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Abstract

Background: The high lethal rate of pancreatic cancer is partly due to a lack of efficient biomarkers for screening
and early diagnosis. We attempted to develop effective and noninvasive methods using 5-methylcytosine (5mC)
and 5-hydroxymethylcytosine (5hmC) markers from circulating cell-free DNA (cfDNA) for the detection of pancreatic
ductal adenocarcinoma (PDAC).

Results: A 24-feature 5mC model that can accurately discriminate PDAC from healthy controls (area under the
curve (AUC) = 0.977, sensitivity = 0.824, specificity = 1) and a 5hmC prediction model with 27 features
demonstrated excellent detection power in two distinct validation sets (AUC = 0.992 and 0.960, sensitivity = 0.786
and 0.857, specificity = 1 and 0.993). The 51-feature model combining 5mC and 5hmC markers outperformed both
of the individual models, with an AUC of 0.997 (sensitivity = 0.938, specificity = 0.955) and particularly an
improvement in the prediction sensitivity of PDAC. In addition, the weighted diagnosis score (wd-score) calculated
with the 5hmC model can distinguish stage I patients from stage II–IV patients.

Conclusions: Both 5mC and 5hmC biomarkers in cfDNA are effective in PDAC detection, and the 5mC-5hmC
integrated model significantly improve the detection sensitivity.

Keywords: Cell-free 5mC sequencing, Cell-free 5hmC sequencing, Liquid biopsy, Pancreatic cancer, Cancer
diagnosis

Background
Pancreatic cancer is a highly lethal disease, as most pa-
tients are asymptomatic until they are in an advanced
stage [1]. Pancreatic ductal adenocarcinoma (PDAC) pa-
tients benefit most from early diagnosis and surgery.
Once distant metastasis occurs, any systemic therapy is

rarely curative. Therefore, a major goal in PDAC re-
search is the detection of cancer when effective surgery
can be performed.
Liquid biopsies, a well-known noninvasive method,

have aroused public attention as diagnostic materials for
cancer, particularly circulating tumor DNA (ctDNA) in
plasma. Taking advantage of technical advances, both
genetic and epigenetic aberrations of cell-free DNA
(cfDNA) can be detected [2] and have shown promising
performance in clinical practice, including diagnosis [3–
8], prognosis [9–12], and drug resistance [13, 14].
Epigenetic mechanisms play critical roles in individual

development and tissue-specific gene expression, while
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their dysregulation frequently occurs in human dis-
eases, notably cancer [15, 16]. Global changes in epi-
genetic modifications, such as 5-methylcytosine (5mC)
and 5-hydroxymethylcytosine (5hmC), are hallmarks
of cancer [17, 18]. It was suggested that epigenetic
modifiers, which are regulated by epigenetic modula-
tors serving to transduce signals from environmental
factors, modified tumor progenitor genes to influence
gene expression, which was believed to be the earliest
stage of carcinogenesis [19].
Considering the low mutation frequency of tumor-

related somatic mutations and the limited detection
sensitivity, 5mC and 5hmC in cfDNA could serve as
parallel or even more valuable biomarkers [20].
Recent technological improvements in 5mC and
5hmC detection from cfDNA, including the cell-free
methylated DNA immunoprecipitation and high-
throughput sequencing (cfMeDIP-seq) method [21,
22] and cell-free 5hmC sequencing methods reported
recently [20, 23], offer substantial advantages over
previous ctDNA 5mC and 5hmC detection methods.
Therefore, 5mC detection and 5hmC characterization
in cfDNA are anticipated to be robust and cost-
effective methods for clinical application in cancer
diagnosis and therapy [24].
We employed cfMeDIP-seq and cell-free 5hmC se-

quencing to explore the application potential of epi-
genetic markers in noninvasive diagnosis and
attempted to test whether the combination of the
two types of epigenetic markers could improve the
diagnostic power. We developed three prediction
models for PDAC detection, including a 5mC model
with 24 features, a 5hmC model with 27 features,
and an integrated model using the 51 features iden-
tified. In addition, we investigated the genomic dis-
tribution of 5mC and 5hmC as well as the
modification level changes at H3K36me3, H3K27ac,
H3K4me3, H3K4me1, and H3K27me3.

Results
Characterization of the cfMeDIP-seq data and cfDNA
5hmC sequencing data
We recruited 136 healthy individuals and 72 PDAC pa-
tients of Chinese descent in our study (Table 1), of
which 61 PDAC and 86 healthy controls had paired cell-
free 5mC and 5hmC data. CfMeDIP-seq data from 97
healthy controls and 67 PDAC samples were qualified
for methylome analysis. The spike-in control with se-
quencing adaptors demonstrated specific 5mC enrich-
ment (Supplementary Figure 1A). The median final
unique non-duplicate mapping rate of the cfMeDIP-seq
libraries was 0.8, and the median total reads was ~ 17.4
M (Supplementary Table 1).

Considering that cfDNA 5hmC signatures in PDAC
also deserve deep inquiry, 5hmC profiling data from 136
healthy controls and 67 PDAC samples were generated.
The count of reads mapping to the spike-in control
demonstrated highly specific enrichment of 5hmC frag-
ments (Supplementary Figure 1B). The final 5hmC li-
braries were highly complex (a median unique non-
duplicate rate of 0.83) with a relatively low sequencing
depth (median 20.8M reads) (Supplementary Table 2).

Genome-wide profiling of 5mC and 5hmC in cfDNA
To explore the distribution patterns of methylation in
cfDNA across the genome, we defined the 201 bp fixed-
width peaks called by MACS2 as 5mC-enriched regions.
Comparing the peak number between PDAC samples
and healthy controls, no significant difference was ob-
served, though the median peak number of PDAC was
greater than that of the control group (Supplementary
Figure 2A). However, the total number of 5hmC peaks
captured from the PDAC samples was significantly less
than that captured from the healthy controls (P value =
1.43E−05) (Supplementary Figure 2B). Considering that
the peak number could not fully represent the global
modification level, we inspected the 5mC change with
the Integrative Genomics Viewer (IGV) [25, 26]. No sig-
nificant global 5mC depletion was observed in the
PDAC samples, only demethylation within relatively
small ranges. In contrast, global hypermethylation re-
gions were observed (Supplementary Figure 2C). Next,
we checked the global 5hmC level change by IGV. The
result showed global 5hmC loss in the PDAC samples
(Supplementary Figure 2D).
By locating these peaks to distinct genome elements,

we observed that the 5mC-enriched regions were signifi-
cantly enriched in CDS, exons, 5′UTRs, 3′UTRs, and
promoters, with no significant change in the PDAC sam-
ples compared to the controls, while depleted in introns
and intergenic regions (Supplementary Figure 3A, B).
Analysis of the 5hmC peaks showed that the 5hmC-

enriched regions are highly enriched in CDS, 5′UTRs,
exons, 3′UTRs, and promoters, while depleted in introns
and intergenic regions. The PDAC samples showed a
significantly higher odds ratio in 5′UTRs, 3′UTRs, and
exons, while no significant difference was observed
within promoters and CDS compared to the controls
(Supplementary Figure 3C, D).

Comparing the distributions of the 5mC and 5hmC peaks
First, we compared the peak numbers of the 5mC and
5hmC profiles. The total number of 5mC peaks (n = 772,
365) was approximately 2-folds greater than that of the
5hmC peaks (Fig. 1a). However, only 16.7% overlapped
with 5hmC peak sites. Moreover, 30% of 5hmC sites also
had 5mC modifications (Supplementary Figure 4A). There
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were 17,340 genes carrying both 5mC and 5hmC modifi-
cations, of which 3303 genes (~ 16% of the total genes de-
tected with 5mC and/or 5hmC modification) had 5mC
modifications only, and 124 genes were specifically modi-
fied with 5hmC (Supplementary Figure 4B). The results
suggested that over 80% of 5mC peaks occurred at sites
distinct to 5hmC, while genes frequently bear the two
types of modifications.
Next, we investigated the functions of the genes with

specific 5mC or specific 5hmC modifications. The 5mC-
specific genes were mainly enriched in the olfactory sig-
naling pathway, keratinization, and GPCR ligand bind-
ing, et al. (Supplementary Figure 5A), while the 5hmC-
specific genes were enriched in oxidative stress–induced
senescence (Supplementary Figure 5B). Supplementary
Figure 6 demonstrates examples of 5mC-specific genes
and 5hmC-specific genes.
Comparing the genome distribution patterns of

5hmC and 5mC, we observed that 5hmC exhibited

significantly higher enrichment in CDS, 5′UTRs, 3′
UTRs, exons, and promoters. Both 5mC and 5hmC
demonstrated depletion in introns and intergenic re-
gions. 5hmC depletion within intergenic regions in
PDAC samples showed a much greater extent than
5mC, while the opposite trend was observed within
introns (Fig. 1b). Reduced 5hmC modifications within
gene bodies in PDAC were observed by metagene
analysis (Fig. 1c). The changes of 5mC modifications
within gene bodies were not as significant as that of
the 5hmC modifications in the regions in the PDAC
samples (Fig. 1c).
Given that histone modifications have a biological rela-

tionship with DNA methylation [27], we investigated the
overlap of 5mC and 5hmC modification peaks in five
types of histone modifications, including H3K36me3,
H3K27ac, H3K4me1, H3K4me3, and H3K27me3. The
intersection of 5hmC profiling data with the histone
map of the PANC-1 cell line from the ENCODE Project

Table 1 Demographical and clinicopathological characteristics of all the participants

Parameters PDAC group (N = 72) Healthy control group (N = 136) P value

Age, average ± standard error 59.54 ± 1.19 58.23 ± 0.75 0.379

Gender, n (%)

Male 41(57%) 48(35%) 0.003

BMI, average ± standard error 22.03 ± 0.37 23.81 ± 0.30 < 0.0001

Smoking history, n (%) 22(31%) 19(14%) 0.004

Alcohol history, n (%) 25(35%) 19(14%) < 0.0001

Chronic disease, n (%)

Hypertension 9(13%) 37(27%) 0.015

Type II diabetes 13(18%) 15(11%) 0.158

CA199, average ± standard error 357.29 ± 42.28 /

Jaundice 21(29%) 0 < 0.0001

Tumor size, average ± standard error 3.79 ± 0.19 /

Primary cancer site, n (%) /

Uncinate process 13(18%)

Head 29(40%)

Body 17(24%)

Tail 13(18%)

Surgery, n (%) /

Pancreaticoduodenectomy 26(36%)

Distal pancreatectomy 11(15%)

Palliative intervention techniques 35(49%)

AJCC staging, n (%) /

I 8(11%)

II 28(39%)

III 18(25%)

IV 18(25%)

BMI body mass index, CA199 carbohydrate antigen199, AJCC American Joint Committee on Cancer
Note: P values were calculated using chi-squared test
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exhibited increased fragments per kilobase of gene per
million mapped reads (FPKM) in H3K36me3 (P value =
7.25E−12), H3K27ac (P value = 2.55E−06), and
H3K4me1 (P value = 1.79E−09) in the PDAC cohorts

relative to the healthy cohorts (Fig. 1d–f). In contrast,
5mC modifications located in H3K4me1 (P value =
2.73E−05) and H3K27ac (P value = 1.59E−05) peaks de-
creased in the PDAC samples compared to those in the

Fig. 1 Comparison of genome-wide distribution between 5mC and 5hmC. a Boxplot of the total number of the 5mC peaks and 5hmC peaks in
PDAC samples. b Enrichment analysis of the 5mC and 5hmC peaks overlapping with distinct genomic elements. c Metagene profiles of the
regions from TSS to TES with the flanking 3 kb. Boxplots of Log2 (odds ratio) of peaks overlapping with H3K36me3 (d), H3K27ac (e), H3K4me1 (f),
H3K27me3 (g), and H3K4me3 (h). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, Wilcoxon test. PDAC, pancreatic ductal adenocarcinoma; TSS,
transcription start sites; TES, transcription end sites
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healthy control samples (Fig. 1d, e). Given that
H3K36me3, H3K27ac, and H3K4me1 are marks of active
regulatory elements [28], increased 5hmC levels and
reduced 5mC levels in these regions suggested the ac-
tive transcription of genes regulated by the elements.
For the repressive histone modification H3K27me3,
5hmC level significantly decreased in PDAC samples
(P value = 5.80E−05), while 5mC level changes were
not statistically significant (Fig. 1g). The density of
both 5hmC and 5mC in H3K4me3 sites presented no
significant difference (Fig. 1h).

Prediction of PDAC by using 5mC biomarkers in cfDNA
The fragments per kilobase of gene per million
mapped reads (FPKM) of each peak were calculated
in every single sample regarding its 5mC modification
level. T-distributed stochastic neighbor embedding (t-
SNE) analysis with the consensus peak sets showed a
slight batch effect, which was eliminated by Combat
(sva package) (Supplementary Figure 7). Based on the
consensus peak sets and datasets without batch ef-
fects, we identified 688 differentially methylated peaks
(DMPs) in the 67 PDAC samples and 97 healthy con-
trols analyzed (Student’s t test, P value < 0.01, |log
fold change (FC)| > 0.8), including 560 hypermethy-
lated peaks in the cases and 128 hypermethylated
peaks in the controls (Supplementary Table 3). The
healthy controls and PDAC samples could be classi-
fied by hierarchical clustering and t-SNE using the
688 DMPs identified, and no association with resect-
able stage and jaundice was observed (Fig. 2a, b).
Utilizing the above methods and criteria to identify
DMPs, the elastic-net method was used for model
construction with the set of 164 samples, partitioned
randomly into a training set consisting of 50 PDAC
samples and 67 healthy controls and a validation set
comprising 17 PDAC samples and 30 healthy controls
(Supplementary Figure 8). Finally, 24 biomarkers
(alpha = 0.2) (Supplementary Table 4) that appeared
in at least 3 training subsets were selected for the
final model, achieving a sensitivity of 100% and a spe-
cificity of 100% (area under the curve (AUC) = 1)
(Fig. 2c) in the training set. To assess the prediction
ability of the classifier, 17 PDAC samples and 30
healthy controls were used for validation, exhibiting a
sensitivity of 82.4% and a specificity of 100% (AUC =
0.971) (Fig. 2c).
The differences in the weighted diagnosis scores

(wd-scores) calculated with the model (Supplementary
Table 5) between the PDAC group and the healthy
group were statistically significant (P value = 1.15E
−22) (Fig. 2d). Unexpectedly, the wd-score divergence
between PDAC patients with jaundice and patients
without jaundice was statistically significant (P value

= 4.64E−03) (Fig. 2e). However, no significant differ-
ence in the wd-score was observed between the re-
sectable PDAC group and unresectable group, despite
the former obtaining a higher median wd-score (Fig.
2f). A portion of the markers identified in this model
were mapped to tumor-related genes, such as MCU,
KRT80, and MGAT5. Figure 2g exhibited the IGV
plot of the marker locating in MCU gene. The PDAC
samples showed increased 5mC level of the marker
when compared with the healthy controls.

Prediction of PDAC by using 5hmC biomarkers in cfDNA
No significant batch effects were observed among all
cfDNA 5hmC sequencing data (Supplementary Figure
9). We performed Student’s t test to determine the
optimal parameter for differentially hydroxymethylated
peak (DhMP) identification, and 15 DhMP features
were characterized within 53 PDAC samples and 106
healthy controls (Student’s t test, P value < 0.001,
|log2FC| > = 0.8), comprising 6 hyperhydroxymethy-
lated peaks and 9 hypohydroxymethylated peaks in
the cases (Supplementary Table 6). T-SNE analysis
and hierarchical clustering of 53 PDAC samples and
106 healthy control samples with the 15 DhMPs can
separate PDAC from healthy controls (Fig. 3a, b). To
explore the potential diagnostic value of 5hmC
cfDNA and search for more effective biomarkers, the
159 total samples were randomly divided into a train-
ing set and a validation set comprising 75% and 25%
of the data, respectively, with the elastic-net regular-
ized regression method employed (Supplementary Fig-
ure 10). This approach suggested a set of 27 features
of 5hmC profiles (Supplementary Table 7), resulting a
discrimination model demonstrating high accuracy in
both the training set (sensitivity = 97.4%, specificity =
100%, AUC = 1) and the validation set (sensitivity =
78.6%, specificity = 100%, and AUC = 0.992) (Fig. 3c).
Furthermore, 14 PDAC samples and 30 healthy con-

trols were used to validate the model’s performance,
achieving a sensitivity of 85.7% and a specificity of 93.3%
(AUC = 0.960) (Fig. 3d). The wd-score showed an up-
ward trend from healthy controls to PDAC patients,
with significantly higher wd-scores in the PDAC samples
(P value = 5.98E−30) (Fig. 3e). Interestingly, the wd-
score between early-stage (American Joint Committee
on Cancer (AJCC) stage I) and late-stage (AJCC stages
II, III, and IV) patients demonstrated statistically signifi-
cant disparity (P value = 7.00E−03), which suggested the
capacity of the model to discriminate early- from late-
stage patients (Fig. 3f). No significant difference between
the resectable and unresectable PDAC groups was ob-
served (Supplementary Figure 11A), while a significant
difference in the wd-score was observed between the
groups with and without jaundice (4.60E−02)
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(Supplementary Figure 11B). Figure 3g presents the
5hmC biomarker located at the RABGAP1L gene, which
plays a key role in tumorigenesis. The 5hmC modifica-
tion level of the DhMP at the RABGAP1L gene reduced
in PDAC patients versus normal controls.

Integrated model of 5mC-5hmC biomarkers
Because 5mC and 5hmC depict different aspects of the
epigenome, we envisioned that conjoint analysis would

increase diagnostic power. To test this hypothesis, the
5hmC features (n = 27) and 5mC features (n = 24) iden-
tified were combined to construct a classification model
with paired 5mC and 5hmC datasets from PDAC sam-
ples (n = 61) and healthy samples (n = 86). Both hier-
archical clustering and t-SNE analysis indicated that the
51 features can discriminate PDAC from healthy sam-
ples (Fig. 4a, b). With the elastic-net modeling method,
sensitivities of 97.8% and 93.8% and specificities of 100%

Fig. 2 Cell-free 5mC for detection of PDAC. T-SNE plot (a) and heatmap (b) of 5mC FPKM from the training set and the validation set based on
the 688 differentially methylated peaks (DMPs). Hierarchical clustering was performed across peaks and samples. c Performance of the 5mC
model in the training set and the validation set. d Boxplot of the wd-scores calculating with the 5mC model for the PDAC samples and the
healthy controls. e Boxplot of the wd-scores of the PDAC patients with jaundice and those without jaundice. f Boxplot of the wd-scores of the
resectable PDAC patients and the unresectable patients. g Genome Browser view of the 5hmC peaks in MCU gene in chromosome 10 shows a
marker locating within the gene (boxed region: chr10: 74510104-74510305). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, Wilcoxon test. PDAC,
pancreatic ductal adenocarcinoma; AUC, area under the curve; wd-score, weighted diagnosis score
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and 95.5% (AUC = 0.999 and 0.997) (Fig. 4c) were
achieved in the training and validation datasets
respectively, exhibiting better performance than the
models using the 5hmC or 5mC biomarkers alone.
We also applied this model to calculate the wd-score
for every single sample. The disparity of the wd-score
between PDAC and healthy controls obtained from

the integrated model was statistically significant (P
value = 8.45E−25) (Fig. 4d), as well as the wd-score
difference between PDAC patients with jaundice and
those without jaundice (P value = 6.28E−03) (Fig. 4e).
However, the wd-score of the integrated model failed
to classify the resectable and unresectable PDAC sam-
ples (Fig. 4f).

Fig. 3 Cell-free 5hmC for detection of PDAC. T-SNE plot (a) and heatmap (b) of 5hmC FPKM from the training set and the validation set based
on the 15 differentially hydroxymethylated peaks (DhMPs). Hierarchical clustering was performed across peaks and samples. c Performance of the
5hmC model in the training set and the validation set. d Performance of the 5hmC model in the test data set. e Boxplot of the wd-scores
calculating with 5hmC model for PDAC samples and healthy controls. f Boxplot of the wd-scores calculating with 5hmC model for healthy
controls, stage I PDAC samples and stage II–IV PDAC samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, ANOVA. g Genome Browser view
of the 5hmC peaks in RABGAP1L gene in chromosome 6 shows a marker locating within the gene (boxed region: chr1: 174799728-174799929).
PDAC, pancreatic ductal adenocarcinoma; AUC, area under the curve; wd-score, weighted diagnosis score
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Patients with tumor size less than 3 cm (P value = 1.9E
−02) had significantly higher wd-scores (Table 2). Notably,
compared with non-nerve invasive resectable PDAC pa-
tients (n = 29), patients with nerve invasion had significant
higher wd-scores (P value = 2.7E−2). No significant differ-
ences in vascular invasion or positive lymph node metas-
tasis were found in resectable PDAC patients.

In summary, the integrated prediction model demon-
strated higher prediction sensitivity (~ 10% higher), notably
in stage I samples (with a sensitivity of 87.5% in the inte-
grated model, and 75.0% and 62.5% in the 5mC and 5hmC
model, respectively) (Supplementary Table 5), supporting
the prospect of applying the combined cell-free 5mC and
5hmC biomarkers for a more accurate cancer diagnosis.

Fig. 4 Performance of the 5mC-5hmC integrated model for PDAC detection. T-SNE plot (a) and heatmap (b) of FPKM from the paired 5mC and
5hmc data, based on the 51 features comprising the twenty-four 5mC biomarkers and the twenty-seven 5hmC biomarkers. Hierarchical clustering
was performed across peaks and samples. c Performance of the 5mC-5hmC integrated model in the training set and the validation set. d Boxplot
of wd-score deriving from the integrated model for the PDAC samples and the healthy controls. e Boxplot of the wd-scores from the integrated
model for PDAC patients with jaundice and those without jaundice. f Boxplot of the wd-scores from the integrated model for the resectable
PDAC patients and the unresectable PDAC patients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, Wilcoxon test. PDAC, pancreatic ductal
adenocarcinoma; AUC, area under the curve; wd-score, weighted diagnosis score
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Discussion
This study investigated the potential application of epi-
genetic markers in detecting PDAC, revealing that the
5mC model, 5hmC model, and 5mC-5hmC combined
model all showed high prediction accuracy.
Global DNA hypomethylation and a reduction in

5hmC levels are frequently observed in cancer [29, 30].
Our study revealed the global depletion of 5hmC modifi-
cations in PDAC cfDNA samples, with the number of
5hmC modification sites decreasing as well. This finding
was consistent with the results reported in other cancers,
such as colorectal cancer, gastric cancer, and lung cancer
[20, 23]. However, global hypermethylation (Supplemen-
tary Figure 2C) instead of 5mC depletion was observed
in the PDAC cfDNA samples. No significant difference
in 5mC peak numbers between the PDAC samples and
controls was observed, though the PDAC samples
showed a higher median number. Similar results were

reported in PDAC tissue [31], for example, the total
number of 5mC peaks identified in pancreatic tumor tis-
sues was larger than that in nontumor tissue samples,
and more hypermethylated differentially methylated re-
gions (DMRs) were observed in tumor tissues than in
nontumor tissues. Likewise, in our study, the number of
DMPs hypermethylated in PDAC was much larger than
that in controls.
DNA modifications and histone modifications are two

important types of epigenetic mechanisms that might be
correlated with each other [30]. It has been reported that
DNA modification along with histone modification have
vital roles in chromosome architecture [32], and DNA
methylation might serve as template for histone modifi-
cation [27]. Increased 5hmC modification and depleted
5mC modification at the permissive histone modification
sites in PDAC patients probably indicated elevated ex-
pression levels of genes regulated by the elements lo-
cated in these regions. Deeper investigations combining
RNA expression data may further reveal the interactive
regulatory mechanism of various types of epigenetic
modifications, comprising DNA modifications and his-
tone modifications.
Previous studies focused on gene bodies and defined

the DMRs with sliding windows by breaking the refer-
ence genome to screen candidate biomarkers [20, 22,
23]. Such methods might lead to statistically significant
differences that are not biologically meaningful if few
read counts are mapped to the regions in both the cases
and controls. The 201 bp fixed-width peak method
would reduce the risks since more attention is paid to
smaller regions with higher enrichment. Moreover,
smaller regions are more convenient and cost-effective
considering their further application in clinical practice.
We conducted an exploratory study combining 5mC

and 5hmC profiling, and the results suggest that the in-
tegration of the two epigenetic approaches improve the
diagnostic power as envisioned, particularly the predic-
tion sensitivity in early-stage PDAC samples. The diag-
nostic effect of the combined model is better than that
of the 5hmC model and 5mC model in our study as well
as that of models reported by other groups [22, 33]
(AUC 0.997 vs 0.94–0.96 and 0.92). In addition, the pre-
diction accuracy is much higher than that of the diag-
nostic method combining CA199 and Kras mutation
(sensitivity 0.94 vs 0.78; specificity 0.95 vs 0.77) [34]. In
our study, the CA199 positive patients (> 37 U/L) were
80.3% (Supplementary Table 5), lower than the diagnos-
tic sensitivity of the prediction models.
In the clinic, digital evaluation criteria would be more

preferred, so a wd-score was then computed according to
the logistic model coefficients and modification level of
the corresponding markers for each individual (Supple-
mentary Table 5). The results demonstrated that the wd-

Table 2 Comparison of wd-scores (the integrated model) of risk
factors and prognosis associated with pancreatic cancer (n = 61)

Variable Variable level Wd-score P value

Age ≥ 60 − 3.894 ± 0.257 0.383

< 60 − 4.2126 ± 0254

Gender Male − 3.895 ± 0.230 0.355

Female − 4.235 ± 0.289

Smoking history Yes − 4.079 ± 0.375 0.911

No − 4.032 ± 0.206

Alcohol history Yes − 4.100 ± 0.314 0.831

No − 4.017 ± 0.224

Chronic disease

Hypertension Yes − 4.094 ± 0.372 0.911

No − 4.038 ± 0.201

Type II diabetes Yes − 3.622 ± 0.235 0.118

No − 4.139 ± 0.213

CA199, U/mL > 37 − 3.915 ± 0.200 0.336

< 37 − 4.529 ± 0.401

Jaundice Yes − 3.000 ± 0.451 0.006

No − 4.357 ± 0.170

Tumor size < 3 cm − 3.751 ± 0.198 0.019

> 3 cm − 4.875 ± 0.337

Primary cancer site Head − 4.204 ± 0.252 0.439

Tail − 3.920 ± 0.256

Tumor differentiation High / 0.721

Moderate − 4.013 ± 0.337

Low − 4.056 ± 0.215

Metastasis Yes − 3.929 ± 0.3508 0.9148

No − 4.087 ± 0.2127

wd-score weighted diagnosis score, CA199 carbohydrate antigen199
Note: P values were calculated using t test
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scores of both the 5mC and 5hmC markers were higher in
patients with jaundice. The possible reason may be that
the methylation levels of the epigenetic markers are af-
fected by jaundice, similar to the increase of serum CA199
levels in PDAC patients with jaundice. Nevertheless, the
opposite situation is possible. In clinical practice, obstruct-
ive jaundice usually occurs when tumor oppresses the
common bile duct if the tumor arises in the head of the
pancreas. Three 5hmC markers involved in PI (phos-
phatidylinositol) metabolism was identified, including
PIP5K1A, INPP4B, and PNPLA7. It was reported that the
ratio of phosphatidylinositol was higher in the plasma of
the children with obstructive jaundice than in normal
[35]. Further study on non-cancer patients with jaundice
are needed to analyze the problem. We speculated that
the 5hmC markers identified in this study might be used
for the early diagnosis of PDAC given that a significant
difference in wd-scores between stage I patients and stage
II to IV patients was observed.
Traditionally, age, tumor location, tumor size, tumor

grade, TNM stage, and positive lymph node metastasis
have been considered important prognostic factors. Al-
though we have not obtained the survival data of the in-
cluded participants, we compared the wd-scores (from
the integrated model) with the aforementioned predic-
tors in the PDAC group (Table 2). Interestingly, we
found that patients with tumor size less than 3 cm had
higher wd-scores, suggesting further exploration of the
mechanism of early tumor progression through gene
epigenetic modification.
Nevertheless, there are limitations in this study. For ex-

ample, a model for early diagnosis was not able to be con-
structed due to the limited number of stage I patients (n =
8). We are dedicated to collecting large-scale samples for
further research. In the future, we will adopt this approach
for the diagnosis of malignant and benign disease, espe-
cially precancerous lesions such as intraductal papillary
mucinous neoplasms (IPMNs). The early diagnosis of
PDAC is still the top priority of our subsequent work.

Conclusions
In summary, we have developed a robust noninvasive
approach combining epigenetic biomarkers for detecting
PDAC. Our study demonstrated that both 5mC and
5hmC biomarkers in cfDNA are effective in PDAC de-
tection, and the 5mC-5hmC integrated model presents
increased diagnostic power. Larger numbers of samples
and more subtypes of pancreatic diseases are worthy of
further investigation.

Methods
Study design
This study recruited 72 PDAC patients and 136 healthy
controls to investigate the potential diagnostic value of

5mC and 5hmC biomarkers in cfDNA for pancreatic
cancer. PDAC was confirmed histopathologically.
Healthy participants, enrolled from the community, had
normal liver and renal functions, normal cardio-
pulmonary function, no history of cancer, and no viral
infections. Participants who met the following conditions
were excluded: chemotherapy or radiotherapy for malig-
nant tumors, metastatic PDAC, or PDAC with other
cancer.
For 5hmC profiling, 5 samples were excluded because

of the poor quality or low quantity of the sample. Five
samples did not have 5mC profiling data due to an in-
sufficient amount of cfDNA. All of the 136 healthy con-
trol samples were applied to 5hmC sequencing and
cfMeDIP-seq, but only 97 of them yielded 5mC data
when the analysis started.

Clinical sample collection and sample processing
Blood was collected into BD Vacutainer® EDTA tubes
(Becton, Dickinson and Company, Cat# 367525). Within
2 h, plasma was separated from blood by centrifugation
at 1600×g at 4 °C for 10 min followed by 16000×g at 4 °C
for 10 min. Then, cfDNA was extracted with a QIAseq
cfDNA Extraction kit (a part of the QIAseq All-in-one
Kit, Cat. No. 180025) and quantified by a Qubit
fluorometer (Life Technologies). CfDNA (10–30 ng) was
applied for library construction: adaptor ligation was fa-
cilitated using the QIAseq cfDNA Library Kit (a part of
the QIAseq All-in-one Kit, Cat. No. 180025) following
the protocol provided by the manufacturer, with spike-in
controls added (0.01 pg of each amplicon per 10 ng of
cfDNA). The spike-in control, including 3 distinct
lambda DNA amplification products (~ 180 bp) (one
without modification and the other two with 5mC and
5hmC modifications) were prepared following the
method described by Chun-Xiao Song et al [23].

Methylome profiling
Ligated cfDNA (5–10 ng) was applied for methylome
profiling following the previously published cfMeDIP-
seq protocol [21, 22] with minor modifications. We used
the spike-in controls mentioned above to roughly assess
the 5mC enrichment ratio instead of the methylated
DNA (meDNA) and unmethylated DNA (unDNA)
spike-in controls used in cfMeDIP-seq. In brief, cfDNA
libraries with the spike-in control and the filler DNA, as
well as Buffer A and Buffer B provided in the Magnetic
Methylated DNA Immunoprecipitation Kit (Diagenode,
C02010021), were incubated at 95 °C for 10 min and im-
mediately chilled on ice for 10 min. Then, 75 μl of incu-
bation mix was incubated with anti-5mC antibody
(Magnetic Methylated DNA Immunoprecipitation Kit,
Diagenode, C02010021) on a rotating wheel at 4 °C for
17 h, followed by purification with the Magnetic IPure
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kit v2 (Diagenode, Cat. No. C03010015). The final librar-
ies were amplified with QIAGEN HiFi PCR Master Mix,
2x and Primer Mix Illumina Libr. Amp (QIAseq All-in-one
Kit, Cat. No. 180025) as follows: 98 °C for 2min, followed
by 9–12 cycles of 98 °C for 20 s, 60 °C for 30 s, 72 °C for 30
s, and a final extension at 72 °C for 1min. Afterward, the
amplified libraries were purified using 0.8× Beckman Agen-
court AMPure XP beads (Cat. No. A63881) and quantified
by a Qubit fluorometer (Life Technologies). Pair-end 150
bp sequencing was performed on the Illumina NovaSeq
6000 system by Novogene Co., Ltd. (Beijing).

5hmC sequencing
5hmC profiling was performed using the method re-
ported previously—the cfDNA 5hmC sequencing
method based on selective chemical labeling (hMe-Seal)
[23]. All procedures followed the protocol described in
the paper. In brief, cfDNA ligated with sequencing adap-
tors was incubated in a 25 μl reaction solution contain-
ing HEPES buffer (50 mM, pH 8.0), MgCl2 (25 mM),
60 μM N3-UDP-Glc (Active Motif, Carlsbad, CA, USA),
and 12.5 U β-glucosyltransferase (NEB) for 2 h at 37 °C.
Then, 2.5 μl of DBCO-PEG4-biotin (Sigma) was directly
added and incubated for 2 h at 37 °C. Next, 10 μg of
sheared salmon sperm DNA (Life Technologies) was
added. Subsequently, a Micro Bio-Spin 30 Column (Bio-
Rad) was used to purify the DNA following the instruc-
tions, and the volume was adjusted to 25 μl. Afterward,
purified DNA was incubated with 5 μl of C1 streptavidin
beads (Life Technologies, USA) in buffer 1 (5 mM Tris
pH 7.5, 0.5 mM EDTA, 1M NaCl, and 0.2% Tween 20)
for 30 min. The beads were subsequently subjected to
three 5-min washes each with buffer 1, buffer 2 (buffer 1
without NaCl), buffer 3 (buffer 1 with pH 9), and buffer
4 (buffer 3 without NaCl). The beads were then resus-
pended in water and amplified with 9–12 cycles of PCR
amplification (initial denaturing at 98 °C for 45 s,
followed by 9–12 cycles of denaturing at 98 °C for 15 s,
annealing at 60 °C for 30 s, extension at 72 °C for 30 s,
and a final extension at 72 °C for 5 min). The amplified
product was purified using AMPure XP beads. Pair-end
150 bp sequencing was performed on the Illumina Nova-
Seq 6000 platform by Novogene Co., Ltd. (Beijing).

Data processing
For 5hmC and 5mC sequencing data alignment, the fol-
lowing methods were applied. The data quality of raw
FASTQ files was checked by FastQC (version 0.11.8).
The adapters of the raw FASTQ files were removed by
Trimmomatic (version 0.38). Processed sequencing reads
were aligned to hg19 and spike-in DNA using Bowtie2
(version 2.3.4.3) [36] with default parameters. The gener-
ated SAM files were filtered by SAMtools (version 1.9)
[37] with the parameter settings of “-f 2 -F 1548 -q 30”

to include high-quality, properly paired reads and then
were converted to BAM format. Picard (version 2.18.23)
(http://broadinstitute.github.io/picard) was employed to
sort and index the filtered SAM files and to ensure the
removal of duplicate reads before subsequent analysis.
There were three types of spike-in DNA sequences, and
capture efficiency, as a quality control measurement for
5hmC and 5mC, was calculated as the counts of reads
aligned to a type-specific spike-in DNA divided by the
counts of reads aligned to the total spike-in DNA.

Peak detection
5hmC and 5mC sequencing data peak detection was ac-
complished with the following steps. MACS2 (version
2.1.2) [38] was utilized to call peaks for each sequencing
dataset. To obtain a high-confidence consensus peak list
while considering differences in the sequencing depth
and sample status (PDAC or healthy), a peak calling pro-
cedure was adopted as previously described [39]. In
brief, the raw peak list within a single sample generated
by MACS2 was processed by first extending 100 bp on
either side of the peak summits, then normalizing
MACS2 peak scores as “score per million” and finally re-
moving overlapping peaks with an iterative removal pro-
cedure. Next, peaks defined as reproducible peaks with
score per million > = 5 were merged into group-specific
(PDAC-specific or healthy-specific) peak lists by the
same iterative procedure, and at last, the final consensus
peak list was generated. Reproducible peaks are peaks
emerging in at least N% of cancer samples or healthy
controls. Following the procedure mentioned above,
nine consensus peak lists were generated with a set of
values for N (N range, 10 ~ 90 with 10 increments). For
each consensus peak list, we could obtain a zero-one
matrix with rows representing consensus peaks and col-
umns representing all samples, where one means a sam-
ple has a peak overlapping with a consensus peak and
zero means no peak. Then, Fisher’s exact test was ap-
plied to determine peaks with the most striking differ-
ences between PDAC samples and healthy controls. For
5mC data, N = 10 resulted in the most significant peaks,
and it was 30 in 5hmC data.
In particular, this peak list merging process was ap-

plied for 5hmC and 5mC data separately. All the peaks
involved in the ENCODE hg19 blacklist [40], peaks that
extend beyond any ends of chromosomes and peaks on
chromosomes X, Y or on the mitochondrial genome,
were filtered.
Normalized pileup tracks generated by MACS2 were

converted to bigwig format using bedGraphToBigWig
from the UCSC Genome Browser and then put into the
IGV for visualization [25, 26].
Bedtools (version 2.25.0) [41] was used to obtain the

fragment counts of the final consensus peak list in each
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sample, and 5hmC or 5mC FPKM was then calculated.
Differential peak analysis of the PDAC samples and
healthy controls in the 5hmC and 5mC data was per-
formed using Student’s t test (function t test in R), as
well as differential analysis of PDAC samples between
5mC and 5hmC data. For the t-SNE plot, the FPKM of
the consensus peak list was used as input, and the seed
was set to 40 (perplexity was 52).

Peak annotation
To compare the distribution of peak numbers in PDAC
and healthy samples for both 5mC and 5hmC data, the
Wilcoxon test was used; the same was done for the com-
parison between 5mC and 5hmC data in PDAC samples.
The genomic element distribution of peaks was deter-
mined by the percentage of peaks overlapping each
element through BEDtools (> 1 bp). The enrichment
analysis of peak occupancy in genomic features was
assessed by the odds ratio. Ngs.plot [42] was used to
characterize metagene profiles. Gene Ontology (GO)
analysis was performed by the ReactomePA R package
(version 1.28.0) [43].
ChIP-Seq files of H3K4me1, H3K4me3, H3K36me3,

H3K27ac, and H3K27me3 of the pancreatic cancer cell
line PANC-1 provided by ENCODE were downloaded
with the following identifiers: ENCFF520QXI, ENCF
F213GUQ, ENCFF922RLL, ENCFF629BRY, and ENCF
F915XVA [44]. BEDtools was adopted to obtain the per-
centage of peaks overlapping each histone modification
region (> 1 bp).

Biomarker selection and model construction
The elastic-net regularization on a logistic linear regres-
sion model in the glmnet R package (version 2.0-18) [45]
was chosen to establish prediction models. To filter
more effective biomarkers for distinguishing PDAC sam-
ples from healthy controls, the following procedure was
applied.
For the 5mC data set, we randomly split 70% of the

healthy samples (n = 67) and 75% of the PDAC samples
(n = 50) into the training set and the remaining samples
into the validation set. To avoid overfitting, 5 rounds of
10-fold cross-validation was performed (Figure S8). The
details were as follows: the training set was randomly di-
vided into five folds, four of which were selected as the
training subset, and the remaining one was the test sub-
set. In each training subset, the DhMPs between PDAC
samples and healthy controls with false discovery rate
(FDR) < 0.01 and |log2FC| > 0.8 (t test) remained as
candidates. Then, we performed 100 repeats to further
select markers using the elastic-net model, and a panel
of DhMPs in each training subset that appeared in at
least 95% of the iterations was retained. Thus, 10-fold
cross-validation was repeated 100 times each round.

Finally, the final markers observed in at least 3 rounds
were used to build the final prediction model in the train-
ing set, and this model was utilized to predict the valid-
ation samples. The α was selected with maximize accuracy
in the validation set over a grid of values from 0.1 to 0.9.
For the 5hmC data set, 75% of the PDAC samples (n =

39) and 75% of the healthy samples (n = 79) were ran-
domly divided into the training set, and the remaining
samples were placed into the validation set. The same
procedure as that in the 5mC modeling pipeline was
adopted, except for α, which was 0.1, and the criteria for
the t test, which was altered to P value < 0.001 and
|log2FC| > 0.8.
For the 5mC and 5hmC conjoint analysis, samples

with both 5mC and 5hmC data were included. The
training set consisted of 75% of the healthy samples (n =
64) and 75% of the PDAC samples (n = 45), and the val-
idation set consisted of the remaining data. The twenty-
four 5mC biomarkers and the twenty-seven 5hmC bio-
markers identified previously were combined for elastic-
net model training (Figure S10).
The wd-score was calculated for each sample accord-

ing to the biomarker model coefficients as follows:

Wd − score ¼ sum coef kð Þ�FPKM kð Þð Þ;where k represents the marker

Statistical analysis
Descriptive statistics of the characteristics of the partici-
pants were calculated using SPSS (v23.0, IBM, Armonk,
NY, USA) as well as the chi-squared test for categorical
variables. All tests were two-sided, and P values < 0.05
were considered statistically significant.
We also assessed the associations of the wd-score with

prognostic indicators such as age over 60, male sex,
smoking status, alcohol consumption, CA199 over 37 U/
ml, tumor size over 3 cm, tumor location (head, body,
and tail), tumor differentiation (high, moderate and low),
and the occurrence of metastasis in PDAC patients using
t test to evaluate the application value of the wd-score
for the prognosis prediction of PDAC.
Statistical analyses were performed in R 3.6.3. The

Wilcoxon-Mann-Whitney test was used to compare dif-
ferent groups except that ANOVA was applied to com-
pare the wd-scores of 5mC, 5hmC, and the integrated
5mC-5hmC model in different AJCC-staged pancreatic
cancer patients. Raw P values were corrected by Benja-
mini and Hochberg correction. The R packages RtSNE
(version 0.15) [46] and pheatmap (version 1.0.12) were
used for dimension reduction and clustering analysis.
The glmnet package was utilized to construct prediction
models. The roc function of the R package pROC (ver-
sion 1.15.3) was used to generate receiver operating
characteristic (ROC) curves and calculate the AUC.
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Additional file 1: Supplementary Figure 1. Percentage of reads
mapped to the spike-in DNA. A. The 5mC spike-in DNA is specifically
enriched in the 5mC libraries. B. The 5hmC spike-in DNA is specifically
enriched in the 5hmC libraries. Error bars indicate Standard Deviation
(SD). Supplementary Figure 2. Global change in 5mC and 5hmC level
in PDAC. A. Boxplot of 5mC peak numbers from healthy controls and
PDAC samples shows no significant difference. B. Boxplot of 5hmC peak
numbers from healthy controls and PDAC samples shows significant lar-
ger numbers of peaks in PDAC samples. C. Genome browser view of the
cell-free 5mC distribution in a 5 mb region in chromosome 8. D. Genome
browser view of the cell-free 5hmC distribution in a 3 mb region in
chromosome 7. The overlapping tracks of healthy and PDAC are shown
in line plot. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, Wilcoxon
test. PDAC, pancreatic ductal adenocarcinoma. Supplementary Figure
3. Genomic distribution of 5mC and 5hmC peaks. A. 5mC distribution in
genomic features. B. Enrichment of 5mC peaks overlapping with distinct
genomic elements. C. 5hmC peak distribution in genomic features. D. En-
richment of 5hmC peaks overlapping with distinct genomic elements.
PDAC, pancreatic ductal adenocarcinoma; CDS, Coding DNA Sequence; 3′
UTR, 3′untranslated region; 5′UTR, 5′untranslated region. Supplementary
Figure 4. Comparison of the 5mC and 5hmC peaks. A. Venn diagram of
overlap between 5mC and 5hmC peaks. B. Venn diagram of overlap be-
tween genes with 5mC modifications and genes with 5hmC modifica-
tions. Supplementary Figure 5. GO term enrichment analysis of
specifically modified genes. A. 5mC-specific genes. B. 5hmC-specific
genes. PDAC, pancreatic ductal adenocarcinoma. Supplementary Fig-
ure 6. Genome browser views of examples of specifically modified
genes. A. ME1 gene in chromosome 6: 84,095–84,140 kb. B. PACRG gene
in chromosome 6: 163,716–163,734 kb. C. FYN gene in chromosome 6:
112,132–112,148 kb. D. RALB gene in chromosome 2: 121,000–121,030 kb.
ME1, malic enzyme 1; PACRG, parkin coregulated; FYN, FYN proto-
oncogene; RALB, RAS like proto-oncogene B. Supplementary Figure 7.
T-SNE analysis of 5mC FPKM. A. T-SNE plot of 5mC FPKM from PDAC and
healthy samples in distinct batches after removing batch effect. B. T-SNE
plot of 5mC FPKM from PDAC samples and healthy samples. PDAC, pan-
creatic ductal adenocarcinoma. Supplementary Figure 8. Flow chart of
5mC model construction. Supplementary Figure 9. T-SNE analysis of
5hmC FPKM. A. T-SNE plot of 5hmC FPKM from PDAC and healthy sam-
ples in distinct batches. B. T-SNE plot of 5hmC FPKM from PDAC and
healthy samples. PDAC, pancreatic ductal adenocarcinoma. Supplemen-
tary Figure 10. Flow chart of 5hmC model construction. Supplemen-
tary Figure 11. Performance of the 5hmC model in distinguishing the
subgroups of PDAC patients. A. Boxplot of the wd-scores in the resect-
able PDAC patients and unresectable PDAC patients. B. Boxplot of the
wd-scores in PDAC patients with jaundice and those without jaundice. *P
< 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, Wilcoxon test.

Additional file 2: Supplementary Table 1. Mapping summary of
cfDNA 5mC sequencing data. Supplementary Table 2. Mapping
summary of cfDNA 5hmC sequencing results. Supplementary Table 3.
Differentially methylated peaks identified by t test. Supplementary
Table 4. List of 5mC markers used in model construction.
Supplementary Table 5. Wd-scores of PDAC patients derived from dis-
tinct models. Supplementary Table 6. Differentially hydroxymethylated
peaks identified by t test. Supplementary Table 7. List of 5hmC
markers used in model construction.
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