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Genome-wide methylation patterns predict
clinical benefit of immunotherapy in lung
cancer
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Abstract

Background: It is crucial to unravel molecular determinants of responses to immune checkpoint blockade (ICB)
therapy because only a small subset of advanced non-small cell lung cancer (NSCLC) patients responds to ICB
therapy. Previous studies were concentrated on genomic and transcriptomic markers (e.g., mutation burden and
immune gene expression). However, these markers are not sufficient to accurately predict a response to ICB
therapy.

Results: Here, we analyzed DNA methylomes of 141 advanced NSCLC samples subjected to ICB therapy (i.e., anti-
programmed death-1) from two independent cohorts (60 and 81 patients from our and IDIBELL cohorts).
Integrative analysis of patients with matched transcriptome data in our cohort (n = 28) at pathway level revealed
significant overlaps between promoter hypermethylation and transcriptional repression in nonresponders relative to
responders. Fifteen immune-related pathways, including interferon signaling, were identified to be enriched for
both hypermethylation and repression. We built a reliable prognostic risk model based on eight genes using LASSO
model and successfully validated the model in independent cohorts. Furthermore, we found 30 survival-associated
molecular interaction networks, in which two or three hypermethylated genes showed significant mutual exclusion
across nonresponders.

Conclusions: Our study demonstrates that methylation patterns can provide insight into molecular determinants
underlying the clinical benefit of ICB therapy.
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Introduction
Over the past several years, the number of non-small-cell
lung cancer (NSCLC) patients treated with immune check-
point blockade (ICB) therapy has increased at a fast rate due
to its proven efficacy in treating NSCLC [1]. In particular,
ICB therapy targeting programmed death-1 (PD-1) and pro-
grammed death-ligand 1 (PD-L1) has demonstrated effect-
iveness in dramatically improving NSCLC patient survival
[2]. However, ICB therapy has varying degrees of effect in

patients. Previous studies showed that only a small subset of
NSCLC (< 20%) patients can benefit from these novel agents
[3, 4]. Thus, it is crucial to unravel the molecular determi-
nants of the response to ICB therapy. To select patients who
are likely to respond to this therapy, many genomic and tran-
scriptomic biomarkers have been proposed, such as tumor
mutational burden (TMB) [5] and the expression of key
genes (e.g., PD-L1) [6, 7]. However, these biomarkers are not
sufficient to accurately predict the response to ICB therapy.
Beyond genomic and transcriptomic biomarkers, epigenetic
aberrations have been reported to be associated with re-
sponse to ICB therapy [8].
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Aberrant DNA methylation has been recognized as a
crucial factor in lung carcinogenesis [9]. In particular,
the inhibition of tumor suppressor expression by pro-
moter hypermethylation is a common event in NSCLC
[10]. Thus, DNA methylation-based biomarkers have
been extensively studied for predicting prognosis and re-
sponse to conventional therapy [11, 12]. Silenced
immune-related genes by promoter hypermethylation
have been recently found to be predictive of ICB therapy
response [13–15]. Given that the loss of functions in
immune-related genes by genomic mutations (e.g., trun-
cating mutations and copy number deletion) account for
primary and acquired resistance to ICB therapy [16–18],
we hypothesize that the silencing of immune genes
through promoter hypermethylation could be one of the
key mechanisms resulting in immune evasion. To
comprehensively explore DNA methylation aberrations
associated with the response to ICB therapy, we system-
atically analyzed DNA methylation markers predictive of
ICB benefit by investigating genome-wide methylation
data (Illumina 850K/EPIC platform) from a total of 141
NSCLC patients receiving ICB therapy. We discovered
diverse predictive DNA methylation markers by building
a lasso regression prediction model and investigating the
molecular network of mutually exclusive promoter-
hypermethylated genes. As a result, we suggest that
DNA methylation is a promising candidate for bio-
markers predicting the clinical response of ICB therapy.

Results
Differential DNA methylation pattern between
nonresponders and responders
To comprehensively assess the genomic characteristics
of our ICB therapy cohort (n = 60; Supplementary Table
1), we performed genome-wide DNA methylation (850K
Infinium Methylation EPIC Array) and exome-seq as-
says. First, we evaluated the association of patient sur-
vival and known predictive genomic biomarkers, such as
TMB, neo-antigen load, aneuploidy level, and PD-L1 ex-
pression (Supplementary Figure 1). Remarkably, our co-
hort’s clinical benefit was not predictable with these
biomarkers; for example, our cohort did not show a cor-
relation between mutation burden and progression-free
survival (PFS). This independent pattern was preserved
even after excluding a patient with an outlier TMB.
Moreover, a high aneuploidy level was not significantly
correlated with shorter PFS. We also examined known
mutation signatures in NSCLC with respect to patient’s
PFS because APOBEC mutational signatures are re-
ported to be enriched in NSCLC patients with durable
clinical benefit [19, 20]. None of the mutation signatures
were related with patient survival in our cohort.
Unlike these known biomarkers, the DNA methylation

level illustrated its power to distinguish clinical response

(Fig. 1). We found 65 and 377 differentially methylated
regions (DMRs) and probes, respectively, between re-
sponders and nonresponders. A majority of DMRs (97%;
n = 63) is hypermethylated in nonresponders, and they
are concentrated in promoter regions (Supplementary
Figure 2), suggesting the potential of a strong local
hypermethylation pattern regulating biological functions.
On the contrary, the hypermethylated probes (n = 64) in
nonresponders tend to reside more in gene body regions
whereas the hypomethylated probes (n = 313) are con-
centrated in promoter regions. To analyze differential
methylation patterns at the gene level, we first assigned
the most differently methylated promoter probes to their
corresponding genes (see “Methods” section). As a re-
sult, we found 337 differentially methylated genes, of
which 58 and 279 genes are hyper- and hypomethylated
in nonresponders, respectively. Interestingly, the hyper-
methylated genes in nonresponders were significantly
enriched in the positive regulation of interferon-gamma
secretion and the positive regulation of apoptotic
process, whereas the hypomethylated genes were
enriched in transcription regulation and DNA-directed
RNA polymerase II activity (Supplementary Table 2).

Promoter hypermethylation leads to the transcriptional
silencing of immune pathways
DNA methylation in promoters is a well-established epi-
genetic mechanism for the inhibition of gene transcription
[21]. To examine the extent to which promoter methyla-
tion affects the transcriptional silencing of immune genes,
we further analyzed the RNA-seq data on a subset of our
cohort (n = 28). We then examined promoter hyper-
methylated and under-expressed pathways between non-
responders and responders using Gene Set Enrichment
Analysis (GSEA) [22]. Interestingly, nonresponders had
both enriched promoter hypermethylated (n = 24, 13.3%;
Supplementary Table 3) and under-expressed immune
pathways (n = 71, 39.2%; Supplementary Table 4), whereas
responders did not have any significantly enriched im-
mune pathways, suggesting the down-regulation of im-
mune system in nonresponders (Fig. 2a). We further
examined relationship between promoter hypermethylated
and under-expressed pathways in nonresponders and
found a statistically significant overlap between them (Fig.
2b, P = 3.4 × 10−3). Representative GSEA plots of the
overlapped pathway, namely interferon signaling, are illus-
trated in Fig. 2c. These results highlight the importance of
the transcriptional silencing of immune pathways by
promoter-hypermethylation in nonresponders.

Establishing a methylation-based prognostic prediction
model
Next, we built a generalized linear Cox model for the ac-
curate prediction of survival using the methylation
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profile. Using our cohort as a training set (n = 60),
we built a survival model based on eight genes
(Table 1, Fig. 3a, and Supplementary Figure 3). The
coefficients of our model contribute to the risk score
where negative and positive coefficients in the Cox

regression model signify factors that contribute to
favorable and unfavorable survival, respectively. In
other words, high methylation level of genes with a
negative coefficient reduces risk factors. For example,
LTBR, a gene with a negative coefficient in our

Fig. 1 Genomic characteristics of nonresponders and responders. The patients are ordered according to their clinical classification: durable clinical
benefit (DCB; responders) on the left, non-durable benefit (NDB; nonresponders) on the middle, and unknown on the right. Within the groups,
samples are ordered by decreasing mutation burden. Heatmap (normalized by z score transformation per row) shows differentially methylated
promoter genes between responders and nonresponders (P < 5 × 10−5 by t test). The total exonic mutation burden, aneuploidy level, and
mutation signature obtained from whole-exome sequencing data are shown below the heatmap
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model, is associated with tumor necrosis and its acti-
vation is linked to carcinogenesis [23]. Thus, the
promoter hypermethylation-derived transcription si-
lencing of this gene would be beneficial for PFS. In
contrast, a high methylation level of genes with a
positive coefficient increases the risk score. For ex-
ample, CD3E is involved in T cell development and
activation [24]. The hypermethylation of this gene

will result in the negative regulation of T cell-
mediated cytotoxicity, which can be expected to be
unfavorable for survival.
We validated our model using two independent co-

horts including TCGA NSCLC data (Fig. 3b–d). Al-
though the TCGA samples in general are not
appropriate to evaluate immunotherapy markers, some
tumors under strong immune pressure can serve as

Fig. 2 Transcriptional silencing of immune pathways by promoter hypermethylation in nonresponders. a Fraction of enriched hypermethylated
(left) and under-expressed immune pathways (right) in nonresponders and responders. The number of the pathways showing significant
enrichment (FDR < 0.1) by GSEA is indicated above the bars. b Relationship between enriched hypermethylated and under-expressed immune
pathways in nonresponders. The significance of overlap was determined by Fisher’s exact test. c Representative GSEA plots of the
overlapped pathways

Table 1 Genes used in methylation-based prognostic prediction model

Probe Coefficient Gene
symbol

Gene function Cancer relatedness

cg22029157 − 1.52 IRF6 Interferon regulatory factor associated with cytokine signaling Tumor suppressor activity

cg12007048 − 1.096 CTSD Proteolytic activation of hormones and growth factors (i.e., EGFR) Linked with poor prognosis in NSCLC

cg07935119 − 1.04 GRN Granulin coding gene; growth factor involved in inflammation and
cell proliferation

Regulate tumorigenesis; immune evasion,
proliferation

cg23079808 − 0.989 LTBR Tumor necrosis factor receptor; signaling immune response and
programmed cell death

Activation linked to carcinogenesis

cg04450862 − 0.907 TRIM36 Mediate ubiquitination and proteasomal degradation of target
protein

Known to be upregulated in cancer

cg19918549 0.347 EVL Actin-associated proteins involved in axon guidance Upregulated in breast cancer

cg24612198 0.385 CD3E Part of CD3 complex that facilitate T cell development Down regulation of this gene results in T
cell apoptosis

cg17771150 0.969 LCP1 Actin-binding protein that are involved in T cell activation Upregulated in cancer
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surrogates for samples treated with checkpoint blockade.
Therefore, we selected samples with high immune cell
infiltration using tumor-infiltrating lymphocyte (TIL)
fraction and tested whether our methylation markers are
associated with the survival of these samples [25]. As a
result, our model demonstrates its predictive power to
accurately distinguish survival outcomes in immunother-
apy and TCGA high-TIL cohorts (Fig. 3a–c) but not in
TCGA low-TIL cohort (Fig. 3d). For patients with a low
risk score and better survival, genes with a negative coef-
ficient had a high level of methylation and those with
positive coefficient have low level of methylation (heat-
maps in Fig. 3). This trend is opposite for patients with
high risk scores. We also performed receiver operating
characteristic (ROC) curve analysis of the risk score for
predicting progression-free survival (Supplementary Fig-
ure 4). The area under curve (AUC) values at 6 and 12
months are consistently higher in immunotherapy (SMC
and IDIBELL) and TCGA high-TIL cohorts than TCGA
low-TIL cohort. The AUC values in immunotherapy and
TCGA high-TIL cohorts ranged from 0.60 to 0.87, while
the values in TCGA low-TIL cohort were close to 0.5,
indicating no predictive effect of our risk score in this
low-immune pressure cohort (i.e., random performance).
Collectively, our results reinforce the role of the risk
score as a potential biomarker of response to immuno-
therapy. Interestingly, each gene used in our model can
also distinguish survival outcomes in immunotherapy
cohorts (Supplementary Figure 5). Consistent with our
regression model, genes with a negative coefficient show
an inverse relationship between methylation and survival
whereas those with a positive coefficient show a direct
association. Thus, differential patterns of these genes
contribute to the accurate classification of patients’ sur-
vival outcome prediction.

Mutually exclusive hypermethylated genes are associated
with patient survival
Previous studies have revealed mutually exclusive pat-
terns of genomic alterations across cancer patients, in-
cluding mutations in driver genes [26]. Genes exhibiting
mutually exclusive alternation pattern are generally in-
volved in a common biological pathway due to their
functional redundancy [27, 28]. Knowledge about these
patterns can provide important insight into novel can-
cerous network and potential therapeutic targets [29].
To identify such mutually exclusive patterns associated
with response to ICB therapy at the methylation level,
we first integrated two different cohorts receiving im-
munotherapy (i.e., the IDIBELL cohort and SMC cohort;
n = 141) and identified genes for which promoter hyper-
methylation is specifically observed in nonresponders (n
= 101; see “Methods” section). We then searched for
protein interaction networks whose member genes show
mutually exclusive alteration patterns. We identified 474
protein interaction networks in which two or three
hypermethylated genes showed significantly mutually ex-
clusive patterns across nonresponders. Importantly, we
further conducted survival analysis to assess the ultimate
effect of exclusivity and identified 30 protein networks
associated with progression-free survival (Supplementary
Table 5).
Representative networks associated with patient sur-

vival are shown in Fig. 4. As shown in Fig. 4a, DUSP6
and CRACR2A showed mutually exclusive patterns (P =
3.3 × 10−6). In other words, there is a significantly low
portion of samples that harbor promoter hypermethyla-
tion in both genes. Furthermore, we performed survival
analysis by comparing patients with promoter hyperme-
thylation in either or both genes with those without
hypermethylation, resulting in an unfavorable prognosis

Fig. 3 Risk score calculated by Lasso Cox regression models and survival analysis in three different cohorts. a Training set (n = 60; our cohort). b
IDIBELL set (n = 81). c–d TCGA high- (n = 151) and low-immune pressure cohorts (n = 259). Patients in the TCGA cohort were divided into high-
and low-TIL cohorts according to mean value of tumor infiltrating lymphocyte (TIL) fraction. Kaplan-Meier survival analyses of the patients are
displayed on the top. The patients in each cohort were divided into low- and high-risk groups based on mean of risk index produced by our
model (i.e., mean score). P values were calculated using the log-rank test. The methylation levels of the eight genes included in our model are
shown as a heatmap on the bottom. Methylation values were z score normalized per gene. Genes (x-axis) and samples (y-axis) are ordered in
increasing order of coefficient and risk score, respectively. Methylation probe for CTSD gene selected by our model is not present in TCGA cohort
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of patients with hypermethylated genes. DUSP6 is a
tumor suppressor gene known to negatively regulate
MAPK pathways [30]. Furthermore, recent reports high-
light its role in differentiation and apoptosis in cancer.
CRACR2A is part of the calcium channel in T cells and
is pivotal in T cell cytotoxic activity [31]. This result
highlights that the disruption of the network caused by
the silencing of either gene confers unfavorable progno-
sis in NSCLC patients.
This pattern can also be found in the network with

three mutually exclusive genes (Fig. 4b; AP1G1-
TMEM173: P = 1.06 × 10−5, AP1G1-HLA-DRB5: P = 3.4
× 10−5, TMEM173-HLA-DRB5: P = 1.98 × 10−5).

TMEM173 is known to be associated with the apoptotic
signaling pathway related to MHC type II, in which
HLA-DRB5 is a subunit [32]. Liu et al. reported that the
transcriptional silencing of AP1G1 can activate the
PIK3/AKT pathway, which induces tumor proliferation
and invasion [33]. Thus, the promoter hypermethylation
of any of the three genes can lead to reduced survival by
disrupting the network.
In contrast, the representative network in Fig. 4c

shows the opposite survival trend; samples with hyper-
methylation in either gene have a longer PFS. This find-
ing can also be explained by the gene function of the
two mutually exclusive genes, POLR3A and PSAP (P =

b

a

+

+

+ +

0.00

0.25

0.50

0.75

1.00

+

+

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Days

TMEM173

AP1G1

HLA-DRB5

MB21D1

TBK1

DUSP6 PEA15

MAPK1

RPS6KA1

FRK

CRACR2A

DUSP6

CRACR2A

≥1 hypermethylated gene
0 hypermethylated gene

≥1 hypermethylated gene
0 hypermethylated gene

c
+

+

0.00

0.25

0.50

0.75

1.00

POLR3A

PSAP

POLR2A

POLR3A POLR2E

LAMB2
≥1 hypermethylated gene
0 hypermethylated gene

P=2x10-2

PSAP

0 50 100 150 180
Days

0 50 100 150 200
Days

P
ro

gr
es

si
on

-fr
ee

S
ur

vi
va

l (
%

)
P

ro
gr

es
si

on
-fr

ee
S

ur
vi

va
l (

%
)

P
ro

gr
es

si
on

-fr
ee

S
ur

vi
va

l (
%

)

P=1x10-2

P=4x10-4

AP1M1

AP3S1

AP1G1 HLA-DRB5 IRF3

TMEM173 MB21D1

Fig. 4 Mutually exclusive alterations associated with nonresponders’ survival. a–c Representative protein interaction networks showing mutually exclusive
hypermethylation patterns. The nodes and edges in the networks represent proteins and interactions, respectively (top right). The colored nodes correspond to
genes showing a mutually exclusive promoter hypermethylation pattern. Genes whose promoter is hypermethylated in nonresponders are marked in red
(bottom right). Kaplan-Meier survival analyses of the patients are displayed on the right. Patients showing hypermethylation in either or both colored nodes
(red) were compared with those without hypermethylation (blue). P values were calculated using the log-rank test

Kim et al. Clinical Epigenetics          (2020) 12:119 Page 6 of 10



1.3 × 10−5). POLR3A is a RNA polymerase III subunit
and is known as an unfavorable marker in cancer [34].
PSAP produces prosaposin, whose amplification is re-
ported to cause carcinogenesis or tumor progression
[35]. Thus, the disruption of this network by transcrip-
tional silencing can be expected to yield better survival
(P = 4 × 10−4).

Discussion
DNA methylation aberrations are closely related to can-
cer since they regulate spatiotemporal gene expression
in cell type specific manner. In particular, the downregu-
lation of tumor suppressors by promoter hypermethyla-
tion is a widely accepted mechanism in cancer
progression [36, 37]. Due to its distinct pattern in can-
cer, DNA methylation has been used as a diagnostic and
predictive biomarker. For example, methylation profiles
obtained from blood liquid biopsy have the potential to
detect early stage colorectal cancer (CRC) with high effi-
cacy [38]. In addition, a five-CpG-based classifier im-
proved risk stratification for patients with clear cell renal
cell carcinomas (ccRCCs) [39]. In this study, we showed
that DNA methylation alterations are also a promising
biomarker for predicting the clinical response of ICB
therapy. We first characterized methylation differences
between responders and nonresponders on a genome-
wide scale and demonstrated that gene promoter hyper-
methylation significantly correlates with the mRNA ex-
pression silencing of immune-related pathways in
nonresponders. We built and validated an eight-gene
based lasso regression prediction model to accurately
classify patient survival outcomes. The established model
can be used to stratify patients who are likely to benefit
from ICB therapy. Furthermore, through mutually exclu-
sive hypermethylation pattern analysis, we found protein
interaction networks in which exclusive disruption leads
to different survival outcomes. The wide range of genes
identified in this study has broaden knowledge about po-
tential immunotherapy resistance mechanism. More in-
vestigation is warranted in order to understand the
mechanisms underlying the associations between genes.
A growing body of evidence suggests that DNA meth-

yltransferase inhibitors (DMTis), such as 5-azacytidine
(AZA) and 5-aza-2’- deoxycytidine (DAC), have poten-
tial to improve the therapeutic efficacy of ICB [40, 41].
DMTi treatment can promote anti-tumor immunity by
upregulating immune-related genes [42] or endogenous
retrovirus (ERV) [43]. Our results warrant future re-
search on the effectiveness of the combination of ICB
therapy with DNMi because a significant proportion of
immunomodulatory pathways might be potentially
downregulated in nonresponders by promoter hyperme-
thylation. The identified methylome-based markers

could be further used to guide the selection of patients
for this combined therapy in clinical trials.

Conclusions
Our study demonstrates that methylation patterns can
provide insight into molecular determinants underlying
the clinical benefit of ICB therapy.

Methods
Data collection
Advanced NSCLC patients who received anti-PD-1/PD-
L1 therapy (n = 60) were registered for this study at
Samsung Medical Center. This study was approved by
Samsung Medical Center’s institutional review board
(2018-03-130 and 2013-10-112). The clinical benefit was
determined according to RECIST v1.1 [44]. If the patient
experienced a partial response (PR) or stable disease (SD)
of more than 6 months, he or she was categorized as re-
sponder receiving durable clinical benefit (DCB). Con-
versely, if a patient experienced progressive disease (PD)
or SD of less than 6months, he or she was categorized as
non-responder with non-durable benefit (NDB). Of the 60
patients, 14 were responders (DCB), 44 were nonre-
sponders (NDB), and 2 were not determined (NA). The
processing of DNA methylation (850K Infinium Methyla-
tion EPIC Array), exome- and RNA-seq (n = 27) data was
illustrated in our previous study [45]. Neo-antigen load
was calculated using DeepNeo [46]. Aneuploidy level was
retrieved from our previous research [45].
Methylation profiles (850K Infinium Methylation EPIC

Array) and matching clinical information of 81 patients
with stage IV NSCLC treated with anti-PD-1 medication
were retrieved from the research performed by the Estel-
ler et al. group (IDIBELL cohort) [47]. The methylation
(Illumina Infinium HumanMethylation 450K) and the
clinical profiles of 479 lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC) patients from
The Cancer Genome Atlas (TCGA) were obtained from
the publication page (https://gdc.cancer.gov/about-data/
publications/pancanatlas).

Identification of differentially methylated/expressed
pathways between nonresponders and responders
We first assigned the most differently methylated pro-
moter probes between responders and nonresponders
into a corresponding gene. Promoter probes were de-
fined as those that reside in either the transcription start
site (TSS), 1st exon, or 5’UTR region. Ranked genes by
the t-static (methylation level difference between nonre-
sponders and responders) were used for input into the
preranked module of the GSEA software with Reactome
pathways (provided at https://reactome.org/) belonging
to the Immune System category (n = 181). We also
ranked genes by mRNA expression difference between
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nonresponders and responders and then used the same
procedure to identify differentially expressed pathways.
DMRs were calculated as regions with differential
methylation patterns with three minimum probes and
500 maximum gap using the ChAMP package [48].

Building a prediction model of clinical benefit
We fitted the Cox model based on elastic-net to predict
clinical benefit using the glmnet R package [49]. For effi-
cient computation, we narrowed down the methylation
probes with two criteria. First, we selected probes related
to known immune genes curated by Reactome version
69. Second, probes showing significant differences (P < 5
× 10−4 by t test) between responders and nonresponders
were selected. After filtering, 18 probes were given as in-
put to the lasso-regularized Cox proportional hazards
model, resulting in eight probes in different genes in our
final model (Table 1). For PSW-1711, whose survival in-
formation was not available, we treated this case with a
modest standard as having no progression for 1 day.
The model’s prediction power was validated on two in-

dependent data sets: IDIBELL and TCGA NSCLC co-
horts. For 410 TCGA samples whose tumor-infiltrating
lymphocyte (TIL) fraction is available, we divided them
into high- (n = 151) and low-immune pressure groups
(n = 259) according to mean value of TIL fraction [25].
The patients in each cohort were divided into low- and
high-risk groups based on the risk index produced by
our model (i.e., mean score). The risk index in the valid-
ation cohorts was calculated using the predict function
of glmnet. A heatmap of eight genes (Fig. 4) was drawn
using the heatmap.2 function in the gplots package [50].

Mutually exclusive hypermethylation pattern analysis
A total of 141 samples from our cohort and IDIBELL co-
hort were combined using ComBat, a tool that adjusts
batch effects when combining two different datasets
[51]. In the combined dataset, 40 patients were re-
sponder, and 101 were nonresponders. We first identi-
fied hypermethylated genes in nonresponders for which
the methylation level was greater than two standard de-
viations from the mean in responders. The data were
further reduced by several factors. First, hypermethylated
genes with more than 10 occurrences (approximately
10% of nonresponders) were selected to see general pat-
terns among nonresponders. Second, immune related
genes in the Reactome were selected to focus on im-
munologic patterns. Using WExT, a tool that searches
for mutually exclusive patterns, we found 472 mutually
exclusive gene sets comprised of two or three genes [52].
Then, nonresponders were divided into two groups: one
group is comprised of samples with no hypermethylation
in either gene and the other with one or more hyper-
methylated genes. Using the survival R package, we

performed survival analysis on each set and discovered
30 pairs with differential survival between samples with
and without hypermethylation [53]. Networks of mutu-
ally exclusive genes were created using STRING and
GeneMANIA, tools that predict functional interaction
networks using multiple databases [54, 55].
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