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Abstract 

Background:  Although R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) remains 
the standard chemotherapy regimen for diffuse large B cell lymphoma (DLBCL) patients, not all patients are respon‑
sive to the scheme, and there is no effective method to predict treatment response.

Methods:  We utilized 5hmC-Seal to generate genome-wide 5hmC profiles in plasma cell-free DNA (cfDNA) from 86 
DLBCL patients before they received R-CHOP chemotherapy. To investigate the correlation between 5hmC modifi‑
cations and curative effectiveness, we separated patients into training (n = 56) and validation (n = 30) cohorts and 
developed a 5hmC-based logistic regression model from the training cohort to predict the treatment response in the 
validation cohort.

Results:  In this study, we identified thirteen 5hmC markers associated with treatment response. The prediction per‑
formance of the logistic regression model, achieving 0.82 sensitivity and 0.75 specificity (AUC = 0.78), was superior to 
existing clinical indicators, such as LDH and stage.

Conclusions:  Our findings suggest that the 5hmC modifications in cfDNA at the time before R-CHOP treatment 
are associated with treatment response and that 5hmC-Seal may potentially serve as a clinical-applicable, minimally 
invasive approach to predict R-CHOP treatment response for DLBCL patients.

Keywords:  Epigenetics, 5-Hydroxymethylcytosine (5hmC), Diffuse large B cell lymphoma, R-CHOP, Logistic regression 
modeling
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Introduction
Diffuse large B cell lymphoma (DLBCL) is the primary 
type of invasive lymphoid tissue tumor, accounting for 
about 30% of non-Hodgkin’s lymphoma [1]. Although the 
majority of the DLBCL patients are elderly patients, this 
disease is found in all ages [2]. Since rituximab (R) joined 
cyclophosphamide, adriamycin, vincristine, and pred-
nisone (CHOP) chemotherapy regimen ten years ago, the 
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overall survival rate of DLBCL patients has improved sig-
nificantly [3].

However, 30–50% of patients are not sensitive to this 
standard treatment [4], and exiting methods fail to pre-
dict the treatment response before R-CHOP treatment 
accurately or efficiently [5, 6]. Currently, positron emis-
sion tomography (PET)-CT is the gold standard to 
evaluate the efficacy of different treatment regimens for 
DLBCL. However, it is generally used after the treatment 
and thus cannot predict the treatment response [7]. The 
International Prognostic Index (IPI) is the primary prog-
nostic risk assessment method for DLBCL, especially in 
high-risk patients, and is used for R-CHOP chemothera-
pies [8–10]. However, IPI cannot accurately predict the 
therapeutic effect of R-CHOP in DLBCL patients [11]. 
Furthermore, recent studies have demonstrated that 
the detection of the apoptosis inhibitor, survivin [12], 
activationinduced cytidine deaminase (AID) [13], plasma 
miRNA [14], exosome miRNA [15], and genes polymor-
phism [16, 17], as well as the presence of CD3 and FoxP3 
in the immune microenvironment [18], were all poten-
tial indicators of treatment efficacy in DLBCL patients. 
However, these predictors showed contradictory results 
that have not been well solved. Therefore, an accurate 
and effective method to predict the response of R-CHOP 
regimen is highly necessary.

In recent years, cell-free DNA (cfDNA) in the circu-
lating blood, which carries genetic and epigenetic infor-
mation from cells of origin, has emerged as a promising 
noninvasive approach for the diagnosis and prognosis 
in cancer [19]. 5-Methylcytosines (5mCs) of DNA is an 
important epigenetic feature that plays an important role 
in gene expression and cancer development [20]. Kris-
tensen et al. [21] found that the methylation of DAPK1 in 
cfDNA from patients with DLBCL can be used to assess 
the effect of R-CHOP treatment. In the human genome, 
5-methylcytosines (5mCs) in cfDNA are dynamic and 
reversible [22, 23] and can be oxidized into 5-hydroxym-
ethylcytosines (5hmCs) through the ten-eleven translo-
cation (TET) enzymes in an active DNA-demethylation 
process [24, 25]. Therefore, 5hmC, as an oxidation prod-
uct of DNA demethylation(5mC), may also be used to 
assess the effect of R-CHOP treatment. Recently, a study 
has also shown that 5hmC is associated with the prog-
nosis of DLBCL [26]. However, its role in the prediction 
of treatment response of R-CHOP scheme for DLBCL 
patients is not established.

In this study, we used 5hmC-Seal technique to obtain 
genome-wide 5hmC profiles in plasma cfDNA from 
86 DLBCL patients, before they received R-CHOP 
chemotherapy. Our results demonstrated that respond-
ers and non-responders of R-CHOP treatment had dis-
tinct 5hmC profiles and that 5hmC markers selected by 

bioinformatics tools and machine learning algorithms 
could be used to predict treatment response of R-CHOP 
treatment in DLBCL patients.

Materials and methods
Study participants
From 2017 to 2019, 86 diffuse large B cell lymphoma 
(DLBCL) patients from multicenter studies including 
Peking University Third Hospital, Fifth Medical Center 
of PLA General Hospital, and Cancer Hospital Chinese 
Academy of Medical Sciences were included in this study. 
All patients had signed the patient consent form. In all 
cases, the diagnosis of DLBCL was made using appro-
priate diagnostic criteria from the 2016 WHO classifica-
tion of lymphoid tumors with combinations of histologic, 
immunohistochemical, and cell of origin (coo) defined 
according to the Hans algorithm [27]. Medical records 
were reviewed for demographic and clinical data. Labo-
ratory tests, white blood cell count (WBC), renal and 
hepatic function examinations, lactate dehydrogenase 
(LDH), and β2 microglobulin (β2MG) and cfDNA from 
peripheral blood samples were collected before any 
treatment. Then, all patients received standard R-CHOP 
chemotherapy. Other baseline assessments including 
bone marrow biopsy and PET/CT were conducted in 
all patients in the follow-up care. The disease stage was 
defined by the Ann Arbor staging system. Treatment 
efficacy was evaluated after four cycles of treatment 
according to Lugano 2014 criteria [28], and patients were 
divided into PD (progressive disease), SD (stable disease), 
PR (partial response), and CR (complete response) based 
on the treatment outcome. This study was conducted in 
accordance with the Declaration of Helsinki.

Study design
This study aimed to discover 5hmC markers to predict 
the curative effectiveness of R-CHOP scheme through 
high-efficiency hmC-Seal technology. Among the 86 
patients recruited, PR and CR patients were grouped 
as responders (n = 57), and PD and SD patients were 
grouped as non-responders (n = 29) to R-CHOP treat-
ment. We split 86 patients into a training and validation 
cohort. The objective of the first part of the study was to 
screen candidate genes with differential 5hmC modifica-
tions in these two groups from the training cohort. The 
objective of the second part of the study was to predict 
treatment outcome, using the model developed in the 
first part, in the validation cohort (Fig. 1).

Clinical samples collection and cfDNA preparation
Eight  milliliters of peripheral blood from DLBCL 
patients was collected into Cell-Free DNA Collection 
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Tubes (Roche). Within 24  h, plasma was prepared by 
centrifuging twice at 1350×g for 12  min at 4  °C and 
13,500×g for 12 min at 4 °C. Then, the plasma samples 
were immediately stored at – 80 °C. The plasma cfDNA 
was extracted using the Quick-cfDNA Serum & Plasma 
Kit (ZYMO) and then stored at − 80  °C. The fragment 
size of all the cfDNA samples was verified by nucleic 
acid electrophoresis before library preparation.

5hmC library construction and high‑throughput 
sequencing
5hmC libraries for all samples were constructed with 
high-efficiency hmC-Seal technology [29]. Due to the 
highly sensitive nature of the chemical labeling method, 
the input cfDNA can be as low as 1–10 ng. According 
to the requirements of next-generation sequencing, 
the cfDNA extracted from plasma was end-repaired, 
3′-adenylated using the KAPA Hyper Prep Kit (KAPA 

Fig. 1  Overview of study design. A total of 86 cfDNA samples were collected at the time of diagnosis from patients with DLBCL before R-CHOP 
or R-CHOP-like treatment. Based on treatment outcome in the follow-up care, patients were divided into the responder group (PR & CR) and 
non-responder group (PD & SD). A logistic regression model was trained by the training cohort that was used to predict treatment response in the 
validation cohort
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Biosystems), and then ligated with the Illumina com-
patible adapters. The ligated cfDNA was added in a gly-
cosylation reaction in 25 μL solution containing 50 mM 
HEPES buffer (pH 8.0), 25  mM MgCl2, 100  μM UDP-
6-N3-Glc, and 1  μM β-glucosyltransferase (NEB) for 
2 h at 37 °C. Next, the cfDNA was purified using DNA 
Clean & Concentrator Kit (ZYMO). The purified DNA 
was incubated with 1 μL of DBCO-PEG4-biotin (Click 
Chemistry Tools, 4.5  mM stock in DMSO) for 2  h at 
37  °C. Similarly, the DNA was purified using the DNA 
Clean & Concentrator Kit (ZYMO). Meantime, 2.5  μL 
streptavidin beads (Life Technologies) in 1 × buffer 
(5 mM Tris pH 7.5, 0.5 mM EDTA, 1 M NaCl, and 0.2% 
Tween 20) was added directly to the reaction for 30 min 
at room temperature. Finally, the beads were subse-
quently washed eight times for five minutes with buffer 
1–4. All binding and washing steps were performed at 
room temperature with gentle rotation. Then, the beads 
were resuspended in RNase-free water and ampli-
fied with 14–16 cycles of PCR amplification. The PCR 
products were purified using AMPure XP beads (Beck-
man), according to the manufacturer’s instructions. The 
concentration of libraries was measured with a Qubit 
3.0 fluorometer (Life Technologies). Paired-end 39-bp 
high-throughput sequencing was performed on the 
NextSeq 500 platform.

Mapping and identifying 5hmC‑enriched regions
FastQC (version 0.11.5) was used to assess the sequence 
quality. Raw reads were aligned to the human genome 
(version hg19) with bowtie2 (version 2.2.9) [30] and fur-
ther filtered with SAMtools (version 1.3.1) [31], (parame-
ters used: SAMtools view -f 2 -F 1548 -q 30 and SAMtools 
rmdup) to retain unique non-duplicate matches to the 
genome. Pair-end reads were extended and converted 
into BedGraph format normalized to the total number 
of aligned reads using bedtools (version 2.19.1) [32], and 
then converted to bigwig format, using bedGraphToBig-
Wig from the UCSC Genome Browser for visualization 
in the Integrated Genomics Viewer. Potential 5hmC-
enriched regions (hMRs) were identified using MACS 
(version 1.4.2), and the parameters used were macs 
14 -p 1e-3 -f BAM -g hs [33]. Peak calls were merged 
using bedtools merge, and only those peak regions that 
appeared in more than 10 samples and that were less 
than 1000 bp were retained. Blacklisted genomic regions 
that tend to show artifact signals, according to ENCODE, 
were also filtered. The hMRs for each patient were gener-
ated by intersecting the individual peak call file with the 
merged peak file. The hMRs within chromosome X and Y 
were excluded and used as an input for the downstream 
analyses.

Feature selection, model training, and validation
A two-step procedure was used to select optimal hMRs 
for distinguishing the non-responder group from the 
responder group prior to R-CHOP treatment. In step 
1, DLBCL patients were randomly divided into train-
ing and validation cohorts in a stratified manner, using 
train_test_split in Scikit-Learn (version 0.22.1) [34] pack-
age in Python (version 3.6.10. In the training cohort, we 
identified differentially modified 5hmC regions (DhMRs) 
using EdgeR package (version 3.24.3) [35] in R (version 
3.5.0), with the filtering threshold (p value < 0.01 & log-
2FoldChange > 0.5). In step 2, the dhMRs were further 
filtered using the recursive feature elimination algorithm 
(RFECV) in Scikit-Learn (parameters used: estima-
tor = LogisticRegressionCV (class_weight = ’balanced’, 
cv = 2, max_iter = 1000), scoring = ’accuracy’).

Then, we trained the logistic regression CV model (LR) 
with the features selected from step 2 (parameter used: 
maxiter = 100, method = "lbfgs"). The trained LR model 
was used to predict the treatment outcome for patients in 
the validation cohort. Receiver operating characteristics 
(ROC) analysis was used to evaluate model performance. 
Area under the curve (AUC), best cutoff point, sensitiv-
ity, and specificity were computed with sklearn.metrics 
module.

Exploring functional relevance of the 5hmC markers
We annotated the dhMRs from step 1 using the ChIP-
seeker package (version 1.20.0) [36], and genes that were 
closest to the marker regions were used for the following 
functional analyses. The GO enrichment analysis (Bio-
logical Process) was done by the ClueGO (version 2.5.5) 
and CluePedia (version 1.5.5) plug-in from Cytoscape 
software (version 3.7.2) (parameters used: medium net-
work specificity, Bonferroni step-down pV correction and 
two-sided hypergeometric test). We used the Search Tool 
for the Retrieval of Interacting Genes (STRING) database 
(version 10.0, https​://strin​g-db.org) to find protein–pro-
tein interactions for 5hmC markers. Then, the Cytoscape 
software was used to construct the PPI network.

Survival analysis and gene expression correlation analysis 
in TCGA‑DLBC
For survival analysis, we downloaded the mRNA HTseq-
FPKM data of 48 DLBLC patients from the TCGA-DLBC 
dataset [37] in the GDC Data Portal using gdc-client 
(version 1.5.0) and downloaded manually curated clini-
cal data, including overall survival (OS), disease-specific 
survival (DSS), disease-free interval (DFI), and progres-
sion-free interval (PFI) from UCSC Xena [38]. Survminer 
package (version 0.4.6) and Surviva packages (version 
2.44-1.1) in R were used for survival analysis. Forty-eight 

https://string-db.org
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patients were divided into the high-expression group 
and low-expression group according to the cutoff points 
determined by the maximally selected rank statistics 
algorithm (maxstat) [39]. Survival analysis of each gene 
was assessed by Kaplan–Meier curves [40] and the log-
rank test [41]. For the survival analysis, p value < 0.05 was 
considered statistically significant. For gene expression 
correlation analysis, we used a web tool called TIMER2.0 
[42], which incorporated all TCGA expression data, 
to explore the mRNA expression relationship between 
5hmC markers and other genes of interests in the TCGA-
DLBC dataset. The correlation analysis was done using 
Spearman rank correlation.

Statistical analysis
For clinical data, continuous variables are presented as 
mean (SD) and categorical variables are presented as count 
(percentages). To understand the relationship between 
categorical/continuous variables and treatment outcome, 
Kruskal–Wallis test  by  ranks [43] and χ2 test [44] were 
used, respectively. A two-sided p value of < 0.05 was con-
sidered to indicate statistical significance. The predictive 
power of clinical data was estimated by glm function in 
R-base and pROC package (version 1.15.3) in R.

Results
Clinical characteristics of Diffuse large B Cell lymphoma 
(DLBCL) patients
The clinical summary, including baseline characteristics 
and laboratory data, of all 86 patients is shown in Table 1. 
Of the 86 patients with DLBCL patients, 46 were male 
and 40 were female. The median age of all the patients 
was 54.6 years, and 63.9% of patients had advanced dis-
ease (including stage III and stage IV). Importantly, all 
patients were newly diagnosed with DLBCL and received 
standard R-CHOP chemotherapy. Treatment efficacy 
was evaluated in all patients after 4 cycles of treatment. 
According to the efficacy standard of Lugano 2014 crite-
ria, the treatment response of patients was as follows: CR 
in 32 patients (37.2%), PR in 25 patients (29.1%), SD in 14 
patients (16.3%), and PD in 15 patients (17.4%). Besides, 
according to the Hans model, 23 patients (26.7%) were 
germinal center B cell (GCB), 61 patients (70.9%) had 
non-GCB and 2 patients (2.3%) had an unknown cell of 
origin. The results of the international prognostic index 
(IPI) score showed that 52.3% of patients (IPI score > 2) 
belonged to the high–intermediate-risk/high-risk group. 
Finally, the mean of WBC, LDH, and β2MG for all 
patients was 6.94 × 10–4/L, 364.33 U/L, and 2.84 mg/L, 
respectively.

5hmC profiles differ between responders 
and non‑responders to R‑CHOP treatment in the training 
cohort
Eighty-six DLBCL patients were randomly divided into 
the training cohort (n = 56) and validation cohort (n = 30) 
(Fig.  1). We used hmC-Seal to generate genome-wide 
5hmC profiles for patients in the training set, includ-
ing 35 responders and 21 non-responders to R-CHOP 
treatment. The overall 5hmC enrichment (all hMRs) 
was most common in intronic, intergenic, and promoter 
regions for both responders and non-responders, even 
though no statistically significant difference was found 
between these two groups for any genomic feature types 
(Fig.  2a). Meanwhile, we conducted differential analy-
sis (EdgeR; p < 0.01, fold change > 0.5) and observed 205 
DhMRs, including upregulate (n = 124) and downregu-
late (n = 81) regions in responders compared to non-
responders (Fig.  2b). For instance, FBXL4 (Fig.  2c) was 

Table 1  Diffuse large B cell lymphoma (DLBCL) patient 
characteristics

IPI, International Prognostic Index; GCB, germinal center B cell; CR, complete 
response; PR, partial response; SD, stable disease; PD, progressive disease; LDH, 
lactate dehydrogenase; β2MG, beta2 microglobulin; WBC, white blood cell

Characteristics Level/type Value

n 86

Sex (%) F 40 (46.5)

M 46 (53.5)

Age (mean (SD)) 54.59 (15.56)

Diagnosis (%) DLBCL 86 (100.0)

Therapy (%) R-CHOP 86 (100.0)

Response (%) CR 32 (37.2)

PD 15 (17.4)

PR 25 (29.1)

SD 14 (16.3)

Ann Arbor stage (%) I 6 (7.0)

II 18 (20.9)

III 7 (8.1)

IV 48 (55.8)

Unknown 7 (8.1)

Cell of origin (%) GCB 23 (26.7)

Non-GCB 61 (70.9)

Unknown 2 (2.3)

IPI (%) 0 8 (9.3)

1 12 (14.0)

2 18 (20.9)

3 28 (32.6)

4 15 (17.4)

5 2 (2.3)

Unknown 3 (3.5)

Mean LDH (SD) 364.33 (326.72)

Mean β2MG (SD) 2.84 (2.77)
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highly enriched in hydroxymethylation for responders 
(p = 0.00087), and CTDP1 (Fig.  2d) was highly enriched 
in hydroxymethylation for non-responders (p = 0.00033). 
In addition, for the top 205 DhMRs, the most signifi-
cant enrichment was found in intronic, intergenic, and 

promoter regions, consistent with previous studies [45, 
46] (Fig. 2e). Finally, heatmap results, using default clus-
tering methods, demonstrated that these 205 DhMRs 
could effectively separate responders from non-respond-
ers (Fig. 2f ).
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Pathway analysis and function exploration
Pathway analysis of 205 5hmC markers (Additional file 1: 
Table 1) in DLBCL patients suggested functional enrich-
ment in certain canonical pathways. The top enriched 

GO biological pathways included signaling like alpha–
beta T cell differentiation, protein-lysine N-methyltrans-
ferase activity, and histone H3-K9 modification (Fig. 3a). 
Among these pathways, signaling by alpha–beta T cell 

Fig. 2  Characteristics of 5hmC distribution in plasma cfDNA of DLBCL patients in the training cohort (n = 56). a Genome-wide 5hmC distribution 
in different genomic features grouped by R-CHOP treatment response (PDSD vs PRCR). b Volcano plot. Significantly altered genes (abs (log2 
Foldchange) ≥ 0.5; p value < 0.01) are highlighted in red (up) or green (down) using the responder group (PRCR) as the reference (n = 205). Black 
dots represent the genes that are not differentially expressed. c, d Boxplots of FBXL4 and CTDP1 grouped by treatment response (PDSD vs PRCR). 
Log2 transformed of TMM normalized 5hmC enrichment values were plotted, and the Wilcoxon t test was used. e Mean log2 Foldchange value of 
205 DhMRs across different genomic features (Orange for 124 5hmC-up DhMRs, blue for 81 5hmC-down DhMRs, red for all 205 DhMRs). f Heatmap 
of 205 DhMRs markers with treatment response, batch, and sex information labeled. Unsupervised hierarchical clustering was performed across 
genes and samples

(See figure on previous page.)

Fig. 3  GO enrichment analysis and function exploration of 205 5hmC markers using Cytoscape software. a GO enrichment bar plot (*p = 0.005–
0.05, **p = 0.0005–0.005). b GO enrichment and Gene-Concept Network. The node size is proportional to the p value calculated from the network
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differentiation was known to be relevant to tumor growth 
and apoptosis, which suggested that the DhMRs might 
be involved in the immunity system [47–49]. Mean-
while, the hubs of the GO functional interaction net-
works (Fig. 3b) showed that these genes, including BCL2 
apoptosis regulator (BCL2), PR/SET domain 1 (PRDM1), 
prostaglandin E receptor 4 (PTGER4), SMAD family 
member 7 (SMAD7), H2.0 like homeobox (HLX), dedica-
tor of cytokinesis 2 (DOCK2) and SH3 domain contain-
ing ring finger 1 (SH3RF1), participated in the regulating 
T cell activation and differentiation pathway.

5hmC markers showed prediction performance superior 
to clinical indicators for R‑CHOP treatment response
Similarly, we generated genome-wide 5hmC profiles for 
patients in the validation set, including 22 responders 
and 8 non-responders to R-CHOP treatment. By using 
the recursive feature elimination algorithm based on 
the logistic regression CV estimator, we further reduced 
the number of 5hmC markers from 205 to 13, which 
achieved the best cross-validation score (Additional 
file  2: Figure S1). Further, we found that the 13 5hmC 
markers (Table 2), selected by the LR model, could distin-
guish responders from non-responders in both the train-
ing and validation cohorts (Fig.  4a, b). Meantime, these 
13 5hmC markers could effectively predict responders 
and non-responders to R-CHOP treatment in the train-
ing (AUC = 1.00) and the validation cohorts (AUC = 0.78) 
(Fig. 4c), achieving 0.82 sensitivity and 0.75 specificity in 
the validation cohort (Fig. 4d). Finally, we also calculated 
the individual AUC for each of the 13 5hmC markers in 
the training and validation cohorts (Additional file 2: Fig-
ure S2A, B). Among these, ARHGEF12 and ZNF280D 

showed the best predictive performance, yielding an 
AUC of 0.76 in the validation cohort.

We also investigated the association between available 
clinical indicators, including stage, pathology, IPI, LDH, 
β2MG and WBC, and R-CHOP treatment response. 
Among all those clinical indicators, only LDH (continu-
ous variable, p = 0.03474) and stage (categorical vari-
able, p = 0.004453) showed a significant association with 
treatment response (Additional file  2: Table  3). Thus, 
we used these two indicators to build logistic regression 
models to predict treatment response. As expected, LDH 
level, stage, and LDH combined with stage (LDH + stage) 
could also predict treatment response to a certain 
level. However, the AUC of LDH level (AUC = 0.646), 
stage (AUC = 0.658), and LDH combined with stage 
(AUC = 0.669) were lower than that of 5hmC markers 
(AUC = 0.78) (Fig. 4e).

Potential associations between 5hmC markers and R‑CHOP 
treatment response in DLBCL patients
To further understand the potential associations between 
those 13 5hmC-modified marker genes and R-CHOP 
treatment response, we investigated their mRNA expres-
sion profiles and compared them to that of B-lympho-
cyte antigen CD20 (MS4A1), a rituximab target gene, 
in 48 DLBCL patients from the TCGA-DLBC data-
set. Among those 13 marker genes, we found that the 
mRNA expression of MS4A1 was positively correlated 
with the mRNA expression of ARHGEF12 (rho = 0.385), 
FBXL4 (rho = 0.376), GOLGB1 (rho = 0.434), LMBR1 
(rho = 0.45) (Additional file 2 Figure S3A–D). We decided 
to further investigate the potential mechanism of Rho 
Guanine Nucleotide Exchange Factor 12 (ARHGEF12), 

Table 2  Coefficients for 13 5hmC markers in the logistic regression model trained by the training cohort

SE, standard errors of coefficients; z value, Wald z-statistic value

Markers GeneID Coefficients SE z value p value

Intercept − 5.5704 0.867 2.652  < 0.01

chr1_6721489_6721898 THAP3 0.7712 0.145 1.865  < 0.05

chr1_246290825_246291238 SMYD3 0.39 0.149 1.955  < 0.05

chr1_247755954_247756505 OR2G2 3.1779 0.108 1.344  < 0.05

chr11_43905400_43905804 ALKBH3 3.3423 0.128 1.306  < 0.05

chr11_65511519_65512429 RNASEH2C 1.5211 0.072 2.061  < 0.05

chr11_120211662_120212234 ARHGEF12 − 3.8797 0.115 − 3.225  < 0.001

chr15_56982146_56982638 ZNF280D − 1.2266 0.177 − 3.250  < 0.001

chr16_24916341_24916920 SLC5A11 0.6683 0.076 0.149  < 0.05

chr18_77500908_77501376 CTDP1 − 2.573 0.103 − 3.182  < 0.001

chr3_98270705_98271079 GPR15 0.1052 0.167 2.348  < 0.05

chr3_121430838_121431239 GOLGB1 0.8526 0.178 2.982  < 0.01

chr6_99461404_99461922 FBXL4 1.7188 0.101 2.165  < 0.05

chr7_156700537_156701031 LMBR1 1.0942 0.078 0.579  < 0.05
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Fig. 4.  5hmC markers’ prediction for treatment response in the training and validation cohort. a, b Heatmaps of 13 5hmC markers with treatment 
response, batch and sex information labeled in the training and validation cohorts. Unsupervised hierarchical clustering was performed across 
genes and samples. c Receiver operating characteristic (ROC) curve of the classification model with 13 5hmC markers in the training and validation 
cohorts. The true-positive rate (sensitivity) is plotted in function of the false-positive rate (1-specificity). d Confusion matrix that shows the model 
performance in the validation cohort (responders: 22, non-responders:8). e ROC curve of the classification model with LDH, stage and LDH 
combined with stage for DLBCL patients
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for its mRNA expression was positively associated with 
MS4A1, and it achieved the highest AUC in the valida-
tion cohort among 13 5hmC-modified marker genes. 
According to recent studies, 5hmC enrichment in pro-
moter regions was positively associated with gene expres-
sion levels [25, 50]. In our study, ARHGEF12 was highly 
enriched in hydroxymethylation in the non-responders 
(p = 0.022) (Fig. 5a), and the hydroxymethylation site was 
in the promoter region (Additional file 3: Table 2). There-
fore, we speculated that the change in 5hmC enrichment 
in the promoter region of ARHGEF12 might lead to the 
change in the mRNA expression of this gene.

In addition, from the PPI network constructed from 
the STRING database, we identified several genes linked 
to ARHGEF12, including Ras Homolog Family Member 
A (RHOA), Ras Homolog Family Member B (RHOB), 
Ras Homolog Family Member C (RHOC), Cell Division 
Cycle 42 (CDC42), Rho Associated Coiled-Coil Contain-
ing Protein Kinase 1 (ROCK1), G Protein Subunit Alpha 
12 (GNA12) and G Protein Subunit Alpha 13 (GNA13) 
(Fig.  5b). Interestingly, we found that all of these gene 
expressions (RHOA (rho = 0.667), RHOB (rho = 0.604), 
CDC42 (rho = 0.676), ROCK1 (rho = 0.832), GNA12 
(rho = 0.721), GNA13 (rho = 0.784)) were highly posi-
tively associated with that of ARHGEF12 (Fig.  5c–h). 
Moreover, from survival analysis results in the TCGA-
DLBC dataset, we found that the overall survival time 
(OS, days) of patients with high expression of ARHGEF12 
and CDC42 was significantly lower than that of patients 
with low expression in these 2 genes (Fig.  5i, j). Also, 
we found that the mRNA expression of ARHGEF12 was 
positively associated with several immune-related genes, 
such as CD44, CD47, CD53, CD59, and CD274 (Addi-
tional file 2: Figure S4A–E). Finally, we conducted a GO 
enrichment analysis (Fig. 5k) for all the genes associated 
with ARHGEF12 (Fig.  5b) and found that the main GO 
enrichment was in the Rho signaling pathway which was 
consistent with the PPI network constructed from the 
STRING database.

Discussion
Even though previous studies have reported that 5hmC 
modifications could serve as potential diagnostic and 
prognostic markers in DLBCL patients [26], its role in 

the prediction of treatment response of R-CHOP scheme 
was not fully studied. Therefore, an accurate, noninva-
sive prediction test for treatment response of R-CHOP is 
highly desirable, and to this end, the emergence of liquid 
biopsy technology has shown to be a promising approach. 
In this study, we aimed to develop a model to predict 
R-CHOP scheme treatment response for DLBCL patients 
based on the 5hmC profiles derived from plasma cfDNA 
before R-CHOP treatment using hmC-Seal sequencing 
method.

In our cohort, we found that responders and non-
responders to R-CHOP scheme had distinctive differ-
ences in 5hmC enrichment, containing 205 DhMRs 
detected by differential analysis method. Additionally, 
pathway analysis of the 205 marker genes with differ-
entially modified 5hmC between responders and non-
responders suggested enrichment in alpha–beta T cell 
activation and differentiation signaling pathway. As 
we all known, tumor progression and drug resistance 
are highly associated with the physiological state of the 
tumor microenvironment (TME), and thus, the tumor 
microenvironment (TME) represents an attractive thera-
peutic target and closely related to the curative effect of 
tumor therapy [47]. The composition of tumor microen-
vironment is complex, which mainly include tumor cells, 
stromal elements, extracellular matrixes, inflammation, 
and immune cells [48], which are closely related to tumor 
development, metastasis, and tumor therapy [49]. Impor-
tantly, cfDNA is not only derived from tumor cells, but 
also from the tumor microenvironment [51]. Therefore, 
these 5hmC marker genes could be related to the effect of 
R-CHOP treatment.

Furthermore, we found that 13 5hmC markers filtered 
by machine learning algorithms could well distinguish 
non-responders from responders in both the training and 
validation cohorts. Meantime, the prediction performance 
of the logistic regression model, established by 13 5hmC 
markers, achieving 0.82 sensitivity and 0.75 specificity 
(AUC = 0.78), was superior to existing clinical indicators, 
such as LDH (AUC = 0.646) and stage (AUC = 0.658). 
Furthermore, when combining the LDH and stage, the 
AUC was also lower than 13 5hmC markers. Taken 
together, these findings indicated that 5hmC markers 
derived from cfDNA may serve as effective biomarkers for 

(See figure on next page.)
Fig. 5  ARHGEF12 and its potential relevance in DLBCL patients and treatment response. a Boxplot of ARHGEF12 grouped by treatment response 
(PDSD vs PRCR). Log2 transformed of TMM normalized 5hmC enrichment values were plotted, and Wilcoxon t test was used. b Functional 
protein–protein interaction networks (PPI) from the STRING database. c–h Correlation plots of the mRNA expression of ARHGEF12 with the mRNA 
expressions of genes in the RHO pathway, including RHOA, RHOB, CDC42, ROCK1, GNA12 and GNA13 in DLBCL in the TCGA-DLBC dataset. i, j Overall 
survival curves of DLBCL patients with low or high gene expressions in ARHGEF12 or CDC42 in the TCGA-DLBC dataset. The x-axis represents the OS 
time (days), and the y-axis represents the survival probability. (K) GO enrichment bar plot for genes associated with ARHGEF12 as shown in the PPI 
network (*p = 0.005–0.05, **p = 0.0005–0.005)
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minimally noninvasive prediction for treatment response 
of DLBCL patients with R-CHOP scheme.

According to recent studies, 5hmC enrichment in 
promoter regions can promote gene transcription [25]. 
In our study, the hydroxymethylation of ARHGEF12 
is enriched in the promoter region in non-responders. 
Notably, among 13 5hmC marker genes, ARHGEF12 
showed the best predictive performance, and its mRNA 
expression was positively associated with that of MS4A1 
in the TCGA-DLBC dataset. Meantime, ARHGEF12 
expression was highly positively correlated with Rho-
related genes, such as RHOA, RHOB, CDC42, ROCK1, 
GNA12, and GNA13. Previous research suggested that 
Rho signaling pathway was linked to cancer microenvi-
ronment, cancer initiation, proliferation, and metasta-
sis, and might incorporate novel biological implications 
and therapeutic opportunities [52]. These genes related 
to ARHGEF12 all play crucial roles in the Rho signaling 
pathway, and their functions in cancer initiation, pro-
liferation, metastasis, and drug resistance are well sup-
ported by previous research [52–57]. In addition, the 
potential functions of ARHGEF12 were also reported in 
various researches. For instance, ARHGEF12 is a well-
studied activator of Rho signaling downstream of G-pro-
tein-coupled receptors (GPCRs) and has essential roles 
in chemokine-driven tumor cell invasion [58, 59]. More 
importantly, ARHGEF12 expression was also positively 
associated with immune-related genes, such as CD44, 
CD47, CD53, CD59, and CD274. Therefore, we suspected 
that, like its related genes, ARHGEF12 was crucial in the 
Rho signaling pathway and might be related to diffuse 
large B cell lymphoma initiation, proliferation, metasta-
sis and treatment, but the deep biological basis of these 
relationships needs further study. Taken together, the 
above evidence provided by previous research suggested 
that ARHGEF12 might serve as a potential drug target 
that was related to the treatment response of R-CHOP 
treatment.

Nevertheless, this study still has some limitations. First, 
the sample size is relatively small and may not fully repre-
sent all DLBCL patients. The performance of our model 
still needs to be tested in larger study cohorts. Second, 
this study only focuses on Chinese patients and may not 
represent DLBCL patients in other races. Thirdly, the 
regulatory mechanism of 5hmC in ARHGEF12 and its 
relevance in R-CHOP treatment effectiveness are still not 
clear. Thus, further studies are required. In the future, we 
aim to increase the sample size of DLBCL patients and 
find more stable and reliable 5hmC marker genes to pre-
dict the treatment response of R-CHOP scheme.

In conclusion, our results suggested that 5hmC mark-
ers derived from plasma cfDNA can be used to predict 
treatment response of DLBCL patients treated with 

R-CHOP scheme. Meanwhile, hmC-Seal might serve as a 
minimally noninvasive technique to unveil potential drug 
targets related to the treatment response of R-CHOP in 
DLBCL patients.
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