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Abstract 

Background:  The pattern of lung function development from pre-adolescence to adulthood plays a significant role 
in the pathogenesis of respiratory diseases. Inconsistent findings in genetic studies on lung function trajectories, the 
importance of DNA methylation (DNA-M), and the critical role of adolescence in lung function development moti-
vated the present study of pre-adolescent DNA-M with lung function trajectories. This study investigated epigenome-
wide associations of DNA-M at cytosine-phosphate-guanine dinucleotide sites (CpGs) at childhood with lung func-
tion trajectories from childhood to young adulthood.

Methods:  DNA-M was measured in peripheral blood at age 10 years in the Isle of Wight (IOW) birth cohort. Spirom-
etry was conducted at ages 10, 18, and 26 years. A training/testing-based method was used to screen CpGs. Multivari-
able logistic regressions were applied to assess the association of DNA-M with lung function trajectories from pre-
adolescence to adulthood. To detect differentially methylated regions (DMRs) among CpGs, DMR enrichment analysis 
was conducted. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. 
Pathway analyses were performed on the mapped genes of the identified CpGs and DMRs. Biological relevance of the 
identified CpGs was assessed with gene expression. All analyses were stratified by sex.

Results:  High and low trajectories of FVC, FEV1, and FEV1/FVC in each sex were identified. At PBonferroni < 0.05, DNA-M 
at 96 distinct CpGs (41 in males) showed associations with FVC, FEV1, and FEV1/FVC trajectories in IOW cohort. These 
95 CpGs (cg24000797 was disqualified) were further tested in ALSPAC; 44 CpGs (19 in males) of these 95 showed the 
same directions of association as in the IOW cohort; and three CpGs (two in males) were replicated. DNA-M at two 
and four CpGs showed significant associations with the corresponding gene expression in males and females, respec-
tively. At PFDR < 0.05, 23 and 10 DMRs were identified in males and females, respectively. Pathways were identified; 
some of those were linked to lung function and chronic obstructive lung diseases.

Conclusion:  The identified CpGs at pre-adolescence have the potential to serve as candidate markers for lung func-
tion trajectory prediction and chronic lung diseases.
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Introduction
The patterns of lung function development, from pre-
adolescence to adulthood, play a major role in the patho-
genesis of respiratory diseases. Recent studies have 
highlighted that reduced lung function development in 
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young adulthood predisposes to respiratory and other 
chronic diseases in later life and is also associated with 
early mortality [1, 2]. Lung function grows dramati-
cally throughout childhood and reaches its peak in ado-
lescence or early adulthood. After a brief period of 
stable lung function in early adulthood, a gradual decline 
ensues with aging [3–5]. Previous studies have demon-
strated that early decline of lung function, and/or failure 
to reach maximal  level lung function (even with a nor-
mal rate of decline), is associated with the development 
of chronic obstructive pulmonary disease (COPD) in 
later life [3–6], suggesting that the origins of COPD lie, 
in part, in early life [6, 7]. COPD is projected to become 
the third leading cause of death worldwide by 2030 [8, 
9], highlighting how insights into the trajectories of lung 
function development from childhood-to-young adult-
hood would be beneficial for COPD prediction, preven-
tion, and management.

Encouraged by the significance and advantage of lon-
gitudinal designs, we and others examined the temporal 
trend of lung function growth and decline through mul-
tiple important stages of life: childhood, adolescence, 
and adulthood [4, 10–12]. These studies demonstrated 
that there are distinct groups of individuals with a per-
sistently low lung function trajectory from childhood-to-
adulthood, suggested a potential connection with COPD 
in later life. One study showed weak evidence that per-
sistently low FEV1 trajectory is associated with genetic 
factors in addition to multiple childhood exposures [10]. 
A recent study based on repeated measurement of lung 
function in adults reported that genetic variants associ-
ated with cross-sectional lung function measurements 
were not associated with a longitudinal decline of lung 
function [13]. These inconsistent findings in genetic stud-
ies and the clear impact of environmental factors on lung 
function motivated the investigation of the role of epi-
genetic factors such as DNA methylation (DNA-M) in 
determining variation in lung function between people 
and over time.

DNA-M represents an epigenetic mechanism that reg-
ulates gene expression, which consequently influences 
disease risk [14, 15]. Growing evidence indicates that 
DNA-M in whole blood is associated with lung function 
and its related diseases such as asthma and COPD [15–
18]. Pre-adolescence adverse exposure is shown to be 
associated with adulthood chronic lung diseases [19]. As 
an epigenetic memory of past exposures, the role of pre-
adolescence DNA-M on lung function trajectories from 
pre-adolescence to young adulthood is unknown [19]. 
We hypothesized that differential methylation at certain 
cytosine-phosphate-guanine dinucleotide sites (CpGs) 
in childhood is associated with the trajectories of lung 
function. Given that lung function growth and decline 

is sex-dependent and such dependence is attributable to 
multiple biological determinants, including dimensional/
anatomical, immunological, and hormonal determinants 
[20–23], we examined the hypothesis in male and female 
participants, separately [12, 24]. The study was car-
ried out in the birth cohort located on the Isle of Wight 
(IOW) in the UK. To assess the potential of generalizabil-
ity, an independent UK birth cohort, the Avon Longitudi-
nal Study of Parents and Children (ALSPAC) cohort, was 
used for replication.

Results
In the complete IOW cohort (n = 1456), lung function 
measurements at ages 10, 18, and 26  years were avail-
able for 980 (67.3%), 838 (57.6%), and 547 (37.6%) par-
ticipants, respectively. A total of 377 male and 432 female 
participants were included for trajectory analyses, and 
each of the participants had spirometry tests at two or 
more of the three ages (Fig. 1). The analysed sub-sample 
(n = 809) was not statistically different from the complete 
cohort (n = 1456) regarding FVC, FEV1, and FEV1/FVC 
at the corresponding ages (Table 1).

Lung function trajectories
In trajectory analyses, two distinct lung function trajec-
tories from pre-adolescence to adulthood (10 to 26 years 
of age) were identified in the IOW cohort, labelled as 
‘low trajectory’ and ‘high trajectory’ for FVC, FEV1, and 
FEV1/FVC in both male and female participants (Fig. 2). 
Among the 377 male participants, 199 (52.8%), 204 
(54.1%), and 96 (25.5%) were assigned to low FVC, FEV1, 
and FEV1/FVC trajectories (Fig.  2: gray “dashed lines”), 
respectively, using probability > 0.5 to define class mem-
bership. Among these male participants, at least 82% and 
92% of them had a trajectory assignment probability ≥ 0.7 
for low and high trajectories, respectively.

Similarly, among the 432 female participants, 215 
(49.8%), 205 (47.5%), and 95 (22.0%) were assigned to 
low FVC, FEV1, and FEV1/FVC trajectories, respectively 
(Fig.  2: gray “two-dot-dashed lines”) using probabil-
ity > 0.5 to define the group. More than 82% and 84% of 
the female participants had a probability ≥ 0.7 of being 
assigned to the low and high trajectories, respectively, for 
all three lung function parameters.

Pre‑adolescence DNA‑M and lung function trajectories
In total, 176 of the 377 male and 136 of the 432 female 
participants included in the analyses had DNA-M data 
available at age 10  years (Fig.  1). In screening, 119 dis-
tinct CpGs for males (33 CpGs for FVC, 37 for FEV1, 
and 51 for FEV1/FVC) and 56 distinct CpGs for females 
(22 CpGs for FVC, 21 for FEV1, and 16 for FEV1/FVC, 
Fig. 3) passed and were included in final analyses for their 
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Fig. 1  Flow chart of study participants of the IOW cohort for each step of the analysis

Table 1  Comparison of lung function measurements of enrolled participants and participants included in the analyses

Lung function Males Females

Enrolled sample 
(N = 786)
Mean ± SD

Analytical sample 
(N = 377)
Mean ± SD

P value Enrolled sample 
(N = 750)
Mean ± SD

Analytical sample
(N = 432)
Mean ± SD

P value

Age 10

 FVC (L) 2.35 ± 0.34 2.37 ± 0.34 0.385 2.24 ± 0.33 2.24 ± 0.33 0.862

 FEV1 (L) 2.06 ± 0.30 2.07 ± 0.30 0.405 2.00 ± 0.29 2.00 ± 0.30 0.991

 FEV1/FVC 0.87 ± 0.06 0.88 ± 0.06 0.831 0.90 ± 0.05 0.89 ± 0.06 0.620

Age 18

 FVC (L) 5.35 ± 0.72 5.36 ± 0.72 0.853 3.96 ± 0.53 3.97 ± 0.52 0.591

 FEV1 (L) 4.61 ± 0.62 4.61 ± 0.63 0.916 3.47 ± 0.45 3.48 ± 0.45 0.745

 FEV1/FVC 0.87 ± 0.07 0.86 ± 0.07 0.597 0.88 ± 0.07 0.88 ± 0.07 0.679

Age 26

 FVC (L) 5.85 ± 0.82 5.88 ± 0.83 0.588 4.24 ± 0.54 4.25 ± 0.54 0.694

 FEV1 (L) 4.60 ± 0.72 4.64 ± 0.73 0.582 3.42 ± 0.43 3.43 ± 0.42 0.894

 FEV1/FVC 0.79 ± 0.72 0.79 ± 0.07 0.904 0.81 ± 0.06 0.81 ± 0.06 0.662
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associations with lung function trajectories, with the 
effects of confounders adjustment. There was no over-
lap between the 119 and 56 CpGs identified in males and 
females, respectively.

Using multivariable logistic regression models, 
DNA-M levels at age 10 years of 11, 13, and 17 CpGs in 
males, and 21, 21, and 16 CpGs in females were statisti-
cally significantly associated with FVC, FEV1, and FEV1/
FVC trajectories from pre-adolescence to adulthood, 
respectively, after correcting for multiple testing using 
the Bonferroni approach. Among the 96 distinct CpGs 
identified in the IOW cohort, 95 were further examined 
in the ALSPAC (cg24000797 was excluded during quality 
control in ALSPAC).

Testing IOW cohort findings in the ALSPAC
In total, 4,861 participants (males = 2216) in ALSPAC 
had FVC, FEV1, and FEV1/FVC measurements for more 
than a single time point at ages 8-, 15-, and 24-year fol-
low-up and were included in the trajectory analyses. Of 
these participants, 691 had DNA-M data at age 7 years.

We identified two trajectories, low and high, for FVC, 
FEV1, and FEV1/FVC across 8, 15, and 24 years, compa-
rable to those from the IOW cohort (Fig.  2). Next, for 
the 95 CpGs identified in the IOW cohort, we tested the 
association of DNA-M at age 7  years with lung func-
tion trajectories. Among the 95 CpGs, DNA-M at 44 
distinct CpGs (2 CpGs overlapped between FEV1 and 
FVC in females) showed the consistent association with 
lung function trajectories with those in the IOW cohort 
in terms of the direction of association. These include 
19 CpGs (6 CpGs for FVC, 7 for FEV1, and 6 for FEV1/
FVC) in males, and 25 CpGs (11 CpGs for FVC, 9 for 
FEV1, and 7 for FEV1/FVC) in females (Table  2, Fig.  4, 
Additional file  1: Table  S1). These 44 CpGs were noted 
as IOW-ALSPAC consistent CpGs. Among these CpGs, 
cg14669749 and cg21131402 showed statistically sig-
nificant associations with FEV1/FVC trajectories in 
males and cg23987789 with FEV1 trajectories in females. 
DNA-M at three CpGs showed marginal statistical 

significance in females, two for FEV1/FVC trajectories 
(cg23190164, p = 0.08 and cg24479027, p = 0.09) and one 
for FVC (cg05597624, p = 0.088). At 74% of the 19 identi-
fied CpGs in males, a higher DNA-M was associated with 
a higher odds of being in the low lung function trajecto-
ries, while in females, the percentage was 44%.

Association with gene expression
In a time-lagged assessment of DNA-M at age 10  years 
with gene expression at 26  years (n = 35 males and 41 
females), 15 of the 19 identified CpGs in males and 
another 15 CpGs of the 25 identified in females had 
expression data on the CpGs mapped genes. In males, 
of the 15 CpGs, DNA-M at cg16709691 (LMF1) and 
cg12655437 (SMAD2) was associated with the expres-
sion of genes (Table 3; both p values < 0.03). Among the 
15 CpGs in females, DNA-M at cg16049690 (BTNL9), 
cg07562175 (FBRSL1), cg13168117 (KLHL30), and 
cg23987789 (VAMP3) was associated with gene expres-
sion (Table  3; all p values < 0.05). At these six CpGs, 
higher DNA-M at cg16709691 (LMF1) and cg16049690 
(BTNL9) was associated with lower gene expres-
sion, while higher DNA-M at cg12655437 (SMAD2), 
cg07562175 (FBRSL1), cg13168117 (KLHL30), and 
cg23987789 (VAMP3) was associated with higher gene 
expression (Table 3).

Detection of differentially methylated regions
For DMR enrichment analysis, a frequency of 20 and 
above was focused in screening to secure a sufficient 
number of CpGs. In females, 486, 518, and 461 CpGs 
and in males, 419, 559, and 842 CpGs for FVC, FEV1, and 
FEV1/FVC trajectory, respectively, were selected after 
screening and included in DMR analyses for each trajec-
tory. After controlling FDR of 0.05, 23 statistically signif-
icant DMRs in males and 10 in females were identified 
(Table  4 with breakdown for each lung function trajec-
tory). In total, 78 CpGs were in the 33 (23 + 10) identified 
DMRs (Additional file  1: Table  S2), of which two CpGs 
(cg09707262 and cg02304879) were also among the 44 

Fig. 2  Distinct lung function trajectories from childhood-to-adulthood following comparable patterns in the IOW and ALSPAC cohorts. Note: 
Among the subjects assigned to each trajectory with a probability > 0.5, most assignments were with a probability ≥ 0.7, much higher than 0.5. 
In the following, we provide, for each sex and lung function parameter, the percentages of assignments with an assignment probability ≥ 0.7: (1) 
Among the male participants who were assigned to persistently low lung function trajectories with a probability > 0.5, 173 of 199 (86.9%) for FVC; 
178 of 204 (87.3%) for FEV1, and 79 of 96 (82.3%) for FEV1/FVC had a probability ≥ 0.7 of belonging to their trajectory class. (2)The males assigned 
to high lung function trajectories with a probability > 0.5, 165 of 178, (92.7%) for FVC, 156 of 173 (90.2%) for FEV1, and 267 of 281 (95.0%) for FEV1/
FVC had a probability ≥ 0.7 of belonging to the high lung function trajectory group. (3) Among the female participants assigned to each trajectory 
with a probability > 0.5, 190 of 215 (88.4%) for FVC, 188 of 205 (91.7%) for FEV1, and 78 of 95 (82.1%) for FEV1/FVC in persistently low lung function 
trajectory group had a probability ≥ 0.7 of belonging to their trajectory class. (4) The females assigned to persistently high lung function trajectories 
with a probability > 0.5, 195 of 217, (89.9%) for FVC, 191 of 227 (84.1%) for FEV1, and 311 of 337 (92.3%) for FEV1/FVC had a probability ≥ 0.7 of 
belonging to the normal lung function trajectory group

(See figure on next page.)
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CpGs individually identified CpGs. The CpGs in the iden-
tified DMRs with the mapped genes and chromosomes, 
and the corresponding p values of DMRs for each sex are 
presented in Additional file 1: Figure S1.

Biological pathways of mapped genes
The 44 IOW-ALSPAC consistent CpGs (19 CpGs for 
males and 25 for females) and the 78 CpGs in the 33 
identified DMRs (23 DMRs in males and 10 in females) 
were mapped to 42 (Table  2) and 33 genes (Table  4), 

respectively. The distinct 73 genes were included in path-
way enrichment analysis (focusing on pathways with at 
most 2000 genes) via bioinformatics tool ToppFun. After 
controlling the FDR of 0.05, six and 12 pathways were 
identified (Table 5) in males and females, respectively.

Discussion
Two major distinct lung function trajectories from 
pre-adolescence to adulthood in each sex were iden-
tified using latent class trajectory analyses in two 

Fig. 3  Flow chart of statistical analyses with the number of identified CpGs at each step. Note: *Number of significant CpGs were mentioned in an 
order for FVC, FEV1, and FEV1/ FVC changes, respectively
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Table 2  CpGs showing consistent associations of DNA-M with lung function trajectories between IOW cohort and ALSPAC

CpGs Chr. no Gene name Locationa IOW cohort ALSPAC cohort

Log ORs (95% CIs) PRaw value PBonferroni value Log ORs (95% CIs) P value

Males

 FVC trajectories

  cg02304879 6 FIG4 Promoter 2.07 (1.02, 3.12) 0.0001 0.0034 0.07 (− 0.34, 0.49) 0.7251

  cg02641801 2 KIF3C Intergenic − 4.1 (− 6.63, − 1.58) 0.0015 0.0350 − 0.39 (− 1.04, 0.26) 0.2417

  cg04901044 9 LAMC3 Body 3.59 (1.72, 5.47) 0.0002 0.0051 0.23 (− 0.28, 0.73) 0.3756

  cg16709691 16 LMF1 Body − 1.87 (− 3.05, − 0.7) 0.0017 0.0402 − 0.40 (− 0.89, 0.08) 0.1056

  cg23254163 1 CRCT1 Intergenic − 3.82 (− 5.55, − 2.09) 0.0000 0.0005 − 0.24 (− 0.74, 0.25) 0.3370

  cg26856578 13 OBI1 Intergenic − 3.16 (− 4.87, − 1.44) 0.0003 0.0085 − 0.17(− 0.66, 0.32) 0.4992

FEV1 trajectories

  cg06319475 8 OPLAH Intergenic − 2.75 (− 4.41, − 1.09) 0.0012 0.0362 − 0.11 (− 0.59, 0.36) 0.6370

  cg10605442 20 YTHDF1 Promoter 3.93 (1.56, 6.30) 0.0012 0.0362 0.28 (− 0.70, 1.27) 0.5702

  cg12655437 18 SMAD2 Intergenic − 4.44 (− 6.83, − 2.06) 0.0003 0.0092 − 0.05 (− 0.61, 0.51) 0.8713

  cg19957503 13 ATP11A Body − 3.78 (− 6.03, − 1.53) 0.0010 0.0313 − 0.14 (− 0.57, 0.30) 0.5342

  cg23131974 10 ADARB2 Body − 2.3 (− 3.72, − 0.88) 0.0015 0.0384 − 0.08 (− 0.46, 0.30) 0.6945

  cg24352757 8 ARHGEF10 Body − 2.72 (− 4.19, − 1.24) 0.0003 0.0111 − 0.12 (− 0.60, 0.36) 0.6151

  cg26844180 16 Unknown Intergenic − 1.94 (− 3.12, − 0.76) 0.0013 0.0364 − 0.19 (− 0.50, 0.12) 0.2296

 FEV1/FVC trajectories

  cg14669749 1 SKI Intergenic − 3.94 (− 6.21, − 1.67) 0.0007 0.0260 − 1.39 (− 2.72,− 0.07) 0.0397
  cg18499321 12 RIMBP2 Body 3.96 (2.11, 5.80) 0.0000 0.0014 0.005 (− 0.45, 0.46) 0.9843

  cg21049825 12 DRAM1 Intergenic − 3.98 (6.28, − 1.67) 0.0007 0.0269 − 0.41 (− 1.18, 0.36) 0.2992

  cg21131402 12 C12orf50 Promoter − 6.05 (− 9.41, − 2.7) 0.0004 0.0173 − 0.69 (− 1.41, 0.02) 0.0357
  cg22904752 17 ZNF594 5′UTR​ − 4.63 (− 7.25, − 2.01) 0.0005 0.0220 − 0.47 (− 1.43,0.50) 0.3449

  cg27378180 15 CSPG4 Promoter 4.69 (2.02, 7.36) 0.0006 0.0233 0.24 (− 0.51, 1.00) 0.5247

Females

 FVC trajectories

  cg00081919 2 HAAO Intergenic 5.94 (2.02, 9.86) 0.0030 0.0238 0.38 (− 0.60, 1.35) 0.4454

  cg00514514 16 LOC390705 Intergenic − 4.12 (− 6.68, − 1.56) 0.0016 0.0160 − 0.46 (− 1.14, 0.21) 0.1788

  cg05597624 1 RNF220 5′UTR​ − 2.07 (− 3.63, − 0.52) 0.0089 0.0356 − 0.48 (− 1.04, 0.07) 0.0881

  cg06942010 12 NCOR2 Body 7.61 (3.90, 11.32) 0.0001 0.0012 0.39 (− 0.20, 0.98) 0.1968

  cg07562175 12 FBRSL1 Intergenic 2.69 (1.08, 4.30) 0.0010 0.0156 0.002 (− 0.48, 0.48) 0.9936

  cg12799537 12 SARNP Body 3.00 (1.35, 4.66) 0.0004 0.0066 0.33 (− 0.27, 0.94) 0.2801

  cg13168117 2 KLHL30 5′UTR​ 3.10 (1.24, 4.95) 0.0011 0.0156 0.10 (− 0.4, 0.60) 0.6915

  cg13531735 3 CYP8B1 Intergenic 1.87 (0.28, 3.47) 0.0215 0.0431 0.55 (− 0.13, 1.23) 0.1135

  cg16049690 5 BTNL9 Body − 3.55 (− 5.19, − 1.92) 0.0000 0.0005 − 0.15 (− 0.43, 0.13) 0.3001

  cg18876084 6 CD2AP Intergenic 2.46 (0.84, 4.08) 0.0030 0.0238 0.56 (− 0.15, 1.27) 0.1235

  cg22777186 11 PKNOX2 5′UTR​ − 3.2 (− 5.1, − 1.30) 0.0010 0.0156 − 0.23 (− 0.99, 0.52) 0.5463

 FEV1 trajectories

  cg00529742 1 Unknown Intergenic 2.99 (1.22, 4.77) 0.0009 0.0160 0.37 (− 0.20, 0.94) 0.2004

  cg04843085 11 C11orf45, KCNJ5 Promoter,
5′UTR​

4.21 (1.13, 7.30) 0.0075 0.0470 0.11 (− 0.46, 0.69) 0.6961

  cg05299847 21 CBS Body 4.41 (2.27, 6.55) 0.0001 0.0011 0.04 (− 0.33, 0.42) 0.8174

  cg05597624 1 RNF220 5′UTR​ − 2.23 (− 3.82, − 0.65) 0.0058 0.0470 − 0.29 (− 0.8, 0.22) 0.2653

  cg09707262 4 NEUROG2 Promoter − 2.80 (− 4.70, − 0.90) 0.0038 0.0456 − 0.30 (− 1.1, 0.56) 0.4881

  cg11479221 4 MTTP Intergenic 4.00 (1.47, 6.52) 0.0019 0.0286 0.22 (− 0.43, 0.87) 0.5149

  cg18876084 6 CD2AP Intergenic 3.15 (1.39, 4.91) 0.0005 0.0086 0.51 (− 0.21, 1.22) 0.1658

  cg22697108 5 FGF18 Intergenic − 2.27 (− 4.04, − 0.49) 0.0125 0.0470 − 0.05 (− 0.5, 0.43) 0.8442

  cg23987789 1 VAMP3 Intergenic 1.55 (0.46, 2.63) 0.0052 0.0470 0.44 (0.09, 0.79) 0.0148
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population-based birth cohort. We showed that pre-
adolescence DNA-M at 44 CpGs was associated with 
the trajectories. These CpGs mapped to 42 genes, which 
were enriched in 18 KEGG and REACTOME pathways. 
We identified 23 and 10 DMRs associated with the lung 
function trajectories in males and females, respectively. 
We further evaluated the functional effects of the iden-
tified CpGs by integrating gene expression. DNA-M at 
two CpGs in males and four in females at age 10  years 
was longitudinally associated with gene expression at age 
26  year among the distinct set of 15 CpGs in each sex. 
Since in our study lung function trajectories cover from 
pre-adolescence transition till adulthood, and DNA-M 
was measured at an age close to the transition rather than 
a number of years before adolescence, the identified 44 
CpG sites have a strong potential of high sensitivity to 
predict an individual’s lung function development from 
pre-adolescence to young adulthood.

The high and low trajectories of lung function identi-
fied in this study were the same as in our previous study 
[12] except that in this study subjects who had lung func-
tion measurement only at one-time point were excluded 
to improve the accuracy of trajectory assignment. The 
identified trajectories were also consistent with the main 
two trajectories of the previous reports from population-
based studies including ours [4, 10, 12]. In a large-scale 
study, Belgrave et  al. [10] (age 5–24  years) identified 4 
distinct trajectories of FEV1; persistently high; normal; 
below average; and persistently low. In our study, on the 
other hand, two (high and low) trajectories of FVC, FEV1, 
and FEV1/FVC represented the data the best, which was 
likely due to the relatively smaller sample size. Moreo-
ver, like Belgrave et al. study, in this study, participants in 
the low FVC and FEV1 trajectory group did not achieve 

maximally attainable FVC and FEV1 and in the low FEV1/
FVC trajectory group showed an accelerated decline 
from age 10 to 26  years (15% and 11% decline in males 
and females, respectively), compared to the declines in 
the high trajectory (9% and 10%, respectively) (Fig.  2), 
suggesting a risk of future COPD. The observations in 
this study also support the findings in the previous lon-
gitudinal studies by Lange et al. and Bui et al. [6, 11] that 
the persistently low lung function trajectory is associated 
with the risk of COPD in adults.

To our knowledge, this is the first study examining 
the association of pre-adolescence DNA-M with lung 
function trajectories ranging from pre-adolescence to 
post-adolescence. The identified CpGs and DMRs at 
childhood may provide insight into the pathogenesis 
of variations in lung function growth in adolescence. In 
addition, the associations of methylation at some iden-
tified CpGs with gene expression, such as cg16709691 
(LMF1), cg12655437 (SMAD2), cg16049690 (BTNL9), 
cg07562175 (FBRSL1), cg13168117 (KLHL30), and 
cg23987789 (VAMP3) manifest the functional impor-
tance of the CpGs as biomarkers. Among these genes, 
SMAD2, FBRSL1, and VAMP3 were associated with lung 
function, its related pathway, and COPD in previous 
studies [25–28]. Although most individually identified 
CpGs through logistic regressions were different from 
those in the DMRs due to different assumptions and 
statistical approaches between these two analyses, their 
mapped genes jointly involved at the biological pathways 
(Table 5).

Among the listed biological pathways linked to the 
mapped genes (Table  4), several pathways play a sig-
nificant role in lung function and/or COPD, including 
downregulation of SMAD2/3: SMAD4 transcriptional 

log odds ratios (ORs) of IOW-ALSPAC consistent CpGs for the association of DNA-M at childhood with lung function trajectories from childhood-to-adulthood in males 
and females, separately

The CpGs showed the same direction of associations and were significant at 0.05 or 0.1 level and were in bold font

Chr. no chromosome number, ORs odds ratios, CIs confidence intervals
a  Genes located at intergenic location were not found in Illumina annotation file and were identified using online tool SNIPPER

Table 2  (continued)

CpGs Chr. no Gene name Locationa IOW cohort ALSPAC cohort

Log ORs (95% CIs) PRaw value PBonferroni value Log ORs (95% CIs) P value

 FEV1/FVC trajectories

  cg03861217 2 KCNJ3 Body − 5.00 (− 8.17, − 1.83) 0.0020 0.0142 − 0.04 (− 0.89, 0.82) 0.9356

  cg19723734 7 MAD1L1 5′UTR​ 2.36 (0.48, 4.24) 0.0139 0.0417 0.37 (− 0.33, 1.07) 0.2985

  cg20805367 17 C17orf49 Body 1.55 (0.63, 2.48) 0.0010 0.0096 0.04 (− 0.26, 0.34) 0.7861

  cg23190164 12 LGR5 Body − 2.64 (− 4.31, − 0.97) 0.0020 0.0142 − 0.39 (− 0.83, 0.06) 0.0901
  cg24479027 17 ABR Promoter − 0.63 (− 1.14, − 0.11) 0.0182 0.0417 − 1.94 (− 4.11, 0.24) 0.0807
  cg24595510 20 SCRT2 3′UTR​ − 2.44 (− 4.07, − 0.82) 0.0032 0.0161 − 0.49 (− 1.51, 0.53) 0.3487

  cg25729401 17 CYTH1 Intergenic 2.02 (0.28, 3.75) 0.0229 0.0417 0.42 (− 0.48, 1.32) 0.3614



Page 9 of 18Sunny et al. Clin Epigenet            (2021) 13:5 	

activity, circadian entrainment, GABA B receptor acti-
vation, and activation of G protein-gated potassium 
channels [25, 29–32]. For example, downregulation of 

SMAD2/3: SMAD4 transcriptional activity plays a role 
in the regulation of TGF-β1-induced collagen expres-
sion in lung. Excessive collagen deposition is one of the 

Fig. 4  Bar plots of log odds ratios (*ORs) of IOW-ASPAC consistent CpGs and their mapped genes. Note: Each box plot showed CpGs which showed 
consistent associations between the IOW and ALSPAC cohorts for the association of DNA-M at childhood with lung function trajectories from 
childhood to adulthood in males and females, separately. *In ALSPAC the log odds ratios were smaller than the IOW cohort. For better visualization 
of bars in the ALSPAC figure, the log ORs were multiplied by 10



Page 10 of 18Sunny et al. Clin Epigenet            (2021) 13:5 

characteristics of idiopathic pulmonary fibrosis that 
lead to impaired lung function later in life. The asso-
ciation of cg12655437 with SMAD2 expression in this 
study revealed the pathway as functionally meaning-
ful. Another pathway, the circadian rhythm regulates 

physiological diurnal variation of lung function through 
the autonomous peripheral circadian clock mecha-
nisms. Clara cells in the bronchioles play a major role 
in such variations of lung function. These physiologi-
cal oscillations are driven by transcriptional factors and 
genes such as PER3.

The CpGs showing consistent direction of asso-
ciations with statistical significance at 0.05 or < 0.1 in 
both cohorts included cg14669749 (SKI), cg21131402 
(C12orf50), cg23987789 (VAMP3), cg23190164 (LGR5), 
cg24479027 (ABR), and cg05597624 (RNF220). Some of 
these genes, such as VAMP3, LGR5, PER3, and SDC1, 
were found to be involved in the different physiological 
functions of lung and chronic lung disease [27, 28, 33–
36]. Among these genes, VAMP3 is found as one of the 
soluble N-ethylmaleimide-sensitive factor attachment 
protein receptors regulating mucin granule exocyto-
sis. Mucin secretion is an innate immunity mechanism, 
which is harmfully upregulated in obstructive lung dis-
eases including COPD [27, 28]. In addition, being in the 
intergenic region, the significant positive association 
of methylation at cg23987789 with the expression of 
VAMP3 revealed a potential of this CpGs’ functionally 
regulatory role. LGR5 is related to the WNT signalling 
cascades, which are the critical regulators of different 
developmental and pathophysiological processes in lung. 
Dysregulated LGR5 expression influences to reduced 
WNT-β catenine signalling cascades, which is further 
linked to chronic lung disease including COPD [33, 34]. 
Among the annotated genes of the DMRs and also identi-
fied in circadian entrainment pathway, in females, PER3 
has been previously associated with childhood and ado-
lescence lung function (FEV1) [35]; in males, SDC1 was 
found as a differentially expressed genes in COPD devel-
opment by robust rank aggregation method and in KEGG 
pathway in the previous study [36].

Although overall patterns of lung function trajecto-
ries in males and females were similar, for each identi-
fied trajectory, there existed large differences in volumes 
and flows between the two sex (Fig. 2). Such differences 
were expected and acknowledged in the literature [20–
23] and were the major driving factors for the stratified 
study design. The uniqueness of identified CpGs for each 
sex led us to postulate the possibility of either different 
underlying epigenetic mechanisms in males and females 
in the regulation of gene activity and may act as the bio-
markers of physiology and/or exposures that influence 
lung function trajectory. Another strength of this study 
was the time-lagged study design. Because of this, CpGs 
identified in this study have the potential to serve as can-
didate predictors for future lung function trajectories and 
will be beneficial to the detection of early lung diseases 

Table 3  Association of  DNA-M at  IOW-ALSPAC consistent 
CpGs with gene expression

The CpGs which showed a significant association with gene expression at 0.05 
level were in bold font
a  Genes located at intergenic location were not found in Illumina annotation file 
and were identified using online tool SNIPPER

Chr. no chromosome number, coeff. coefficient

CpGs name Gene 
name

Chr. no Locationa DNA-M at age 
10 years 
with gene 
expression 
at age 26 years

Coeff P value

Males

 cg23131974 ADARB2 10 Body 0.004 0.902

 cg24352757 ARHGEF10 8 Body − 0.095 0.115

 cg19957503 ATP11A 13 Body 0.017 0.729

 cg27378180 CSPG4 15 Promoter − 0.002 0.982

 cg21049825 DRAM1 12 Intergenic − 0.071 0.329

 cg02304879 FIG4 6 Promoter − 0.341 0.456

 cg02641801 KIF3C 2 Intergenic − 0.018 0.881

 cg04901044 LAMC3 9 Body − 0.037 0.571

 cg16709691 LMF1 16 Body − 0.231 0.022
 cg06319475 OPLAH 8 Intergenic 0.002 0.980

 cg18499321 RIMBP2 12 Body − 0.070 0.186

 cg14669749 SKI 1 Intergenic 0.009 0.909

 cg12655437 SMAD2 18 Intergenic 0.199 0.024
 cg10605442 YTHDF1 20 Promoter − 0.004 0.976

 cg22904752 ZNF594 17 5′UTR​ 0.022 0.648

Females

 cg24479027 ABR 17 Promoter -0.048 0.925

 cg16049690 BTNL9 5 Body − 0.102 0.034
 cg04843085 C11orf45 11 Promoter, 

5′UTR​
0.004 0.906

 cg05299847 CBS 21 Body − 0.030 0.536

 cg18876084 CD2AP 6 Intergenic − 0.024 0.665

 cg25729401 CYTH1 17 Intergenic − 0.265 0.165

 cg07562175 FBRSL1 12 Intergenic 0.304 0.045
 cg00081919 HAAO 2 Intergenic − 0.087 0.186

 cg13168117 KLHL30 2 5′UTR​ 0.148 0.0043

 cg19723734 MAD1L1 7 5′UTR​ 0.234 0.085

 cg06942010 NCOR2 12 Body 0.062 0.465

 cg05597624 RNF220 1 5′UTR​ − 0.096 0.701

 cg12799537 SARNP 12 Body 0.058 0.462

 cg23987789 VAMP3 1 Intergenic 0.846 0.0285
 cg04843085 KCNJ5 11 Promoter, 

5′UTR​
− 0.100 0.735
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and subjects with a higher risk of developing those 
diseases.

Some issues related to the study designs and data anal-
yses are worth discussing. In this study, participants with 

lung function measurements available only at one-time 
point were excluded from the analyses. The exclusion 
of subjects with missing data plus stratification by sex 
made the sample size smaller for each group, especially 

Table 4  DMRs for lung function trajectory in relation to childhood DNA-M identified by DMRcate method

DMRcate annotates to UCSC RefGene from the Illumina annotation file
a  Genes were not found in Illumina annotation file and were identified using online tool SNIPPER
b  CpGs names are provided in Additional file 1: Table S2

Lung function 
trajectory

Molecular location of the DMR 
(chromosome: start–end)

Annotated Genes No. CpGs in the regionb Stouffer

Males

 FVC

chr6: 110011156–110011999 FIG4, AK9 2 1.15 × 10–177

chr13: 112986154–112986635 LINC01044 4 9.26 × 10–143

chr11: 113660695–113660756 ATF4P4, RP11-667M19.5 2 1.13 × 10–113

chr1: 46859774–46859791 FAAH 2 3.51 × 10–65

 FEV1

chr17: 28928406–28928453 SMURF2P1 2 1.24 × 10–243

chr2: 172974138–172974630 DLX2a 2 1.14 × 10–175

chr16: 31147044–31147177 PRSS8 2 1.67 × 10–55

chr13: 37249426–37249450 SERTM1 2 1.78 × 10–48

chr6: 31148383–31148552 POU5F1 6 3.27 × 10–42

chr6: 74009041–74009455 KHDC1a 2 4.35 × 10–14

 FEV1/FVC

chr2: 20424423–20425395 SDC1 2 1.03 × 10–280

chr16: 84029457–84029584 NECAB2a 2 4.14 × 10–235

chr22: 39713008–39713062 RPL3 2 1.07 × 10–140

chr5: 177366867–177367013 RP11-1252I4.2 2 1.38 × 10–100

chr1: 47656137–47656140 PDZK1IP1 2 3.78 × 10–100

chr1: 223899845–223899998 CAPN2 2 1.41 × 10–95

chr7: 1003645–1004748 COX19a 3 3.69 × 10–79

chr6: 31846996–31847009 SLC44A4 2 3.88 × 10–43

chr1: 11761078–11761296 DRAXINa 2 3.60 × 10–29

chr5: 23951555–23951696 C5orf17 2 8.99 × 10–26

chr17: 78865368–78865662 RPTORa 2 1.76 × 10–15

chr15: 99409360–99409506 NA 2 1.12 × 10–12

chr2: 65593908–65594021 SPRED2 2 1.99 × 10–7

Females

 FVC chr1: 1022530–1022900 C1orf159 2 1.51 × 10–139

chr11: 68621969–68622177 CPT1Aa 2 3.25 × 10–133

chr11: 68658383–68658836 MRPL21a 3 4.99 × 10–7

 FEV1

chr4: 113437801–113438462 NEUROG2, RP11-402J6.1 2 6.18 × 10–158

chr1: 7842369–7842406 PER3-003 2 1.33 × 10–142

chr8: 144416404–144416485 TOP1MT 2 1.13 × 10–115

 FEV1/FVC

chr16: 56715756–56716182 MT1X, RP11-343H19.2 2 1.73 × 10–101

chr17: 79905219–79905255 MYADML2 2 1.69 × 10–123

chr7: 73256414–73256416 WBSCR27 2 1.91 × 10–17

chr20: 3051954–3052221 OXT 2 1.43 × 10–5
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for females (n = 136). However, including participants 
with lung function measurement available at two or 
more time points ensured a high probability of trajectory 
group assignment rather random group assignment with 
a probability around 0.50. Also, based on the comparison 
with the whole study cohort, the study samples repre-
sented the whole cohort indicating that such restriction 
(≥ 2 repeated lung function measurements) did not 
bring statistically significant selection bias into the study 
samples. The use of a screening process, together with 
stringent control of multiple testing via the Bonferroni 
approach instead of controlling FDR, and the utilization 
of the replication cohort ensured that the findings from 
our study are robust with the potential of being general-
ized. Besides, in the IOW cohort, age 10 was treated as 
the pre-adolescence age, since almost all children (males 
98% and females 92%) included in this study had not 
entered any phase of puberty. The children with mini-
mal pubertal events were not excluded from the present 
study, since excluding them was not expected to alter the 
findings and conclusions but might have decreased test-
ing power. Another perspective related to age is that, in 
the IOW cohort, the analyses were based on data col-
lected at ages 10, 18, and 26 years representing pre- and 
post-adolescence. In the ALSPAC, the corresponding 

ages were 7/8, 15, and 24 years. The decline phase of lung 
function might have not started yet at age 24 years in the 
ALSPAC for some subjects (Fig.  3). This inconsistency 
between the two cohorts might be the cause of a lack of 
replication for some CpGs. Finally, the identified CpGs 
had minimal overlapping among FVC, FEV1, and FEV1/
FVC trajectories, although in females, some mapped 
genes of identified CpGs associated with FVC, FEV1, 
and/or FEV1/FVC trajectories were involved in com-
mon pathways across these three different lung function 
parameters. Since DNA-M was measured in whole blood 
rather than in airways, although several studies support 
this non-invasive sampling approach of assessing DNA-
M, the relevance of epigenetic changes measured in leu-
kocytes in whole blood to gene expression in the lung 
remains unanswered and deserves further investigations 
of their biological evidence.

Conclusion
Our study identified 44 CpGs with pre-adolescence 
DNA-M shown to be associated with lung function tra-
jectories from pre-adolescence to young adulthood. 
These CpGs have a strong potential as candidate mark-
ers in future studies focusing on predicting an individu-
al’s lung function trajectory. A well-designed study plan 

Table 5  Pathways were identified from the mapped genes of the IOW-ALSPAC consistent CpGs and DMRs

Name of the pathways Source P value q value FDR B&H Hit in query list

Males

 Defective B4GALT7 causes EDS, progeroid type REACTOME 4.12 × 10–4 3.40 × 10–2 SDC1, CSPG4

 Defective B3GALT6 causes EDSP2 and SEMDJL1 REACTOME 4.12 × 10–4 3.40 × 10–2 SDC1, CSPG4

 Defective B3GAT3 causes JDSSDHD REACTOME 4.12 × 10–4 3.40 × 10–2 SDC1, CSPG4

 Downregulation of SMAD2/3: SMAD4 transcriptional activity REACTOME 6.08 × 10–4 3.40 × 10–2 SDC1, CSPG4

 A tetrasaccharide linker sequence is required for GAG synthesis REACTOME 7.79 × 10–4 3.40 × 10–2 SDC1, CSPG4

 Diseases associated with glycosaminoglycan metabolism REACTOME 7.79 × 10–4 3.40 × 10–2 SDC1, CSPG4

Females

 Circadian entrainment KEGG 6.15 × 10–4 2.86 × 10–2 PER3, KCNJ3, KCNJ5

 Oxytocin signalling pathway KEGG 2.36 × 10–4 3.15 × 10–2 OXT, KCNJ3, KCNJ5

 Inhibition of voltage-gated Ca2+ channels via Gbeta/gamma subunits REACTOME 8.73 × 10–4 2.86 × 10–2 KCNJ3, KCNJ5

 G protein-gated Potassium channels REACTOME 8.73 × 10–4 2.86 × 10–2 KCNJ3, KCNJ5

 Activation of G protein-gated Potassium channels REACTOME 8.73 × 10–4 2.86 × 10–2 KCNJ3, KCNJ5

 Inwardly rectifying K + channels REACTOME 1.34 × 10–3 2.86 × 10–2 KCNJ3, KCNJ5

 GABA B receptor activation REACTOME 2.23 × 10–3 3.09 × 10–2 KCNJ3, KCNJ5

 Activation of GABAB receptors REACTOME 2.23 × 10–3 3.09 × 10–2 KCNJ3, KCNJ5

 Sterols are 12-hydroxylated by CYP8B1 REACTOME 3.53 × 10–3 4.00 × 10–2 CYP8B1

 Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal REACTOME 3.53 × 10–3 4.00 × 10–2 MAD1L1

 Amplification of signal from the kinetochores REACTOME 3.53 × 10–3 4.00 × 10–2 MAD1L1

 GABA receptor activation REACTOME 4.33 × 10–3 4.66 × 10–2 KCNJ3, KCNJ5



Page 13 of 18Sunny et al. Clin Epigenet            (2021) 13:5 	

is warranted to comprehensively assess these CpGs’ joint 
contributions on lung function patterns.

Methods
Study subjects and design
The IOW cohort—Discovery cohort
The Isle of Wight (IOW) birth cohort is a population-
based birth cohort established in 1989, UK. The study 
was originally approved by the IOW Local Research Eth-
ics Committee at recruitment, and further assessments of 
this cohort are approved by the National Research Eth-
ics Service, Committee South Central—Southampton B 
(06/Q1701/34). Informed written consent was obtained 
from participants or their parents before participating. 
The study enrolled 1456 eligible children of 1536 born 
between January 1989 and February 1990 (after exclusion 
of adoptions, infant deaths, and denial). Details of the 
IOW birth cohort of 1989 have been described elsewhere 
[37]. Longitudinal monitoring of allergic diseases, pheno-
typic measures, genetic, and assessments of environmen-
tal exposures were conducted at birth, ages 1, (94.4%), 2 
(84.5%), 4 (83.6%), 10 (94.3%), 18 (90.2%), and 26 (70.9%) 
years.

Lung function
Pre-bronchodilator spirometric measurements, includ-
ing forced vital capacity (FVC), forced expiratory vol-
ume in one second (FEV1), and the ratio of FEV1 over 
FVC (FEV1/FVC), were conducted at ages 10 (n = 980), 
18 (n = 838), and 26 (n = 546) years and included in 
the study. FVC and FEV1 were measured using a Koko 
spirometer and software with a portable desktop device 
(both PDS Instrumentation, Louisville, KY, USA), and 
the FEV1/FVC ratio was calculated. Spirometry was 
conducted and evaluated according to the American 
Thoracic Society (ATS) guidelines [38, 39]. To conduct 
spirometry, participants were required to be free of res-
piratory infection for two weeks, not taking oral steroids, 
not taking any β-agonist for six hours and caffeine for at 
least 4 h.

Measurement of DNA methylation (DNA‑M)
Peripheral blood samples collected at ages 10 years from 
n = 330 randomly selected subjects were used for DNA 
extraction via a standard salting out procedure [40]. 
DNA concentration was estimated by Qubit quantitation. 
For each sample, one-microgram DNA was bisulphite-
treated for cytosine to thymine conversion using the EZ 
96-DNA methylation kit (Zymo Research, Irvine, CA, 
USA), following the manufacturer’s protocol. DNA sam-
ples were randomly distributed on microarrays to con-
trol against batch effects. DNA-M was measured using 
HumanMethylation450K and HumanMethylationEPIC 

BeadChips (Illumina, Inc., SanDiego, CA, USA). Arrays 
were processed using a standard protocol as described 
elsewhere [41], with multiple identical control samples 
assigned to each bisulphite conversion batch to assess 
assay variability.

Preprocessing of DNA‑M
Probes not reaching a detection p value of 10–16 in at 
least 95% of samples were excluded. The same criterion 
was applied to exclude samples, i.e. a sample with detec-
tion p value of > 10–16 in more than 5% of CpGs was 
excluded. CpGs on sex chromosomes were also excluded 
to avoid bias. DNA-M was then pre-processed using the 
“CPACOR” pipeline for data from both platforms [42]. 
DNA-M intensities were quantile normalized using the 
R computing package, minfi [43]. DNA-M β values for 
each CpG were then calculated as a ratio of methylated 
(M) over the sum of methylated and unmethylated (U) 
probes (β = M/[c + M + U]) interpreted as the percent-
age of methylation [44], where c was used as a constant 
to prevent zero in the denominator. Principal compo-
nents (PCs) inferred based on control probes were used 
to represent latent variables explaining chip-to-chip and 
technical (batch) effects on DNA-M variations. Since 
DNA-M data were from two different platforms (450  k 
and EPIC), we determined the PCs based on DNA-M 
at shared control probes between the two platforms. In 
total, 195 control probes were overlapped between 220 
control probes from the 450 K BeadChips and 204 from 
the EPIC array. These 195 shared probes were then used 
to calculate the control probe PCs, top 15 of which were 
used to represent latent batch factors [42].

After pre-processing, a total of 473,864 and 847,155 
CpGs were available in the 450 K and EPIC methylation 
array data, respectively, and 439,635 overlapping CpGs 
were identified between the two platforms. CpGs with a 
single nucleotide polymorphisms (SNP) overlapping the 
detection probe with minor allele frequency ≥ 0.7% (cor-
responding to at least 10 subjects in the IOW cohort with 
n = 1456) within 10 base pairs of the targeted CpG were 
excluded due to potential bias that those SNPs brought 
to the measurement of DNA-M. After excluding probe 
SNPs, 402,714 CpGs were included in the statistical 
analyses.

Gene expression data
RNA-seq gene expression data for subjects at age 
26 years were available in IOW cohort, which was used 
to evaluate biological relevance of CpGs shown to have 
time-lagged associations with lung function. We used 
paired-end (2 × 75  bp) RNA sequencing with the Illu-
mina Tru-Seq Stranded mRNA Library Preparation Kit 
with IDT for Illumina Unique Dual Index (UDI) barcode 
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primers following manufacturer’s recommendations. 
RNA samples were extracted from whole blood of the 
IOW cohort participants at age 26  years. All samples 
were sequenced second time using the identical pro-
tocol, and for each sample, the output from both runs 
was combined. FASTQC were run to assess the qual-
ity of the FASTQ files [45]. Reads were mapped against 
Human Genome (GRch37 version 75) using HISAT2 
(v2.1.0) aligner [46]. The alignment files, produced in 
the Sequence Alignment Map (SAM) format, were con-
verted into the Binary Alignment Map (BAM) format 
using SAMtools (v1.3.1) [47]. HTseq (v0.11.1) was used 
to count the number of reads mapped to each gene in the 
same reference genome used for alignment [48]. Normal-
ized read count FPKM (Fragments Per Kilobase of tran-
script per Million mapped reads) were calculated using 
the countToFPKM package (https​://githu​b.com/AAlhe​
ndi17​07/count​ToFPK​M) and were included for subse-
quent data for analysis.

Confounders
Based on prior knowledge in the published literature, 
variables potentially associated with lung function trajec-
tories in addition to DNA-M were included in the model 
as confounders. The potential confounders were birth 
weight, gestational age, duration of breastfeeding, mater-
nal smoking exposure during pregnancy, recurrent chest 
infection collected at ages 1/2 years, second-hand smok-
ing exposure at age 10 years (childhood), height and body 
mass index (BMI) at age 10 years, exposure to pets at age 
10 years, age of puberty onset, and socioeconomic status 
(SES) [4, 11, 12].

Gestational age information was recorded during deliv-
ery in the hospital. Birth weight was measured imme-
diately after birth. Heights and weights at age 10 were 
measured before spirometric measurements, and BMI 
was calculated from height and weight accordingly. The 
age of puberty onset was estimated based on self-reports 
about age of initiation of five pubertal markers for each 
sex, a growth spurt, body hair growth, skin changes, 
deepening voice of male, facial hair of male, breast 
development of female, and initiation of menstruation 
of female. The National Institute of Child and Human 
Development questionnaire from the Study of Early 
Child Care and Youth Development was used to iden-
tify pubertal stages. Information on second-hand smoke 
exposure in childhood was collected from parents. SES 
was classified using the composite “SES-cluster” method 
based on the following three variables: (a) the British 
socioeconomic classes [1–6] derived from parental occu-
pation reported at birth; (b) the number of children in 
the index child’s bedroom (collected at age 4 years); and 
(c) family income at age 10  years [49]. This composite 

variable captures the family social class across the entire 
study period. Pet exposure information was collected at 
age 10 years through questionnaires.

The ALSPAC cohort—Replication cohort
ALSPAC is a population-based birth cohort study estab-
lished in 1991 in Avon, UK, approximately 75 miles from 
the IOW [50, 51]. All pregnant women who were expect-
ing to deliver between 1 April 1991 and 31 December 
1992, and residing in the Avon region of the South West 
of England were eligible to be recruited. In total, 14,541 
pregnant women were recruited for the study, of those 
13,761 were eligible with 10,321 having DNA sampled. 
Information on environment, lifestyle, and health of the 
child and family was collected through annual question-
naires since the child’s birth. At age 7 an additional 913 
children were enrolled. The total sample size for analy-
ses using any data collected after the age of 7 is therefore 
15,454 pregnancies, resulting in 15,589 foetuses. Of these 
14,901 were alive at 1 year of age. From age 7 years, the 
participants were invited to an annual research clinic to 
obtain the exposure and other demographic data annu-
ally. Spirometry (Vitalograph 2120; Vitalograph, Maids 
Moreton, UK) was performed at 8, 15, and 24 years of age 
according to ATS standards [39, 52, 53], the same method 
as that applied in the IOW cohort. The study website 
contains details of all the data that are available through 
a fully searchable data dictionary and variable search tool 
(http://www.brist​ol.ac.uk/alspa​c/resea​rcher​s/our-data/).

DNA-M data of children at ages 7 (n = 968) years were 
included in the study. DNA-M in peripheral blood was 
assessed using the Infinium HumanMethylation450K 
BeadChip [54]. The procedure for DNA sample prepa-
ration was comparable to that applied in the IOW 
cohort. The pre-processing of DNA-M was performed 
by adjusting batch effect, excluding CpGs with detection 
p value ≥ 0.01, and excluding samples that were flagged 
a sex-mismatch based on X-chromosome methylation. 
Details of pre-processing, quality control, and quantile 
normalization of DNA-M data have been described else-
where [54, 55].

Statistical analyses
Descriptive analyses
To evaluate whether subjects included in the study rea-
sonably represented those in the complete study cohort, 
we compared lung function tests at ages 10, 18, and 
26 years in the study samples with those of the complete 
cohort using one-sample t tests.

Determining distinctive lung function trajectories
Our previous publication [12] of lung function trajectory 
was based on at least single spirometry test to attain a 

https://github.com/AAlhendi1707/countToFPKM
https://github.com/AAlhendi1707/countToFPKM
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maximum sample size. In this study, subjects with at least 
two-time point tests were included for trajectory analyses 
to improve the average posterior probability and to avoid 
the random assignment of the subjects into a trajectory. 
An unsupervised semi-parametric mixture modelling 
implemented in the SAS procedure PROC TRAJ [56] was 
applied to identify developmental lung function trajecto-
ries of FVC, FEV1, and FEV1/FVC over time (10, 18, and 
26 years) for males and females separately [57], the same 
approach applied in our previous study [12]. This method 
combines the latent growth curve and mixture modelling 
approaches to detect distinct groups of trajectories [56]. 
All possible models were evaluated each with different 
numbers of groups (i.e. 2, 3, and 4) and different shapes 
of the trajectories (linear, quadratic, and cubic) for each 
group. Trajectory parameters were estimated using the 
maximum likelihood approach [58, 59]. The best model 
was selected based on two criteria, being as parsimoni-
ous as possible to summarize the distinctive features and 
with high Bayesian information criterion (BIC) [57, 60, 
61]. To improve the quality of identified trajectories, in 
addition to BIC, probability of trajectory assignment as 
well as sample sizes in each group was further incorpo-
rated; the average posterior probabilities of assignment 
to a group were set at least 0.7, and the sample size of 
each group was required to be at least 5% of the total 
sample size [60]. Individuals were assigned to one of 
the trajectories/groups based on their highest estimated 
group-membership probabilities. The assigned group 
(categorical variable) of distinct lung function trajectories 
was used in subsequent analyses.

Association analyses
To assess the association of DNA-M at an earlier age 
with lung function trajectories at later ages in the IOW 
cohort, we followed a two-step analytical approach. 
In the first step, CpGs were screened to exclude CpGs 
potentially not associated with lung function trajecto-
ries using ttScreening (R package 3.5.1 version) [62, 63]. 
This method utilizes training and testing data in robust 
linear regressions with surrogate variables included in 
the regressions to adjust for unknown effects. The train-
ing and testing steps were repeated 100 times. A CpG 
that was statistically significant in both training and test-
ing steps at least 50 times was included in the final set 
for subsequent regression analyses. The screening was 
performed for each lung function parameter, stratified by 
sex.

In second step, CpGs that passed screening were fur-
ther assessed in logistic regression models in SAS 9.4 for 
the trajectories of each lung function parameter stratified 

by sex and adjusting for the above-mentioned confound-
ers. Lung function trajectory was treated as the out-
come variable, and the DNA-M at each CpG that passed 
screening was used as an independent variable. Multiple 
testing was corrected using the Bonferroni method with 
an experiment-wise significance level of 0.05. In all analy-
ses, DNA-M adjusted for cell types, principle compo-
nents, and batch effects at each CpG was used.

Replication analysis—in the ALSPAC cohort
The identified CpGs from the IOW cohort were fur-
ther examined in the ALSPAC. Comparable analyti-
cal methods as those implemented in the IOW cohort 
were applied except for the exclusion of two covariates 
in regression analyses, recurrent chest infection, and pet 
exposure at childhood, which were unavailable in the 
ALSPAC.

Gene expression analysis
To assess the potential biological relevance of the iden-
tified CpGs, we examined the time-lagged associa-
tion of DNA-M at those CpGs with the expression of 
their mapped genes. Linear regressions were applied 
to DNA-M at age 10  years with gene expression at 
age 26  years to each CpG which showed the consistent 
direction of association between the IOW cohort and 
ALSPAC.

Analyses of differentially methylated regions (DMRs)
To detect regional differential methylation signals among 
the CpGs that passed screening, an R package DMRcate 
was used [64]. The default settings in DMRcate include 
having at least two CpGs in a region and a minimum 
length of 1000 nucleotides. In our study, a DMR was con-
sidered to be statistically significant if the false discovery 
rate (FDR)-adjusted p value was < 0.05 [64]. Since DMR 
analyses focus on contribution of a region as a whole 
unit, a significant DMR can be detected even if there 
is no genome-wide significant individual CpGs in the 
region.

Pathway analyses
Genes annotated to the CpGs explored in ALSPAC 
with respect to the direction of odds ratios (ORs in the 
log scale) and DMRs were identified based on Illumi-
na’s manifestation file and SNIPPER (https​://csg.sph.
umich​.edu/boehn​ke/snipp​er/) version 1.2. Bioinformatic 
assessment of the genes was conducted using the online 
bioinformatics tool ToppFun, available in the ToppGene 
Suite [65]. Multiple testing was adjusted by controlling 
FDR of 0.05.

https://csg.sph.umich.edu/boehnke/snipper/
https://csg.sph.umich.edu/boehnke/snipper/


Page 16 of 18Sunny et al. Clin Epigenet            (2021) 13:5 

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1314​8-020-00992​-5.

Additional file 1. Table S1: List of CpGs (k = 96) showing in both consist-
ent and opposite direction of associations of DNA-M at childhood with 
lung function trajectories childhood-to-young adulthood in males and 
females between the IOW cohort and ALSPAC. Table S2: DMRs (k = 33) 
for lung function trajectory in relation to childhood DNA-M identified by 
DMRcate (FDR < 0.05) method. Figure S1: Circular plots of CpGs identified 
in DMRs (A) for males (B) for females.

Abbreviations
ATS: American Thoracic Society; ALSPAC: Avon Longitudinal Study of Parents 
and Children; BMI: Body mass index; CpGs: Cytosine-phosphate-guanine 
dinucleotide site or sites; COPD: Chronic obstructive pulmonary disease; DMR: 
Differentially methylated regions; DNA-M: DNA methylation; FVC: Forced vital 
capacity; FEV1: Forced expiratory volume in one second; FDR: False discovery 
rate; IOW: Isle of Wight; ORs: Odds ratios; PCs: Principal components; ttScreen-
ing: Training and testing screening.

Acknowledgements
The authors gratefully acknowledge the cooperation of the children and 
parents who participated in this study and appreciate the hard work of the 
Isle of Wight research team in collecting data. We thank the High-Throughput 
Genomics Group at the Wellcome Trust Centre for Human Genetics (funded 
by Wellcome Trust Grant Reference 090532/Z/09/Z and MRC Hub Grant 
G0900747 91070) for the generation of the methylation data. The authors 
are thankful to the High-Performance Computing facility at the University of 
Memphis. For the ALSPAC cohort, we are extremely grateful to all the families 
who took part in this study, the midwives for their help in recruiting them, and 
the whole ALSPAC team, which includes interviewers, computer and labora-
tory technicians, clerical workers, research scientists, volunteers, managers, 
receptionists, and nurses.

Authors’ contributions
SKS carried out the study, conducted all the statistical analysis, interpreted the 
data, and drafted the manuscript. HZ designed the study, guided the analysis, 
and involved in drafting and revision of the manuscript. FM contributed to the 
conception and critically revised the manuscript. JWH and SE supervised the 
DNA methylation measurement in IOW cohort and revised the manuscript. 
SHA was involved in data acquisition, DNA-M arraying, and study design in 
IOW cohort and reviewed the manuscript. AJH, CLR, and SR were involved 
in the ALSPAC study design and provided the data. All authors read and 
approved the final manuscript.

Funding
The study conveyed in this publication was supported by the National Insti-
tute of Allergy and Infectious Diseases under Award Number R01 AI121226 
(MPI: Hongmei Zhang and John Holloway). The 10-year follow-up of IOW 
cohort was funded by National Asthma Campaign, UK (Grant No 364), and 
the 18-year follow-up by a grant from the National Heart and Blood Institute 
(R01 HL082925, PI, SH Arshad). The UK Medical Research Council (MRC) and 
Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core 
support for ALSPAC. A comprehensive list of grants funding is available on 
the ALSPAC website (http://www.brist​ol.ac.uk/alspa​c/exter​nal/docum​ents/
grant​-ackno​wledg​ement​s.pdf ). Generation of methylation array data was 
specifically funded by NIH R01AI121226, R01AI091905, BBSRC BBI025751/1, 
and BB/I025263/1, MRC MC_UU_12013/1, MC_UU_12013/2, MC_UU_12013/8. 
Lung function measurements were funded by grants from the MRC 
(G0401540/73080 and MR/M022501/1).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Ethics approval and consent to participate
Ethics approvals for the IOW study were obtained from the Isle of Wight 
Local Research Ethics Committee (recruitment, 1, 2, and 4 years) and National 
Research Ethics Service, NRES Committee South Central—Southampton B (10 
and 18 years) (06/Q1701/34). Written informed consent was obtained from 
parents to enrol newborns, and at subsequent follow-up, written informed 
consent was obtained from parents, participants, or both. At the University of 
Memphis, the internal review board first approved the project (FWA00006815) 
in 2015 (IRB ID: 3917). For ALSPAC, ethical approval for the study was obtained 
from the ALSPAC Ethics and Law Committee and the Local Research Ethics 
Committees. Consent for biological samples has been collected in accordance 
with the Human Tissue Act (2004). Informed consent for the use of data col-
lected via questionnaires and clinics was obtained from participants following 
the recommendations of the ALSPAC Ethics and Law Committee at the time. 
Full details of ethical approvals are available at http://www.brist​ol.ac.uk/alspa​
c/resea​rcher​s/resea​rch-ethic​s/.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no potential competing interests.

Author details
1 Division of Epidemiology, Biostatistics, and Environmental Health Sciences, 
School of Public Health, University of Memphis, Memphis, TN 38152, USA. 
2 MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, 
UK. 3 Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK. 
4 Large Animal Clinical Sciences, Michigan State University, East Lansing, 
MI, USA. 5 Human Development and Health, Faculty of Medicine, University 
of Southampton, Southampton SO16 6YD, UK. 6 NIHR Southampton Biomedi-
cal Research Centre, University Hospital Southampton, Southampton SO16 
6YD, UK. 7 Clinical and Experimental Sciences, Faculty of Medicine, University 
of Southampton, Southampton SO16 6YD, UK. 8 The David Hide Asthma 
and Allergy Research Centre, St Mary’s Hospital, Parkhurst Road, Newport, Isle 
of Wight PO30 5TG, UK. 

Received: 17 August 2020   Accepted: 15 December 2020

References
	1.	 Vasquez MM, Zhou M, Hu C, Martinez FD, Guerra S. Low lung function in 

young adult life is associated with early mortality. Am J Respir Crit Care 
Med. 2017;195(10):1399–401.

	2.	 Agustí A, Noell G, Brugada J, Faner R. Lung function in early adulthood 
and health in later life: a transgenerational cohort analysis. Lancet Respir 
Med. 2017;5(12):935–45.

	3.	 Belgrave DC, Buchan I, Bishop C, Lowe L, Simpson A, Custovic A. Tra-
jectories of lung function during childhood. Am J Respir Crit Care Med. 
2014;189(9):1101–9.

	4.	 Berry CE, Billheimer D, Jenkins IC, Lu ZJ, Stern DA, Gerald LB, et al. A dis-
tinct low lung function trajectory from childhood to the fourth decade of 
life. Am J Respir Crit Care Med. 2016;194:607–12.

	5.	 McGeachie MJ, Yates KP, Zhou X, Guo F, Sternberg AL, Van Natta ML, et al. 
Patterns of growth and decline in lung function in persistent childhood 
asthma. N Engl J Med. 2016;374(19):1842–52.

	6.	 Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, et al. Lung-
function trajectories leading to chronic obstructive pulmonary disease. N 
Engl J Med. 2015;373(2):111–22.

	7.	 Martinez FD. Early-life origins of chronic obstructive pulmonary disease. N 
Engl J Med. 2016;375(9):871–8.

	8.	 Global surveillance, prevention and control of chronic respiratory dis-
eases: a comprehensive approach. World Health Organization; 2007.

	9.	 Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Health 
Epidemiol Genomics. 2018;3:e4–e4:1–3.

https://doi.org/10.1186/s13148-020-00992-5
https://doi.org/10.1186/s13148-020-00992-5
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/researchers/research-ethics/
http://www.bristol.ac.uk/alspac/researchers/research-ethics/


Page 17 of 18Sunny et al. Clin Epigenet            (2021) 13:5 	

	10.	 Belgrave DCM, Granell R, Turner SW, Curtin JA, Buchan IE, Le Souëf PN, 
et al. Lung function trajectories from pre-school age to adulthood 
and their associations with early life factors: a retrospective analysis 
of three population-based birth cohort studies. Lancet Respir Med. 
2018;6(7):526–34.

	11.	 Bui DS, Lodge CJ, Burgess JA, Lowe AJ, Perret J, Bui MQ, et al. Childhood 
predictors of lung function trajectories and future COPD risk: a prospec-
tive cohort study from the first to the sixth decade of life. Lancet Respir 
Med. 2018;6:535–44.

	12.	 Karmaus W, Mukherjee N, Janjanam VD, Chen S, Zhang H, Roberts G, et al. 
Distinctive lung function trajectories from age 10 to 26 years in men and 
women and associated early life risk factors—a birth cohort study. Respir 
Res. 2019;20(1):98.

	13.	 John C, Soler Artigas M, Hui J, Nielsen SF, Rafaels N, Paré PD, et al. Genetic 
variants affecting cross-sectional lung function in adults show little or no 
effect on longitudinal lung function decline. Thorax. 2017;72:400–8.

	14.	 Everson TM, Lyons G, Zhang H, Soto-Ramirez N, Lockett GA, Patil VK, 
et al. DNA methylation loci associated with atopy and high serum IgE: a 
genome-wide application of recursive Random Forest feature selection. 
Genome Med. 2015;7:89.

	15.	 Zhang H, Tong X, Holloway JW, Rezwan FI, Lockett GA, Patil V, et al. The 
interplay of DNA methylation over time with Th2 pathway genetic 
variants on asthma risk and temporal asthma transition. Clin Epigenet. 
2014;6(1):8.

	16.	 Imboden M, Wielscher M, Rezwan FI, Amaral AFS, Schaffner E, Jeong A, 
et al. Epigenome-wide association study of lung function level and its 
change. Eur Respir J. 2019;54:1900457.

	17.	 Lepeule J, Baccarelli A, Motta V, Cantone L, Litonjua AA, Sparrow D, et al. 
Gene promoter methylation is associated with lung function in the 
elderly: the Normative Aging Study. Epigenetics. 2012;7(3):261–9.

	18.	 Qiu W, Baccarelli A, Carey VJ, Boutaoui N, Bacherman H, Klanderman B, et al. 
Variable DNA methylation is associated with chronic obstructive pulmonary 
disease and lung function. Am J Respir Crit Care Med. 2012;185(4):373–81.

	19.	 Duijts L, Reiss IK, Brusselle G, de Jongste JC. Early origins of chronic obstruc-
tive lung diseases across the life course. Eur J Epidemiol. 2014;29(12):871–85.

	20.	 Kohansal R, Martinez-Camblor P, Agusti A, Buist AS, Mannino DM, Soriano JB. 
The natural history of chronic airflow obstruction revisited: an analysis of the 
Framingham offspring cohort. Am J Respir Crit Care Med. 2009;180(1):3–10.

	21.	 Becklake MR, Kauffmann F. Gender differences in airway behaviour over the 
human life span. Thorax. 1999;54(12):1119–38.

	22.	 Carey MA, Card JW, Voltz JW, Arbes SJ Jr, Germolec DR, Korach KS, et al. It’s all 
about sex: gender, lung development and lung disease. Trends Endocrinol 
Metab. 2007;18(8):308–13.

	23.	 LoMauro A, Aliverti A. Sex differences in respiratory function. Breathe (Sheff). 
2018;14(2):131–40.

	24.	 Sunny SK, Zhang H, Rezwan FI, Relton CL, Henderson AJ, Merid SK, et al. 
Changes of DNA methylation are associated with changes in lung function 
during adolescence. Respir Res. 2020;21(1):80.

	25.	 Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-
β1-induced epithelial–mesenchymal transition of pulmonary epithelial cells. 
J Cell Physiol. 2011;226(5):1248–54.

	26.	 Morrow JD, Cho MH, Platig J, Zhou X, DeMeo DL, Qiu W, et al. Ensemble 
genomic analysis in human lung tissue identifies novel genes for chronic 
obstructive pulmonary disease. Hum Genomics. 2018;12(1):1.

	27.	 Jones LC, Moussa L, Fulcher ML, Zhu Y, Hudson EJ, O’neal WK, et al. VAMP8 
is a vesicle SNARE that regulates mucin secretion in airway goblet cells. J 
Physiol. 2012;590(3):545–62.

	28.	 Kean MJ, Williams KC, Skalski M, Myers D, Burtnik A, Foster D, et al. VAMP3, 
syntaxin-13 and SNAP23 are involved in secretion of matrix metallopro-
teinases, degradation of the extracellular matrix and cell invasion. J Cell Sci. 
2009;122(22):4089–98.

	29.	 Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S, Ray DW, et al. Circadian tim-
ing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology. 
2009;150(1):268–76.

	30.	 Hwang J-W, Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock func-
tion is disrupted by environmental tobacco/cigarette smoke, leading 
to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J. 
2014;28(1):176–94.

	31.	 Osawa Y, Xu D, Sternberg D, Sonett JR, D’Armiento J, Panettieri RA, et al. 
Functional expression of the GABAB receptor in human airway smooth 
muscle. Am J Physiol-Lung Cell Mol Physiol. 2006;291(5):L923–31.

	32.	 Nelson MT, Quayle JM. Physiological roles and properties of potas-
sium channels in arterial smooth muscle. Am J Physiol Cell Physiol. 
1995;268(4):C799–822.

	33.	 Baarsma HA, Skronska-Wasek W, Mutze K, Ciolek F, Wagner DE, John-Schus-
ter G, et al. Noncanonical WNT-5A signaling impairs endogenous lung repair 
in COPD. J Exp Med. 2016;214(1):143–63.

	34.	 Hu Y, Skronska-Wasek WA, Ota C, Mutze KIA, Baarsma H, Wagner DE, et al. 
The progenitor cell marker LGR5 is reduced in epithelial cells in emphysema. 
In: B61 epithelial cell biology in respiratory disease. American Thoracic Soci-
ety International Conference Abstracts: American Thoracic Society; 2018. p. 
A3827-A.

	35.	 den Dekker HT, Burrows K, Felix JF, Salas LA, Nedeljkovic I, Yao J, et al. New-
born DNA-methylation, childhood lung function, and the risks of asthma 
and COPD across the life course. Eur Respir J. 2019;53(4):1801795.

	36.	 Lin Y-Z, Zhong X-N, Chen X, Liang Y, Zhang H, Zhu D-L. Roundabout 
signaling pathway involved in the pathogenesis of COPD by integrative 
bioinformatics analysis. Int J Chron Obstruct Pulmon Dis. 2019;14:2145–62.

	37.	 Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S, Mansfield L, et al. 
Cohort profile: the Isle Of Wight whole population birth cohort (IOWBC). Int 
J Epidemiol. 2018;47(4):1043–4.

	38.	 Crapo R. Guidelines for methacholine and exercise challenge testing-1999. 
This official statement of the American Thoracic Society was adopted 
by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 
2000;161:309–29.

	39.	 Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. 
Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.

	40.	 McClelland M, Hanish J, Nelson M, Patel Y. KGB: a single buffer for all restric-
tion endonucleases. Nucleic Acids Res. 1988;16(1):364.

	41.	 Bibikova M, Fan J-B. GoldenGate® assay for DNA methylation profiling. DNA 
methylation. Berlin: Springer; 2009. p. 149–63.

	42.	 Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan ST, et al. A coherent 
approach for analysis of the Illumina HumanMethylation450 BeadChip 
improves data quality and performance in epigenome-wide association 
studies. Genome Biol. 2015;16:37.

	43.	 Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen 
KD, et al. Minfi: a flexible and comprehensive Bioconductor package for 
the analysis of Infinium DNA methylation microarrays. Bioinformatics. 
2014;30(10):1363–9.

	44.	 Du P, Zhang X, Huang C-C, Jafari N. Kibbe Wa, Hou L, Lin SM. Comparison 
of Beta-value and M-value methods for quantifying methylation levels   
analysis. BMC Bioinformatics. 2010;11:587.

	45.	 Andrews S, FastQC. A quality control tool for high throughput sequence 
data 2010. https​://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/.
Accessed 10 Aug 2020.

	46.	 Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low 
memory requirements. Nat Methods. 2015;12(4):357–60.

	47.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence 
alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

	48.	 Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

	49.	 Ogbuanu IU, Karmaus W, Arshad SH, Kurukulaaratchy RJ, Ewart S. Effect of 
breastfeeding duration on lung function at age 10 years: a prospective birth 
cohort study. Thorax. 2009;64(1):62–6.

	50.	 Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort 
Profile: the ’children of the 90s’—the index offspring of the Avon Longitudi-
nal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.

	51.	 Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, 
et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: 
ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.

	52.	 Sonnenschein van der Voort AM, Howe LD, Granell R, Duijts L, Sterne JA, 
Tilling K, et al. Influence of childhood growth on asthma and lung function 
in adolescence. J Allergy Clin Immunol. 2015;135(6):1435–43.

	53.	 Northstone K, Lewcock M, Groom A, Boyd A, Macleod J, Timpson N, Wells N. 
The Avon Longitudinal Study of Parents and Children (ALSPAC): an update 
on the enrolled sample of index children in 2019. Welcome Open Res. 
2019;4:51. https​://doi.org/10.12688​/wellc​omeop​enres​.15132​.1.

	54.	 Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data 
resource profile: accessible resource for integrated epigenomic studies 
(ARIES). Int J Epidemiol. 2015;44(4):1181–90.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.12688/wellcomeopenres.15132.1


Page 18 of 18Sunny et al. Clin Epigenet            (2021) 13:5 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	55.	 Min JL, Hemani G, Davey Smith G, Relton C, Suderman M. Meffil: efficient 
normalization and analysis of very large DNA methylation datasets. Bioinfor-
matics. 2018;34(23):3983–9.

	56.	 Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture 
models for estimating developmental trajectories. Sociol Methods Res. 
2001;29:74–393.

	57.	 Nagin D. Group-based modeling of development. Cambridge: Harvard 
University Press; 2005.

	58.	 Liang J, Xu X, Bennett JM, Ye W, Quinones AR. Ethnicity and changing func-
tional health in middle and late life: a person-centered approach. J Gerontol 
B Psychol Sci Soc Sci. 2010;65(4):470–81.

	59.	 Nagin DS, Tremblay RE. Analyzing developmental trajectories of dis-
tinct but related behaviors: a group-based method. Psychol Methods. 
2001;6(1):18–34.

	60.	 Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. 
Ann Rev Clin Psychol. 2010;6:109–38.

	61.	 Nagin DS. Analyzing developmental trajectories: a semiparametric, group-
based approach. Psychol Methods. 1999;4(2):139.

	62.	 Li X, Hawkins GA, Ampleford EJ, Moore WC, Li H, Hastie AT, et al. Genome-
wide association study identifies TH1 pathway genes associated with lung 
function in asthmatic patients. J Allergy Clin Immunol. 2013;132(2):313–20.

	63.	 Ray MA, Tong X, Lockett GA, Zhang H, Karmaus WJ. An efficient approach to 
screening epigenome-wide data. Biomed Res Int. 2016;2016:2615348.

	64.	 Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De 
novo identification of differentially methylated regions in the human 
genome. Epigenet Chromatin. 2015;8(1):6.

	65.	 Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and pri-
oritization using protein interaction networks. BMC Bioinform. 2009;10(1):73.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Pre-adolescence DNA methylation is associated with lung function trajectories from pre-adolescence to adulthood
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Results
	Lung function trajectories
	Pre-adolescence DNA-M and lung function trajectories
	Testing IOW cohort findings in the ALSPAC
	Association with gene expression
	Detection of differentially methylated regions
	Biological pathways of mapped genes

	Discussion
	Conclusion
	Methods
	Study subjects and design
	The IOW cohort—Discovery cohort
	Lung function
	Measurement of DNA methylation (DNA-M)
	Preprocessing of DNA-M

	Gene expression data
	Confounders
	The ALSPAC cohort—Replication cohort

	Statistical analyses
	Descriptive analyses
	Determining distinctive lung function trajectories
	Association analyses
	Replication analysis—in the ALSPAC cohort
	Gene expression analysis
	Analyses of differentially methylated regions (DMRs)
	Pathway analyses


	Acknowledgements
	References


