduce immobility and increase swimming time in the 
forced swim test, a measure of depression [2, 3], increase 
time spent in the open arm of the elevated plus maze, a 
measure of anxiety [4–7], and reduce responsiveness 
to drugs of addiction such as morphine and cocaine [4, 
8]. In human trials, CBD additionally reduces psychotic 
symptoms in schizophrenia [9, 10] and lowers subjec-
tive measures of anxiety [11, 12]. These findings contrast 
with previous research on the psychoactive cannabinoid 
Δ9-tetrahydrocannabinol (THC), which report anxi-
ogenic and other adverse psychological effects that con-
current CBD administration may counteract [13–15]. 
In  vitro and in  vivo studies suggest that the underlying 
mechanisms behind CBD’s actions in the brain are com-
plex. CBD acts on a large number of targets including 
serotonin 1a (5HT-1a), peroxisome proliferator-acti-
vated receptor gamma (PPARγ), and transient receptor 
potential cation channel subfamily V (TRPV) receptors, 
antioxidant mechanisms, and modulation of endocan-
nabinoid levels [5, 7, 16–19]. CBD also appears to impact 
neurogenesis in the hippocampal dentate gyrus, one of 
only two sites of ongoing neurogenesis in the adult brain. 
Luján, Cantacorps, and Valverde demonstrated that the 
protective effects of CBD on voluntary cocaine intake 
were ameliorated by pharmacological inhibition of hip-
pocampal neurogenesis, and Campos et  al. determined 
that CBD’s anxiolytic effects were driven by facilitating 
endocannabinoid-mediated neurogenesis using a mouse 
model of chronic unpredictable stress [16, 20].

Despite the potential for therapeutic applications of 
direct CBD exposure, its widespread actions in the brain 
and increasing use of cannabinoids during pregnancy 
raise concern for potential impacts on the developing 
fetus and subsequent adult. Administration of THC dur-
ing pregnancy has been associated with negative cogni-
tive outcomes in rodent models [21]. Notable examples 
include a study by de Salas-Quiroga et al., who identified 
sex-specific deficits in spatial memory in mice prena-
tally exposed to THC [22, 23], and work by Trezza et al. 
associating perinatal THC with altered vocalization and 
social and play behavior in rats [24]. Mereu et  al. simi-
larly found that the synthetic cannabinoid CB1 recep-
tor agonist WIN 55212-2, which mimics the actions of 
THC, disrupted memory retention and led to hyperac-
tive behavior in prenatally exposed adult rats [25]. Effects 
on addiction-related behavior have also been an area of 
interest for cannabinoid exposure during pregnancy, with 
reports of increased heroin seeking [26] and morphine 
self-administration [27] and modified dopamine [28] 
and enkephalin [29] signaling being reported. Perturbed 

glutamatergic [30], GABAergic [31], and serotonergic 
signaling [32] have also been observed, reflecting the 
widespread impact of exogenous cannabinoids in the 
brain.

The developmental origins of health and disease 
(DOHaD) hypothesis state that early-life environmen-
tal exposures can mediate later life phenotypes via epi-
genomic perturbation [33–36]. DNA methylation is the 
most commonly studied epigenetic mark and occurs 
when a methyl group is added to the fifth carbon of cyto-
sine in a cytosine-guanine dinucleotide (CpG) context 
in mammals. Differential methylation is highly relevant 
for neuropsychiatric diseases and has been identified 
in association with schizophrenia [37–42], depression 
[43–46], anxiety [47–50], and autism spectrum disor-
der [51–55]. Several studies have identified differen-
tial methylation patterns in the sperm of humans and 
rats directly exposed to THC, particularly at the autism 
candidate locus DLGAP2, and a study by Watson et  al. 
demonstrated that parental THC shifts DNA methyla-
tion of genes relevant for glutamatergic signaling in the 
rat nucleus accumbens [56–58]. Importantly, the effects 
of parental exposure to CBD have not yet been explored. 
The presence of cannabinoids during critical windows 
of methylation pattern setting in development has the 
potential to persistently alter patterns of gene regula-
tion in the brain; these changes are likely to contribute to 
adverse neuropsychiatric phenotypes in adulthood.

In this context, the aim of the present study was to 
investigate the effects of developmental exposure to 
CBD on adult behavior and the brain methylome. To this 
end, we subjected pregnant mice to a subchronic CBD 
exposure paradigm and tested their abstinent adult off-
spring for abnormalities in memory and anxiety behav-
ior. Regarding DNA methylation, we utilized the Agouti 
viable yellow (Avy) environmental biosensor model [59], 
which provides a readout of methylation changes at the 
Agouti locus via offspring coat color and has been suc-
cessfully used to identify epigenomic perturbations asso-
ciated with prenatal exposure to bisphenol A [60], lead 
[61], and other compounds. For a genome-wide perspec-
tive on a target tissue for neuropsychiatric phenotypes, 
we performed reduced-representation bisulfite sequenc-
ing (RRBS) in the cerebral cortex and hippocampus of 
adult F1 offspring. We found that developmental CBD 
exposure resulted in a sex-specific increase in anxiety 
behavior affecting female offspring and identified over 
2000 differentially methylated loci in each brain region. 
Thousands of differentially methylated loci were addi-
tionally identified in the cortex of directly exposed F0 
females in the absence of anxiety or memory changes, 
echoing recent studies showing modified methylation 
with CBD exposure and recapitulating behavior studies 
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demonstrating a lack of effect in the absence of a stressor. 
Overall, these findings provide an initial investigation 
into the effects of prenatal exposure to CBD, identify 
behavior deficits and functionally relevant methylation 
changes in the brain, and support the importance of neu-
roepigenetics in the etiology of psychiatric phenotypes.

Methods
Animals
Animals were maintained in accordance with the Guide-
lines for the Care and Use of Laboratory Animals and 
were treated humanely and with regard for alleviation 
of suffering. The study protocol was approved by the 
University of Minnesota Institutional Animal Care and 
Use Committee (IACUC). Mice were obtained from an 
Agouti viable yellow (Avy) colony maintained for over 220 
generations with the Avy allele passed through the male 
line, resulting in forced heterozygosity on a genetically 
invariant background with 93% identity to C57BL/6 [62, 
63]. All animals were maintained on a standard chow diet 
(Envigo Teklad 19% protein 2019 breeder diet for dams 
and 18% protein 2018 maintenance diet for offspring) 
and housed in cages of 3–4 individuals on corn cob bed-
ding with a 12-h light/dark cycle.

Exposure paradigm
Pharmaceutical-grade CBD (Epidiolex, GW Pharmaceu-
ticals, Cambridge, UK) was purchased at the University 
of Minnesota Boynton Health Pharmacy (Minneapolis, 
MN). CBD was diluted to 10  mg/mL concentration in 
honey (Nice! Organic Honey, Walgreens) due to its high 
lipophilicity and stability at room temperature. Honey 
has been used successfully as a drug delivery vehicle 
by others [64]. Twenty-two six- to ten-week-old, sexu-
ally mature nulliparous wild-type a/a females were ran-
domized into two groups and received either 20  mg/
kg Epidiolex™ (GW Pharmaceuticals, Cambridge, UK) 
emulsified in honey or vehicle only daily via oral admin-
istration using the tip of a 14-gauge gavage needle for 
14 days prior to mating. This dose was chosen based on 
previous CBD studies and approximates casual human 
use (~ 1.5  mg/kg) due to scaling factors for body sur-
face area [3, 4, 8, 65, 66]. On day 14, F0 females were 
harem-mated with Avy/a males (8–12 weeks of age) and 
daily dosing continued through gestation, lactation, and 
behavior testing for a total exposure time of approxi-
mately 9  weeks. All animals had access to food and 
drinking water ad  libitum throughout the experiment 
in accordance with the Institute of Laboratory Animal 
Resources guidelines [67]. F1 animals were drug-absti-
nent following weaning.

Behavior procedures
F0 exposed and control dams were subjected to the 
Y-maze spontaneous alternation test (spatial work-
ing memory) and the marble burying task (anxiety and 
compulsive behavior) between 4–7  days following the 
weaning of pups with CBD exposure ongoing. Tests 
were conducted in the home mouse room during the 
light phase of the light–dark cycle. Each F0 female was 
tested twice in order to differentiate acute from cumula-
tive CBD effects with consecutive tests being at least 24 h 
apart. For acute testing, dams were dosed with either 
20 mg/kg CBD or vehicle between 0.5 and 1.5 h prior to 
testing to ensure CBD plasma levels were near Cmax [68]. 
For cumulative effect testing, dams were tested approxi-
mately 24  h after the last dose to ensure CBD plasma 
levels were low. Adult a/a F1 offspring, which were drug-
abstinent after weaning, were subjected to the same 
behavior tests once per animal at 12 weeks of age with at 
least 24 h between tests. Same sizes were as follows: F0, 
n = 9 control, 7 exposed; F1, n = 17 control, 16 exposed. 
F0 behavior testing was conducted on females only as 
males were not exposed to CBD, while F1 behavior test-
ing was conducted on both males and females.

Y‑maze spontaneous alternation
The Y-maze spontaneous alternation task is a measure 
of spatial working memory and exploits rodents’ natu-
ral tendency to explore novel areas [69, 70]. Mice were 
placed at the end of one arm facing the center in a stand-
ard Y-maze (MazeEngineers, Boston, MA) consisting of a 
high-walled chamber with three arms connected at 120°. 
Investigators vacated the room, and the animal’s move-
ment was recorded on video using a tripod and digital 
camera for ten minutes. After ten minutes, the animal 
was returned to the home cage and the apparatus was 
sanitized with 70% alcohol to prevent scent trails from 
confounding subsequent runs. The sequence of entries 
(all four feet within the arm) was recorded from the 
video by an investigator blinded to treatment group, and 
the spontaneous alternation percentage was calculated 
as the number of spontaneous alternations ÷ (number 
of entries—2) × 100. One spontaneous alternation was 
counted when three consecutive entries into unique arms 
(e.g., A, B, C) were recorded. The total number of arm 
entries was also recorded as a measure of exploration.

Marble burying
The marble burying task is a measure of anxiety and com-
pulsive behavior in mice and takes advantage of rodents’ 
natural tendency to bury objects [71–73]. Mice were 
individually placed into the corner of a rat cage filled 
with 10  cm (height) of corn cob bedding and 20 evenly 
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placed marbles (4 × 5 layout) distributed on its surface. 
Testing was conducted with the investigator absent from 
the room for 30 min. After 30 min, mice were carefully 
removed from the test cage to avoid disturbing the bed-
ding and the number of marbles buried was counted, 
with marbles at least 2/3 covered being counted as bur-
ied. The bedding was thoroughly mixed, and marbles 
were washed with dish soap and rinsed with 70% ethanol 
following each trial to prevent scent from affecting subse-
quent runs.

Avy/a coat color
The Avy strain was used to determine whether CBD expo-
sure imparted large-scale changes in DNA methylation 
in developmentally exposed offspring. Briefly, the Agouti 
gene produces a paracrine signaling molecule that deter-
mines coat color, among other functions. The upstream 
region of the Agouti gene of Avy/a mice contains an intra-
cisternal A particle (IAP) retrotransposon insertion that 
leads to constitutive, metastable expression of the gene 
with the magnitude of expression dependent upon sto-
chastic DNA methylation within the insertion [74]. Shifts 
in methylation of these metastable loci can be triggered 
by in utero environmental exposures such as bisphenol 
A, resulting in a shifted distribution of coat colors in the 
affected offspring via variable production of pheomela-
nin [60]. Constitutive expression of the Agouti gene is 
not limited to hair follicles and thus leads to obesity, liver 
tumors, diabetes, and other phenotypes in Avy/a animals. 
Therefore, to eliminate confounding effects, only wild-
type a/a animals produced by Avy/a × a/a breedings were 
used for molecular and behavioral analyses. Avy/a F1 
offspring were photographed from above at 5–7  weeks 
of age in order to measure coat color, a readout of DNA 
methylation at the metastable Agouti epiallele in this 
strain. Coat color photographs were scored on a three-
category scale (low brown mottling/low methylation, 
medium mottling/medium methylation, high mottling 
or pseudoagouti/high methylation) by two investigators 
blinded to treatment group. Discrepant scores were set-
tled by a third blinded investigator to identify overall and 
sex-specific differences in methylation between CBD and 
control groups.

Statistical analysis
Normality for behavior scores and coat color data were 
assessed using density plots and QQ plots. Between-
group differences in F0 and F1 behavior scores (per-
formed separately for both F0 dosage timing windows) 
were assessed using Wilcoxon rank-sum tests in RStu-
dio. Two F1 female outliers (one control, one exposed) 
lying more than two standard deviations above the group 
mean were identified for Y-maze spontaneous alternation 

and removed from the analysis. Sex:group interactions 
for behavior tests were assessed using a one-way analy-
sis of variance (ANOVA). Between-group differences for 
F0 acute and cumulative behavior scores were assessed 
using Wilcoxon rank-sum tests, and paired within-group 
scores (acute vs. cumulative) were assessed using Wil-
coxon signed-rank tests. Chi-square tests for trend were 
used to evaluate overall and sex-specific differences in 
F1 Avy coat color between groups. Wild-type F1 weights 
were measured from weaning through behavior test-
ing, and differences between groups were assessed using 
ANOVA, while differences in litter size were determined 
using Wilcoxon rank-sum tests.

DNA isolation and bisulfite sequencing
Samples were prepared, and sequencing was performed 
as described previously [75]. Briefly, animals were 
euthanized via isoflurane inhalation followed immedi-
ately by internal decapitation. The brain was removed 
and dissected fresh using a stereoscope to obtain cor-
tical (F0 n = 6, F1 n = 6) and hippocampal (F1 n = 4) 
regions [76]. Tissue samples were placed directly in 
RNAlater (Sigma-Aldrich) and stored at 4 °C overnight, 
then transferred to -80  °C for long-term storage. Total 
genomic DNA (gDNA) was isolated from each animal 
using the DNeasy Blood and Tissue kit following the 
manufacturer’s protocol (Qiagen, Hilden, Germany). A 
NanoPhotometer N50 system was used to check DNA 
yield with three biological replicates per group being 
chosen for further processing based on concentra-
tion and quality. Methylation analyses were performed 
on F0 dams and F1 females only. gDNA was bisulfite-
converted following isolation using the EZ DNA Meth-
ylation-Lightning Kit (Zymo Research, Irvine, CA). 
Bisulfite conversion allows detection of methylated 
cytosines via treatment of DNA with sodium bisulfite, 
which causes unmethylated cytosines to be deaminated 
to uracils. These loci are read as thymidine by polymer-
ases during sequencing. Genome-wide DNA methyla-
tion levels were measured using reduced-representation 
bisulfite sequencing (RRBS) at Diagenode, S.A. (Bel-
gium). Briefly, DNA concentration of samples was 
measured using the Qubit® dsDNA BR Assay Kit (Ther-
moFisher Scientific), and DNA quality was assessed 
using the Fragment Analyzer™ and DNF-488 High 
Sensitivity genomic DNA Analysis Kit (Agilent). RRBS 
libraries were prepared using the Premium Reduced 
Representation Bisulfite Sequencing Kit (Diagenode 
Cat# C02030033), and 100  ng of genomic DNA was 
used to start library preparation for each sample. 
Bisulfite sequencing was performed in single-end mode 
50 bp (SE50) on an Illumina HiSeq 3000/4000. Quality 
control of reads was performed using FastQC version 
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0.11.8 [77], and adapter removal was performed using 
Trim Galore! Version 0.4.1 [78]. Bismark, a specialized 
tool that utilizes an in silico bisulfite-converted refer-
ence genome, was used for mapping bisulfite-treated 
reads [79]. The cytosine2coverage module of Bismark 
was used to determine the methylation state of all 
cytosines for every uniquely mappable read, determine 
their sequence context, and compute the percentage 
methylation. Spike-in control sequences were used to 
check the bisulfite conversion rates and to validate the 
efficiency of bisulfite treatment. The resulting cytosine 
loci were filtered to exclude non-CG context cytosines, 
loci with less than 10 reads, and loci with less than two 
biological replicates per group using R version 3.6.1.

DML and DMR calling, annotation, and functional 
enrichment
RStudio open-source software (version 3.6.1) tools were 
used for RRBS analysis as described previously [75]. 
Briefly, the DSS R package (version 2.32.0) was used 
to test RRBS data for differential methylation between 
CBD-exposed and control animals [80]. The DMLtest, 
callDML, and callDMR functions in DSS were used to 
identify differentially methylated CpG loci (DMLs) and 
regions (DMRs) with Δ > 0.1 and local FDR < 0.001. The 
annotatr R package (version 1.10.0) was used to anno-
tate DMLs and DMRs to the mm10 genome [81]. Pre-
dicted genes and three large erroneous gene transcripts 
(ENSMUST00000127664.1, ENSMUST00000124096.7, 
and ENSMUST00000154148.7), which were present 
in annotatr’s GENCODE-based intervals but not in 
RefSeq when assessed using UCSC Genome Browser, 
were manually removed from the annotation. The rand-
omize_regions function and Chi-square tests were used 
to compare the observed genic distribution of DMLs 
to the expected distribution, and the plot_annota-
tions function was used to generate figures. Functional 
enrichment of DML-containing genes was performed 
using the ToppGene suite tool ToppFun [82]. ToppFun 
utilizes hypergeometric distributions with Bonferroni 
correction to determine statistically significant enrich-
ment in up to fourteen functional categories including 
Gene Ontology (GO) terms, human and mouse phe-
notypes, protein–protein interactions, diseases, and 
others [82]. Disease annotations are drawn from Dis-
GeNET, Online Mendelian Inheritance in Man (OMIM) 
MedGen, and other sources. Lists of unique DML-
containing genes for each assayed tissue (F1 cortex, F1 
hippocampus, F0 cortex) were used as input selecting 
the “HGNC Symbol and Synonyms” entry type and run 
on default settings; terms with a Bonferroni-corrected 
p-value less than 0.05 were deemed significant.

Pyrosequencing
Pyrosequencing was performed as described previ-
ously [83]. Briefly, LINE1 and intracisternal A parti-
cle (IAP) retrotransposon pyrosequencing primers 
were designed using Qiagen Pyromark Assay Design 
software version 2.0.2 and sequences from the mm10 
genome. The parameters for each reaction included a 
thermocycler protocol of 95  °C for 30  s, an optimized 
temperature for 30  s, and 72  °C for 30  s repeated for 
35–40 cycles. Primer sequences and conditions are pre-
sented in Additional file 1. DNA methylation level was 
quantitated from PCR products on a Qiagen Pyromark 
Q96 ID instrument. Controls consisted of a “no tem-
plate control” and two wells of bisulfite converted 100% 
or 0% methylated control mouse DNA from EpiGentek. 
Methylation results were valued under criteria that 
the Pyromark software defined as ‘check’ or ‘passing’, 
with these values retained for analysis, and discarded if 
‘failed’.

Results
Effects of developmental and direct CBD exposure 
on memory and anxiety
No significant differences in F1 weight from weaning 
through study conclusion (12  weeks) were identified by 
ANOVA (Additional file  2). CBD-exposed litters con-
tained 1.25 more pups on average when compared to 
control litters (p = 0.0134; Additional file 3). To evaluate 
behavioral effects associated with developmental CBD 
exposure, F1 offspring of both sexes were subjected to the 
marble burying test, a measure of anxiety and compul-
sive behavior, and the Y-maze spontaneous alternation 
test, a measure of working spatial memory. No signifi-
cant differences in marble burying or Y-maze spontane-
ous alternation were identified between the full control 
and CBD-exposed F1 groups (Additional file 4); however, 
significant sex interactions were identified by ANOVA 
for both behavior tests warranting stratification by sex. 
A sex effect regardless of treatment group was identi-
fied by ANOVA for marble burying (p = 0.00139), and 
both a sex effect (p = 0.0239) and a sex:treatment interac-
tion (p = 0.0385) were identified for Y-maze spontaneous 
alternation. Stratifying results by sex revealed that young 
adult female F1 offspring exposed to CBD during gesta-
tion and preweaning buried nearly twice as many mar-
bles as unexposed female controls (Fig.  1; p = 0.000328) 
indicating an increase in anxiety behavior, while differ-
ences between control and CBD-exposed F1 males were 
not significant (p = 0.156). Y-maze spontaneous alterna-
tion percentage, a measure of working spatial memory, 
was also increased in exposed adult female offspring 
(p = 0.0344). The total number of Y-maze arm entries, a 
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measure of locomotor activity, was not significantly dif-
ferent between F1 groups of either sex.

Based on previous studies demonstrating anxiolytic 
effects for CBD and memory deficits for THC, F0 female 
behavior scores were also assessed during continuing 
CBD exposure following weaning of pups, representing 

approximately nine weeks of daily exposure. F0 behav-
ior tests were conducted twice, once during CBD’s Cmax 
approximately one hour after dosing and again at least 
24  h after dosing to delineate acute and cumulative 
effects. F0 Y-maze spontaneous alternation percent-
ages were not significantly different between control and 
exposed groups at either timing of dosage (Additional 
file  5; acute p = 0.114; cumulative p = 0.791). Similarly, 
differences in the total number of arm entries between F0 
groups were not significantly different (acute p = 0.7449; 
cumulative p = 0.1004). F0 marble burying scores were 
also not significantly different between groups for either 
dosage window (acute p = 0.524; cumulative p = 0.421) or 
between dosage windows.

Effects of CBD on DNA methylation
In order to assess the effects of developmental CBD 
exposure on DNA methylation, we used the Agouti via-
ble yellow (Avy) environmental biosensor model. Coat 
color was visually assessed on a three-category scale 
in Avy/a F1 offspring of both sexes (n = 76). Changes in 
coat color distribution in this strain represent shifts in 
DNA methylation at the Agouti locus. Chi-square tests 
for trend revealed that differences in coat color distribu-
tion between control and exposed F1 Avy/a animals did 
not reach significance overall (p = 0.204) or within males 
(p = 0.874) or females (p = 0.0924) (Additional file 6).

In order to identify genome-wide DNA methylation 
effects at the single nucleotide level in both directly 
and developmentally exposed animals, reduced rep-
resentation bisulfite sequencing (RRBS) was applied 
to female F0 and F1 wild-type a/a cerebral cortex and 
F1 wild-type hippocampus. Differential methylation 
comparisons revealed 4190 differentially methylated 

Fig. 1  F1 behavior results stratified by sex. a Percent of marbles 
buried in the marble burying test, a measure of anxiety and 
compulsive behavior, in adult wild-type a/a offspring exposed to 
CBD or vehicle only during development. b Y-maze spontaneous 
alternation percentage scores, a measure of working spatial memory, 
for the same cohort of mice. c Y-maze total arm entries, a measure 
of locomotor activity. Each point represents an individual animal. 
*p < 0.05; ***p < 0.001

Fig. 2  Genome-wide differences in brain methylation. Percentage 
difference (CBD exposed—control) at all statistically significant 
differentially methylated loci (DMLs) in a directly exposed F0 female 
cerebral cortex, b developmentally exposed F1 female cerebral 
cortex, and c developmentally exposed F1 female hippocampus
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loci (DMLs) in F1 hippocampus and 2234 DMLs in 
F1 cerebral cortex. Both F1 tissues exhibited a bias 
toward hypomethylation overall with 66.6% of DMLs 
being hypomethylated in hippocampus and 60.6% 
being hypomethylated in cortex (Fig.  2). In order to 
determine direct effects of CBD on the epigenome, 
genome-wide DNA methylation was also assessed in 
the cerebral cortex of chronically exposed F0 females. 
2523 DMLs were identified in F0 cortex with 55% of 
DMLs being hypomethylated. Randomization of F1 and 
F0 DMLs using the R package annotatr revealed signifi-
cant enrichment in genic regions including promoters, 
exons, and 5′ and 3′ untranslated regions for all three 
tissues (p < 0.01; Fig. 3).

To evaluate potential functional molecular conse-
quences of CBD exposure, genes containing the largest 
number of DMLs in each tissue were identified (Table 1).

No multi-CpG differentially methylated regions 
(DMRs) were identified in any tissue, likely due to strin-
gent criteria for DMR calling. Notable genes containing 
a high number of DMLs in F1 hippocampus included 
nuclear receptor corepressor 2 (Ncor2), which contained 
eight primarily hypomethylated DMLs in introns and the 
1–5 Kb upstream region (Additional file 7). Loss of Ncor2 
function has been associated with memory impairment 
and reduced social interactions via altered GABAergic 
signaling in mice [84–86]. The histone methyltransferase 
PR domain-containing 16 (Prdm16) contained seven 
intronic DMLs and one 32.9% hypomethylated promoter 
DML. Shimada et al. determined that Prdm16 knockout 
is neonatally lethal and the gene is required for neural 
stem cell maintenance and neurogenesis in the postnatal 
hippocampal dentate gyrus [87]. In F1 cortex, transmem-
brane protein 151B (Tmem151b) contained the largest 
number of DMLs. The function of this gene is not well 
understood; however, one study associated Tmem151b 
knockout with lowered seizure threshold in mice [88]. 
Eight hypermethylated DMLs, all exonic, were identi-
fied in Tmem151b in the present study. Prdm16 also 
contained seven hypomethylated DMLs in F1 cortex in 
addition to those found in F1 hippocampus. Additionally, 

Fig. 3  CBD DML distribution in genic regions. Distribution of 
differentially methylated loci (DML) counts in seven genic regions 
for a directly exposed F0 female cerebral cortex, b developmentally 
exposed F1 female cerebral cortex, and c developmentally exposed 
F1 female hippocampus compared to random distributions 
generated by the R package annotatr. Experimentally detected loci 
are shown in black, and randomized loci are in gray

Table 1  Top DML-containing genes and mean methylation 
change values

Mean methylation values (percent, exposed—control) for F1 and F0 brain 
regions. The mean methylation column represents the average change across 
all called DMLs for a given gene. Standard deviation represents the variability 
between DMLs within a gene

Tissue Gene DMLs Mean 
methylation 
(%)

SD

F1 Hippocampus Tnxb 9 28.6 43.6

Ncor2 8  − 35.4 51.1

Prdm16 8  − 5.21 61.1

Zfhx3 8  − 19.2 47.9

Gse1 7  − 59.7 13.9

F1 Cortex Tmem151b 8 55.1 8.5

Prdm16 7  − 65.4 13.2

Epas1 6 68.7 11.7

Fhl1 6  − 51.6 5.9

Gse1 6  − 40.0 54.6

F0 Cortex Camta1 9  − 13.8 59.7

Grip1 7  − 43.2 39.8

Cask 5  − 42.4 54.1

Gdf1 5  − 53.4 6.0

Mfsd12 5 60.2 11.3
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T-lymphoma invasion and metastasis-inducing protein 1 
(Tiam1), a gene found to be involved in memory storage 
in a knockout mouse model [89], contained three hyper-
methylated and three hypomethylated intronic DMLs. 
Notably, autism susceptibility candidate 2 (Auts2) con-
tained five hypomethylated intronic DMLs in F1 cortex; 
exonic mutations in this gene cause a syndromic form of 
intellectual disability through its involvement in neuronal 
migration, neuritogenesis, and transcriptional regulation 
[90–93]. In F1 hippocampus, DNA methyltransferase 
1 (Dnmt1) contained one intronic DML that was 57% 
hypomethylated in exposed animals. DMLs were not 
identified in Dnmt1 or any other DNA methyltrans-
ferases in F1 cortex or F0 cortex.

In F0 cortex, top DML-containing genes were also 
identified. Genes containing the largest number of DMLs 
included calmodulin-binding transcription activator 1 
(Camta1), which is involved in long-term and episodic 
memory and has been correlated with intellectual disabil-
ity when mutated [94–97]. In the present study, Camta1 
contained eight intronic DMLs and one promoter DML, 
which were largely hypomethylated. Additionally, gluta-
mate receptor-interacting protein 1 (Grip1) contained 
four hypomethylated DMLs in the 1–5  Kb upstream 
region and three intronic DMLs in directly exposed F0 
mice. In previous studies, Grip1 knockout mice exhib-
ited increased sociability and human GRIP1 gain of func-
tion mutations have been correlated with more severe 
social deficits in autism spectrum disorder [98, 99]. 
Interestingly, direct CBD exposure also resulted in both 
hypermethylation and hypomethylation of CpGs in long 
interspersed nuclear element (LINE1) retrotransposons 
in F0 females, while intracisternal A particle (IAP) retro-
transposons were unaffected (Additional file 8). Multiple 
genes known to interact either directly or indirectly with 
exogenous cannabinoids that are hypothesized to medi-
ate some of CBD’s effects (endocannabinoid, PPARγ, and 
TRPV receptors) did not contain RRBS DMLs in either 
generation.

Gene Ontology, phenotype, and disease terms were 
analyzed for overrepresentation in the list of DML-con-
taining genes for each F1 and F0 tissue. The top signifi-
cantly enriched terms for each tissue are presented in 
Table  2, and the full results are available in Additional 
file 9. Top-enriched Gene Ontology terms for F0 and F1 
tissues included terms related to neurogenesis, neuron 
differentiation and projection, ion transport, and synap-
tic and postsynaptic cellular components. CBD’s posi-
tive effects on neurogenesis are well established [4, 7, 16, 
20, 100, 101], and THC has been shown to modify neu-
ron morphology in multiple brain regions including the 
nucleus accumbens, an area commonly associated with 
drug-related reward [102]. Prominent overrepresented 

mouse phenotypes for F0 and F1 DML-containing genes 
included abnormal synaptic transmission and neuron 
morphology. Lastly, neurodevelopmental disorders, intel-
lectual disability, epilepsy, and autistic disorders were 
among the most enriched disease terms. In F1 hippocam-
pus drug abuse terms were the most numerous despite 
not appearing in the top five terms, with terms related to 
addiction and substance use occupying eight of the top 
twenty disease term enrichment positions (Additional 
file 9).

Discussion
There is increasing interest in the beneficial effects of 
cannabinoids for psychological phenotypes as well as for 
pregnancy-related concerns such as hyperemesis. This 
combination warrants careful investigation regarding 
the potential impacts of exposure to CBD during devel-
opment, especially given the known negative effects of 
prenatal THC. The main finding of the present study is 
that developmental CBD exposure in mice is associ-
ated with widespread changes in the brain methylome 
and sex-specific effects on anxiety and memory behav-
ior. Direct exposure during pregnancy and lactation also 
modifies DNA methylation with a similar magnitude but 
does not impart changes in memory or anxiety. Together, 
these data suggest that despite its previously studied ben-
efits in direct exposure CBD use during pregnancy may 
have negative consequences for adult offspring, though 
the observed effects were mixed. Additionally, based on 
functional enrichment of DML-containing genes it is 
possible that neuroepigenetic mechanisms are mecha-
nistically involved in developmental and direct CBD 
exposure’s behavioral effects; additional studies will be 
required to more directly link these phenomena.

The present study represents the first interrogation of 
developmental CBD’s impact on offspring psychological 
phenotypes. Developmental exposure to CBD as seen in 
F1 behavior results in sex-specific increases in anxiety 
and memory performance. These results parallel some 
findings for prenatal exposure to the psychoactive can-
nabinoid THC and contrast others. Trezza et  al. found 
that prenatal THC resulted in an anxiogenic profile in 
adult offspring as measured by the elevated plus maze; 
however, Manduca et  al. did not find anxiety or other 
behavioral abnormalities in adulthood despite neona-
tal differences in vocalization behavior with prenatal 
exposure to the synthetic cannabinoid WIN55212-2 
[24, 103]. Silva et  al. and de Salas-Quiroga et  al. identi-
fied memory deficits with prenatal THC exposure [22, 
104], which contrast with improved memory function 
observed in the present study; however, small sample size 
and the removal of outliers are important considerations 
and warrant further investigation into the effect. Other 
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behavioral phenotypes for prenatal THC exposure have 
also been observed in animals, including altered cog-
nitive function, emotional reactivity, and responses to 
drugs of abuse such as methamphetamine and opioids 
[24, 26, 28, 104], warranting expansion of prenatal CBD 
studies to these areas. Importantly, the marble-burying 
assay employed in the current study has significant limi-
tations, specifically that it remains unclear whether the 
task measures novelty-induced anxiety or compulsive/
repetitive behavior [72, 105]. Subsequent studies of pre-
natal CBD exposure should employ additional measures 
of anxiety such as the elevated plus maze or open-field 
tests as well as measures of compulsivity such as nestlet 
shredded to provide greater phenotypic accuracy. The 
observed sex-specific nature of developmental CBD’s 
behavioral effects remains notable; however, investigation 
of differential methylation in both males and females fol-
lowing prenatal exposure (as opposed to assaying females 
only as in the current study) may help identify vulnerabil-
ities or protective effects in each sex. Interestingly, effects 
on wean weight or postweaning weight for CBD were not 
observed in the present study in contrast to THC, which 
has been shown to reduce wean weight in rats [106] 
and reduce birth weight in rats [107] and humans [108] 
despite evidence for hyperphagia with direct exposure 
[109–111]. A lack of significant behavioral effects in the 
directly exposed F0 generation corresponds with pre-
vious studies such as Fogaça et al. and Gáll et al. which 
identified anxiolytic effects for CBD in the presence of 
chronic unpredictable stress but not in its absence [101, 
112]. In contrast to these studies, the extended expo-
sure window from prior to breeding through lactation 
employed here prevents identification of the discrete 
window of exposure mediating the observed changes and 
will require additional study. Regarding routes of prena-
tal exposure, cannabinoids are known to rapidly cross the 
placenta and are found in breast milk due to their high 
lipophilicity [113–117]; a study by Feinshtein et al. addi-
tionally found that CBD increased the permeability of the 
placenta to other xenobiotics [118].

Genome-wide DNA methylation results identified 
thousands of DMLs enriched in genic regions in each 
generation and brain region. These findings expand upon 
findings by Pucci et  al. and Paradisi et  al. who initially 
identified DNA methylation changes with exposure to 
CBD and the endocannabinoid anandamide, respec-
tively, in keratinocytes in vitro [119, 120]. These studies 
found hypermethylation associated with CBD exposure 
in contrast to the current study, where hypomethyla-
tion was more predominant in both directly and devel-
opmentally exposed animals. Inclusion of only females 
in the F1 RRBS analysis prevents sex comparisons on 
the epigenetic level, and future studies will be needed 

to determine whether behavior differences are reflected 
in differential methylation between males and females. 
A recent study by Sales et al., who identified changes in 
global DNA methylation levels in the mouse prefrontal 
cortex and hippocampus following direct CBD exposure, 
also associated CBD with hypermethylation by finding 
that the compound restored hypomethylation triggered 
by unpredictable stress [2]. While a mixture of hyper- and 
hypomethylation was identified in the present study, the 
slightly greater prominence of hypomethylation (particu-
larly in the F1 hippocampus) agrees with our previous 
study of brain methylation with direct CBD exposure in 
male mice [75]. While site-specific methylation changes 
may have positive or negative effects on gene expression 
depending on genic region, binding of methylation read-
ers and other factors, hypomethylation is generally asso-
ciated with increased chromosomal instability, activation 
of transposons, and reduced cell survival in CNS neurons 
[121–124]. Further study is needed to determine whether 
transposable element methylation is reduced by prena-
tal CBD; however, our finding that direct CBD results in 
mixed differential methylation within LINE1 retrotrans-
posons indicates that transposon methylation patterns 
may not correspond with genic trends. One limitation 
of the current study that is highly relevant to both DNA 
methylation and behavior outcomes is that the effects 
of CBD on maternal care are unknown. Differences in 
maternal care have been shown to impact both offspring 
behavior and brain DNA methylation in the hippocam-
pus and other brain regions [125–131]. Continuous 
infusion of the THC-like cannabinoid receptor agonist 
WIN-55212-2 has been associated with reduced mater-
nal care during lactation [132]; further study of CBD in 
the context of maternal care will be required to delineate 
its effects from those of developmental exposure.

Functional enrichment of F1 DML-containing genes 
revealed overrepresentation of neurogenesis, neuron 
morphology, and metal ion channel terms, while top dis-
ease terms included autism spectrum disorder, schizo-
phrenia, and intellectual disability. Direct exposure to 
CBD has been shown to improve anxiety and memory 
behavior in rodents [12, 133–137] and reduce psychotic 
symptoms in rodent models and humans [9, 10, 138, 
139], and it appears that similar pathways are affected 
on the epigenetic level with developmental exposure. 
Based on behavior results, it can be hypothesized that 
prenatal exposure affects these pathways in a disruptive 
manner; however, further characterization of prena-
tal CBD’s behavioral effects will be required to validate 
the observed results. Neurogenesis was a particularly 
enriched term in hippocampus, and while it is not pos-
sible from these data to determine which window of neu-
rogenesis (embryogenic, postnatal, or adult) was affected 
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by exposure, it is important to note that CBD has been 
shown to stimulate adult neurogenesis in the hippocam-
pal dentate gyrus [7, 16, 20, 100, 140]. Whether altered 
DNA methylation in neurogenesis pathways in the adult 
F1 hippocampus represents changes to ongoing adult 
neurogenesis or signatures of perturbation earlier in 
development will be a highly relevant distinction based 
on the differential consequences of increased neurogen-
esis during these windows. Enhanced adult neurogenesis 
has been associated with exercise, environmental enrich-
ment, and reduced depressive symptoms [141–145], 
while regional increases during the developmental and 
postnatal windows are linked to diseases such as autism 
spectrum disorder [146–148].

Conclusions
Overall, the current study identified sex-specific changes 
in working spatial memory and anxiety behavior as 
well as genome-wide changes in brain DNA methyla-
tion in adult mouse offspring developmentally exposed 
to human-relevant doses of CBD. The collected data 
represent an initial inquiry into the effects of prenatal 
CBD exposure on the adult brain and behavioral phe-
notypes, indicating that significant efforts are needed to 
fully characterize the impacts of this compound during 
development.
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