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Abstract

Background: Considering that DNA methylation (DNAm) profiles are, in large part, modifiable by lifestyle and
environmental influences, it has been proposed that epigenetic clocks provide a better estimate of biological age
than chronological age, as associated with current health status. Even though metabolic diseases induce precocious
aging, little is known about associations between metabolic syndrome (MetS) and DNA methylation clocks, and
stochastic epigenetic mutations (SEMs), in a Korean population. Therefore, we assessed four different epigenetic
clocks (Pan-tissue, Hannum, PhenoAge, and GrimAge), and their accelerations, on MetS and MetS-related lifestyle
factors, in Koreans. We measured genome-wide DNA methylation (485,512 CpGs), using an Illumina 450
methylation BeadChip array, with data from 349 blood samples.

Results: DNAm GrimAge strongly correlated with chronological age (r = 0.77, p < 0.001) compared to the other
three epigenetic clocks and SEMs. DNAm-based surrogate markers, with regard to MetS, including the gene
encoding plasminogen activator inhibitor-1 (PAI1), also correlated with chronological age. Within cohorts stratified
by age group, sex, regional area, smoking, and alcohol drinking, a positive correlation was observed between
DNAm GrimAge and chronological age (0.43 ≤ r ≤ 0.78). In particular, we identified MetS to associate with
accelerated GrimAge, and age-adjusted PAI1, in the middle-age group. Accerelated GrimAge also associated with
risk of MetS in the middle-age group (odds ratio = 1.16, p = 0.046), which appears to mediate their associations
with fasting glucose. Multiple linear regression showed that DNAm GrimAge, and its acceleration, associate with
MetS scores, in the middle-age group (r = 0.26, p = 0.006). Age-adjusted PAI1 was also significantly different
between the MetS and control groups, and further associated with MetS scores (r = 0.31, P < 0.001), in the middle
age group.

Conclusion: DNAm GrimAge is a surrogate marker for MetS, and its component score, in Koreans. This association
can be observed only in middle age. Therefore, appropriate DNA methylation clocks may aid in the prediction of
Korean metabolic diseases.
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Background
Elderly age is growing dramatically faster than any
other age group around the world. According to the
United Nations Population Division, approximately
900 million people are 60 years or older worldwide,
accounting for 21% of the global population by 2050
[1]. Therefore, understanding the biological process of
aging could help promote healthy aging, longevity,
and the prevention of age-related chronic diseases.
Aging is the most universal contributor to the eti-
ology of metabolic diseases, due to changes in energy
regulation, and a progressive decline in functional in-
tegrity and homeostasis, culminating in death [2].
From biochemical, pathophysiological, and hormonal
standpoints, metabolic syndrome (MetS) can be con-
sidered a sign of rapid aging that determines age-
related metabolic features. For example, the common
individual components of MetS, in elderly persons,
are hypertension, glucose abnormalities, and central
obesity [3].
One theory of aging involves the production of free

radicals that oxidatively modify cellular constituents,
resulting in mitochondrial dysfunction and the loss of
cellular homeostasis, during biological aging [4]. Other
theories suggest that epigenetic alterations play a huge
role in the aging process [5, 6]. It has been noted that
genome-wide DNA methylation levels decline with age.
However, the significance of this change remained un-
known until it became possible to measure the methyla-
tion status, of specific genomic sites. It was observed
that while the methylation of some sites does indeed
decrease with age, that of others increase or remain
unchanged.
The application of machine learning methods to quan-

tify DNAm changes, in multiple sites, allowed the gener-
ation of a highly accurate estimator of age, called the
epigenetic “clock.” DNA methylation, based on a set of
CpG dinucleotides, in specific cell types, creates a DNA
methylation clock (referred to as epigenetic age), which
reflects cellular age [7–9]. The widely accepted epigen-
etic clocks of Horvath [8] and Hannum [7] are quite
accurate, with correlation coefficients > 0.9, with
chronological age. Recently, the DNA methylation pre-
dictor (DNAm) GrimAge was reported to accurately
predict time to death, and time to the onset of many
human diseases, including cancer and heart disease [10].
Interestingly, epigenetic age acceleration (deviation be-
tween chronological age and epigenetic age) is now con-
sidered a biomarker of aging, predictive of premature
morbidity, and mortality. Moreover, stochastic epigen-
etic mutations (SEMs) in DNA methylation occur, over
the lifespan, due to slight imprecision of the epigenetic
maintenance machinery, with particular regard to car-
diovascular pathology and human aging [11, 12].

The application of epigenetic clocks to large human
epidemiological data sets revealed that discordance be-
tween predicted (epigenetic age) and chronological age
associated with many age-related pathologies, particu-
larly when epigenetic age is greater than chronological
age. Nannini et al. reported that MetS associates with in-
trinsic and extrinsic epigenetic age acceleration, in
young adults [13]. However, there are few studies of
MetS and epigenetic age, and the majority of these stud-
ies comprised populations of Caucasian ancestry. There-
fore, it is necessary to study the role of DNA
methylation, in the biology of age-related disparities,
among ethnic minorities.
The objectives of this study were to assess the pos-

sible association of epigenetic age and SEMs with
MetS, using lifestyle factors such as physical and
blood traits, in a Korean population. In addition, we
investigated the association between accelerated
DNAm age and MetS, along with its pathological
components. We also divided chronological age into
middle-age and elderly groups, to investigate which
group is more suitable for predicting age-related
metabolic conditions, using DNAm age.

Results
Characteristics
The baseline characteristics for MetS cases and con-
trols are summarized in Table 1. The participants
consisted of 349 individuals (women n = 172, men n
= 177), with a chronological age of 60.72 (range, 47–
77 years). Mean chronological age for MetS controls
was 59.74 years, whereas the mean chronological age
for MetS was 62.25 years. 49.3% of participants in
this study were females. 22.1% and 47.1% of MetS
patients were current smokers, and current alcohol
drinkers, respectively. MetS cases were more likely to
be urban inhabitants and have lower educational
levels and lower income. We also found no signifi-
cant differences in smoking status, alcohol consump-
tion, or physical activity, between the MetS and
control groups. When calculated across four epigen-
etic clocks (Pan-tissue, Hannum, PhenoAge, and
GrimAge) and SEMs, in the MetS state, DNAm
GrimAge in MetS was significantly higher than those
of the controls (65.05 years for control; 67.32 years
for MetS, p =0.004 (Table 2)). In methylation-based
surrogates of plasma proteins and smoking pack-
years, PAI1 (18346.47 for control and 19880.95 for
MetS, p < 0.001) and TIMP1 (34309.52 for control
and 34686.02 for MetS, p =0.004), in MetS, respect-
ively, were significantly higher than controls. Charac-
teristics between the middle-aged and elderly groups
are presented in Supplementary Table 1.
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Association between chronological age and epigenetic
ages in metabolic syndrome state
The correlation between chronological age and the se-
lected four epigenetic clocks are shown in Fig. 1. DNAm

GrimAge strongly correlated with chronological age (r =
0.77, p < 0.001). while the other three clocks, Pan-tissue,
Hannum, PhenoAge, and SEMs showed no correlation
with chronological age (P > 0.050). Correlation was also

Table 1 Characteristics of the study subjects

Control (N = 213) MetS (N = 136) p value

Female (%) 108 (62.8) 64 (37.2) 0.579

Chronological age (years) 59.74 (8.21) 62.25 (8.49) < 0.007

Living area <0.078

Urban 59 140

Rural 104 46

Smoke 0.636

Never smoker 134 (62.9) 83 (61)

Former smoker 37 (17.4) 23 (16.9)

Current smoker 42 (19.7) 30 (22.1)

Alcohol

Never drinker 106 (49.8) 62 (45.6) 0.824

Non-regular 3 (1.4) 10 (7.4)

Regular drinker 104 (48.8) 64 (47.1)

Education 0.155

Elementary school or less 22 91

Middle school graduate 13 22

High school or higher 24 27

Income (USD) 0.011

< 1000 19 115

1000–2000 29 27

≥ 2000 114 38

Physical activity (MET/day) 90.40 (13.84) 91.49 (13.21) 0.555

Waist (cm) 80.34 (7.77) 91.99 (6.98) < 0.001

Hip (cm) 89.25 (4.92) 94.31 (5.50) < 0.001

WHR 0.90 (0.07) 0.98 (0.06) < 0.001

BMI (m2/kg) 22.94 (2.81) 26.46 (2.97) < 0.001

SBP (mmHg) 117.03 (15.79) 124.18 (14.73) < 0.001

DBP (mmHg) 74.79 (9.70) 77.49 (8.69) 0.007

TG (mg/dl) 109.72 (99.99) 188.90 (154.71) < 0.001

Fasting glucose (mg/dl) 109.60 (55.14) 140.54 (54.15) < 0.001

HDL (mg/dl) 49.05 (11.45) 37.68 (7.80) < 0.001

MetS score

0 68 (31.9) < 0.001

1 68 (31.9)

2 77 (36.2)

3 62 (45.6)

4 52 (38.2)

5 22 (16.2)

Data are presented as n (%) for categorical and mean (standard deviation) for continuous variables. USD US dollars, MET metabolic equivalent, WHR waist-hip
ratio, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, TG triglyceride, HDL high-density lipoprotein; for MetS score: number of
components that meet the NCEP-ATP III criteria
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observed between DNAm GrimAge and chronological
age, when stratified by sex, regional area, age group, and
smoking status (r = 0.43–0.78, Fig. S1). Moreover,
DNAm-based surrogate protein markers including
GDF15, CysteinC, B2M, and TIMP1, also correlated with
chronological age (p < 0.010, Fig. S2).
Positive values of accelerated DNAmAge indicated fas-

ter biological aging, based on chronological age, while
negative values indicated decelerated aging. Accelerated
GrimAge, in the peripheral blood, differed between the
MetS and control groups (Fig. 2). In particular, positive
DNAm GrimAge, from MetS cases, was observed in the
middle-age group (Fig. 2h, p = 0.025). In contrast, Pan-
tissueAge, HannumAge, PhenoAge, and SEMs, in blood
did not differ between MetS and control groups. We
also investigated whether MetS associated with age-
adjusted plasma protein markers. As a result, DNAm-
PAI1 levels were significantly higher in MetS cases than
in controls (Fig. S3(A), P < 2.40 × 10−5). These MetS sta-
tus assays associated with increases of DNAm GrimAge
in the middle-age group.

Accelerated DNAm GrimAge associates with MetS and its
scores
We evaluated whether accelerated DNAm GrimAge as-
sociates with the incidence of MetS (Table 3). Every
one-year gain of GrimAge associated with a 16% in-
crease risk of MetS only in middle-age group (OR =
1.16, 95% CI = [1.01, 1.35]; p = 0.046). In addition, we
observed the association of GrimAge with an increasing

risk of MetS, in females (OR = 1.15, 95% CI = [1.01,
1.33]; p = 0.047), non-smokers (OR = 1.2, 95% CI =
[1.05, 1.37]; p = 0.007), and never-drinkers (OR = 1.19,
95% CI = [1.02, 1.39]; p = 0.021). In MetS components,
fasting glucose levels associated with accelerated DNAm
GrimAge (estimate (S.E), 0.01 (0.005); p = 0.045, Table
4). In estimators of aging, increased DNAmPAI1AdjAge
(age-adjusted estimate of DNAmPAI1) associated with
all MetS components, except for hypertension (Table 4).
It seems that age-adjusted DNAm PAI1 outperforms ac-
celerated GrimAge, for several MetS components. These
findings demonstrate that the DNAm GrimAge indica-
tion estimator is quite accurate in predicting both
chronological age, and biological age in MetS.
We further identified an association between acceler-

ated GrimAge and MetS scores. Figure 3 shows the re-
sult of correlating MetS score, and accelerated GrimAge,
in all participants, as well as results from the middle-age
and elderly groups. Positive correlation between acceler-
ated GrimAge and MetS scores was also observed in the
middle-age group (r = 0.26, p = 0.006; Fig. 3b). However,
there was no significant association between accelerated
GrimAge in the elderly age group (r = − 0.02, p = 0.788;
Fig. 3c), although the effect of age-adjusted PAI1, on
MetS scores, was observed in all groups (Fig. 3d, f).

Discussion
This is the first study to apply epigenetic clocks, with
MetS, to a Korean population. We found that DNAm

Table 2 Differences of DNA methylation age between MetS and control groups

Control MetS p value

Age, years 59.74 (8.21) 62.25 (8.49) < 0.001

DNAmAge (years)

Pan-tissue 62.99 (7.62) 62.05 (7.53) 0.262

Hannum 66.46 (7.60) 67.49 (7.21) 0.204

PhenoAge 56.02 (8.30) 56.50 (7.51) 0.569

GrimAge 65.05 (7.16) 67.21 (6.52) 0.004

SEM 2.89 (0.02) 2.88 (0.02) 0.710

DNAm-based Protein surrogates

DNAm ADM 347.94 (19.71) 353.19 (22.35) 0.026

DNAm B2M 1695400.53 (118063.24) 17164680.23 (111301.02) 0.093

DNAm CystatinC 657922.87 (30767.76) 663421.07 (33629.34) 0.125

DNAm GDF15 778.64 (114.38) 792.13 (110.96) 0.275

DNAm Leptin 6425.81 (3842.37) 6812.72 (3994.74) 0.371

DNAm PAI1 18346.47 (3169.11) 19880.95 (2926.86) < 0.001

DNAm TIMP1 34309.52 (1239.02) 34686.02 (1147.70) 0.004

DNAm Packyrs 23.57 (12.70) 23.88 (12.05) 0.813

Data are presented mean (standard deviation) using Student’s t test or Mann–Whitney U test. SEM, stochastic epigenetic mutation; DNAm ADM adrenomedulin,
DNAm B2M beta-2-microglobulin, DNAm cystatin C cystatin C, DNAM GDF15 growth differentiation factor 15, DNAm leptin leptin, DNAm PAI1 plasminogen
activation inhibitor 1, DNAm TIMP1 tissue inhibitor metalloproteinase
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GrimAge strongly correlated with chronological age (r =
0.77, P < 0.001). However, three other well-known epigen-
etic clocks (Pan-tissue, Hannum and PhenoAge), and
SEMs, showed no association (P > 0.050). The Pan-tissue
clock used a DNA methylation profile of 353 CpGs, with-
out adjustment from 51 multiple tissues, from 8000 sam-
ples, to reflect the intrinsic aging process [8]. HannumAge
was estimated using 71 CpG sites from whole blood from
656 individuals, as associated with the risk of all-cause mor-
tality, and related covariates such as gender, BMI, diabetes,
ethnicity, and batch [7]. While both the Pan-tissue and
HannumAge clocks were estimated by penalized linear re-
gression models, only 6 CpG sites were shared between the
two clocks. The PhenoAge clock [9] was developed using
penalized regression in which the hazard of age-related
mortality was regressed on nine clinical variables (including
biochemical properties, tissue function, immune function),
and chronological age. This clock is based on methylation
profiles of 513 CpGs from the third National Health and
Nutrition Examination Survey (N = 9926), and InCHIANTI
(N = 456) data, using whole blood.
Four previous studies investigated DNAmAges and

MetS [10, 13–15]. Although previous MetS studies re-
ported that intrinsic and extrinsic epigenetic age acceler-
ation (IEAA and EEAA) positively associated with
positive MetS status [13, 14], we could not replicate
those results (Supplementary Table 2). These study pop-
ulations were mainly based on Caucasians, African
Americans, and Blacks, ethnicities different from a

Korean population. For example, Quach et al. reported
IEAA and EEAA associated with MetS, including the
study participants composed of only 3% of Asian or Pacific
Islanders [14]. Another study investigated the association
between the Hannum clock and MetS, based on U.S. mili-
tary veterans, including Whites and Hispanics, using the
Infinium EPIC DNA methylation chip [15]. Lu et al., the
creators of DNAmGrimAge, associated that algorithm
with MetS, based on a multiethnic group of Caucasian,
African, and Hispanic populations [10]. Horvath et al. pre-
viously reported that epigenetic aging rate significantly
correlates with sex and ethnicity [16]. Since our result is
based on a Korean population, this may affect its discord-
ance from results of previous studies using DNAmAges,
and our results were also likely influenced by differences
in study sample sizes and the source of DNA.
The most interesting finding is that the risk of MetS

associated with increased accelerated DNAm GrimAge,
and age-adjusted DNAm PAI1, in the middle-age group,
but not in the elderly group. In particular, MetS scores
positively associated with accelerated DNAm GrimAge,
indicating greater accelerated epigenetic aging, depending
on the number MetS components, in the middle-age
group. The peak age for MetS was reported to be under 50,
while the prevalence decreased with aging, in Korea [17].
DNA methylation age, in blood, can predict the age of

onset of chronic diseases [18]. Similarly, the change of
DNAm age is faster in children, due to developmental
growth [8, 19], and degenerative phenotypes, such as

Fig. 1 Correlation of five DNAm epigenetic clocks with chronological age. Scatter plots of DNA methylation age vs. chronological age. a Pan-
tissue. b Hannum. c PhenoAge. d GrimAge. e Stochastic epigenetic mutations
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body mass index (BMI), which accelerate epigenetic
clocks in blood, but only in the middle-age group (age,
40–49 years), in Finnish [20]. Research is now increas-
ingly showing that the origins of risk for chronic condi-
tions, such as diabetes and heart disease, begin in early

childhood, or even earlier [21, 22]. Thus, smoking, lack
of physical activity, inadequate diet, and other estab-
lished adult risk factors, might put individuals at rela-
tively greater risk of developing chronic diseases, at
older ages.

Fig. 2 DNAm age acceleration levels, and the number of stochastic epigenetic mutations between MetS cases and controls, in all subjects (a–e,
upper figures) and the middle-age group (f–j, lower figures). a, f Pan-tissue acceleration. b, g Hannum’s acceleration. c, h PhenoAge acceleration.
d, i GrimAge acceleration. e, j SEMs

Table 3 Odds ratios for metabolic syndrome for accelerated GrimAge and age-adjusted DNAmPAI1

AgeAccelGrim p value DNAmPAI1AdjAge p value

Age group

Middle-aged (< 60 years) 1.16 [1.1, 1.35] 0.046 1.0003[1.0001, 1.0004] < 0.001

Elderly (≥ 60 years) 1.07 [0.94, 1.23] 0.311 1.0001 [1, 1.0002] 0.023

Living area

Rural 1.05 [0.93, 1.19] 0.465 1.0001 [1, 1.0002] 0.047

Urban 1.06 [0.98, 1.15] 0.123 1.0004 [1.0002, 1.0005] < 0.001

Sex

Female 1.15 [1, 1.33] 0.047 1.0001 [1, 1.0003] 0.007

Male 1.06 [0.92, 1.21] 0.446 1.0002 [1.0001, 1.0004] < 0.001

Smoking

Never smoker 1.2 [1.05, 1.37] 0.007 1.0002 [1.0001, 1.0003] < 0.001

Former smoker 0.9 [0.71, 1.14] 0.384 1.0001 [0.9999, 1.0004] 0.210

Current smoker 1.21 [0.95, 1.54] 0.123 1.0004 [1.0002, 1.0007] < 0.001

Alcohol drinking

Never drinker 1.19 [1.02, 1.39] 0.021 1.0001 [1, 1.0002] 0.020

Regular drinker 1.03 [0.9, 1.19] 0.655 1.0002 [1.0001, 1.0004] < 0.001

Data are presented as Odds ratio [95% confidence interval] of metabolic syndrome. AceAccelGrim, accelerated DNAm GrimAge; DNAmPAIAdjAge, age-adjusted
DANmPAI1; chronological age, sex, regional area and DNAmPACKYRS were included in the multiple linear regression
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A DNAm-based plasma protein, DNAm PAI1, and its
age-adjusted one, could represent accurate biomarkers
of ageing and MetS state. DNAm GrimAge was devel-
oped based on 7 DNAm estimators, including DNAm
PAI1, and DNAm PACKYEAR. DNAm PAI1 and age-
adjusted PAI1 were reported to be involved in lung
function [23] and type 2 diabetes [10]. In addition,
DNAm PAI1 was shown to outperform DNAm
GrimAge, in several chronic diseases [10, 23]. We also
found that MetS components, and obesity-related factors
such as BMI, significantly associate with age-adjusted
DNAm PAI1 (Table 4, P < 0.02), even though the results
were not consistent with DNAm GrimAge. Therefore,
further study of DNAm-related protein estimators is an
important step for predicting chronological and bio-
logical ageing.
There are some limitations to the study. As mentioned

in the introduction, one theory of aging involves oxida-
tive stress, which is connected to biological aging; there-
fore, diet and nutrients are attributed to pro-oxidative or
anti-oxidative factors. Lack of information for dietary
patterns might also limit estimates of biological age. Be-
sides, due to a limited number of individuals included in
our study, our result should be further confirmed and
strengthened by other validation studies using larger
cohorts.

Conclusions
In conclusion, we provide evidence that accelerated
DNAm GrimAge, and plasma protein levels, associated
with MetS, in a Korean population. In addition, this
finding was significant in a middle-age group (< 60
years). However, we could not observe that other epi-
genetic clocks were involved in MetS progression in our

study population. While further comparison, with differ-
ent populations, is required, we suggest that epigenetic
clocks, such as DNAm GrimAge, could be a useful bio-
marker for the diagnosis of metabolic disease, and estab-
lish the role of epigenetic aging processes, in such
diseases.

Methods
Study population
The present study was approved by the institutional
review board of Seoul National University (E1908/
001-004). Participants were from the Korean Genome
Epidemiology Study (KoGES), which is now on its
fifth 2-year follow-up phase, in 2011–2012 (Ansan-
Ansung community-based cohort study). Its study de-
sign, sampling, concept, and consent are described in
a previous study [24]. Study samples were drawn from
the Korea Association REsource (KARE) for which
data on DNA methylation was available. Educational
attainment was categorized into three groups: less
than 7 total years (elementary school graduates), 7–9
years (middle school graduates), and more than 10
years (high school graduates). Monthly household
income was also categorized into three groups: less
than $1000 USD (in 2014), $1000–$2000, and ≥ $2000.
Physical activity was quantified by metabolic equivalent
(MET) intensity [25]. Obesity was diagnosed using
different methods: body fat and abdominal fat were
assessed by multi-frequency bioelectrical impedance
analysis (MF-BIA; InBody 3.0, Biospace, Seoul, Korea).
Abdominal fat (cm2) was measured using dial-energy
X-ray absorptionmetry (DXA). We also investigated
waist circumference (cm), hip (cm), waist-hip ratio,
and BMI (cm/m2) for assessments of obesity [26].

Table 4 Associations between age acceleration and lifestyle factors in middle-age group

AgeAccelGrim DNAmPAI1AdjAge

Factors Estimate (S.E) p value Estimate (S.E) p value

Fasting glucose (mg/dl) 2.31(1.15) 0.045 15.49(3.71) <0.001

HDL (mg/dl) -0.28(0.24) 0.248 -39.44(18.58) 0.035

Waist circumference (cm) 0.05(0.16) 0.734 75.98(28.48) 0.008

Triglyceride (mg/dl) -1.15(3.23) 0.722 0.98(1.40) 0.488

SBP (mmHg) 0.12(0.25) 0.622 32.70(17.79) 0.070

DBP (mmHg) 0.13(0.16) 0.432 49.45(28.19) 0.081

Abdominal fat (%) 0.0009(0.0008) 0.261 12133.46(5445.95) 0.027

Body fat (kg) 0.05(0.10) 0.594 87.27(45.71) 0.058

Body fat (%) 0.08(0.10) 0.395 85.12(47.94) 0.078

BMI (m2/kg) 0.04(0.06) 0.482 182.58(77.65) 0.020

Data are presented as estimates [standard error]. Estimate, difference in factor per year of epigenetic age acceleration. Chronological age, sex, and regional area
were included in multiple linear regression. AgeAccelGrim DNAm GrimAge Acceleration, DNAmPAI1AdjAge age-adjusted DNAmPAI1, HDL high-density lipoprotein,
SBP systolic blood pressure, DBP diastolic blood pressure, BMI body mass index
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Epidemiological and biochemical data for this study
was provided by the National Biobank of Korea, and
KoGES, according to the approval of the sample and
data access committee.

DNA methylation profiling
Genomic DNA from peripheral blood was used for DNA
methylation assessment for this study. High-quality gen-
omic DNA (500 ng for each sample) was modified by so-
dium bisulfate, using an EZ DNA methylation kit (Zymo
Research, Orange, CA, USA) according to the manufac-
turer’s instruction. Genome-wide DNA methylation was
profiled using the Illumina Infinium HumanMethyla-
tion450 BeadChip (Illumina, San Diego, CA, USA), com-
posed of > 485,000 CpGs, and covering 99% of RefSeq
genes. Hybidized DNA was scanned using an Illumina
iScan. GenomeStudio V2011 (Methylation Module, R
2.11) software was used for quantification and image
analysis of the methylation data (Illumina). All samples
passed GenomeStudio quality control steps, based on
built-in control probes for staining, hybridization, exten-
sion, and specificity, and the bisulfite conversion effi-
ciency was high (intensity signal > 4000). We followed
the quality control procedure using the Bioconductor
minfi package [27]. For example, data was filtered to re-
move CpGs with high detection p values. The procedure

for this DNA methylation assessment has been described
previously [28].

Metabolic syndrome (MetS) definition
MetS is characterized by the combination of several
components, including abdominal obesity, hypertension,
dyslipidemia, insulin resistance, and glucose intolerance,
important precursors of cardiovascular disease and type
2 diabetes. Of these, MetS is defined by the presence of
three or more of the following five components, accord-
ing to the NCEP-ATP III criteria, except for the deter-
mination of central obesity [29]. Waist circumference
cut-off value was based on the report by the Korean So-
ciety for the Study of Obesity: (1) central obesity, given
as waist-high circumference (≥ 90 cm for men and ≥85
cm for women); (2) high concentrations of serum trigly-
ceride (≥ 150 mg/dL); (3) low concentrations of serum
high-density lipoprotein cholesterol (< 40 mg/dL for
men and < 50 mg/dL for women); (4) hypertension (sys-
tolic/diastolic pressure ≥ 130/85 mmHg), or taking anti-
hypertensive medications; and (5) high concentrations of
fasting glucose (≥ 100 mg/dL) or taking antidiabetes
medications. MetS score was calculated for each subject,
as the summation of the number above the cut-off, for
each MetS component, ranging from 0 to 5.

Fig. 3 Box-plots of measured accelerated DNA GrimAge, or age-adjusted DNAmPAI1 by MetS scores. Centerline, median; box limits, upper and
lower quartile; whiskers, 1.5 × interquartile range; and points, outliers. Age acceleration was adjusted by regional area, BMI, sex, smoking status,
and chronological age. a, d All subjects. b, e Middle-age group. c, f Elderly group
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DNA methylation age and stochastic epigenetic mutation
calculation
DNA methylation ages (DNAmAge) were calculated
using an online age calculator (http://dnamage,genetic-
s.ucla.edu/) developed by Horvath (5), with the
normalization feature set to “true.” We calculated 4
DNAmAge (Pan-tissue, Hannum, PhenAge, GrimAge)
and GrimAge surrogates, including seven proteins: adre-
nomedulin, beta-2-microglobulin, cystatin C, growth dif-
ferentiation factor 15, leptin, PAI1, and tissue inhibitor
metalloproteinaise, and DNAm PACKYEAR. We identi-
fied SEMs using the procedure described by Gentilini
et al. [11]. Briefly, for each CpG, considering the distri-
bution of DNAm beta values, across all samples, we
computed the interquartile range (IQR, the difference
between the third quartile (Q3) and the first quartile
(Q1)), and defined SEMs at a methylation value lower
than Q1-(3 × IQR), or greater than Q3 + (3 × IQR).
Finally, for each participant, we calculated the total
number of SEMs across all CpGs and analyzed them
using a logarithmic scale.

Statistical analyses
For the characterization of subjects, data were presented
as means (standard deviations), for continuous variables,
or as percentages (%), for categorical variables (Table 1).
Prior to analysis, all variables available were examined
for departure from normality, and log-transformation
was made for the skewed distribution with a long right
tail. Distinctions between different groups were detected
using the Mann–Whitney U test, for non-normally dis-
tributed continuous variables, and the chi-square test,
for categorical variables. Pearson correlation coefficients
were used to test for correlation between chronological
age and four different DNAmAges, and between chrono-
logical age and SEMs and between chronological age
and age-adjusted DNAm plasma protein levels, and be-
tween DNAmAge acceleration and MetS scores. Stu-
dent’s t test or Mann–Whitney U test was performed for
comparisons between MetS and control groups for ac-
celerated DNAmAge. We also performed linear regres-
sion analysis between DNAmAge and MetS scores, and
between epigenetic age acceleration and MetS score ad-
justed by chronological age, sex, regional area, smoking
status, and BMI. Logistic regression was used to test the
association between risk of MetS and accelerated
GrimAge, with covariates including chronological age,
sex, region, and DNAm PACKYEAR (Table 3). For ac-
celerated GrimAge and age-adjusted DNA PAI1, effects
on lifestyle and obesity-related factors, multiple
regression models were fitted using potential confound-
ing factors, such as chronological age, sex, and region
(Table 4). p values < 0.05 were considered statistically
significant. All statistical analyses were performed using

R Software (version 2.14.0; R Foundation for Statistical
Computing, Vienna, Austria)
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1186/s13148-020-00936-z.
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protein estimators between MetS and control groups. Table S2. Differ-
ences of internal and external DNAm age accelerations between MetS
and control groups. Table S3. MetS components and obesity-related fac-
tors between middle-aged and elderly groups.

Additional file 2: Figure S1. Association between DNAm GrimAge and
chronological age stratified by age group, sex, smoking status and
regional area. (all p <0.05 for correlations, A~D). Figure S2. Correlation
between DNA methylation ages including protein based age estimators.
Figure S3. DNAm age acceleration levels between controls and MetS
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