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Abstract

Background: Epigenetic alterations are involved in most cancers, but its application in cancer diagnosis is still
limited. More practical and intuitive methods to detect the aberrant expressions from clinical samples using highly
sensitive biomarkers are needed. In this study, we developed a novel approach in identifying, visualizing, and
quantifying the biallelic and multiallelic expressions of an imprinted gene panel associated with cancer status. We
evaluated the normal and aberrant expressions measured using the imprinted gene panel to formulate diagnostic
models which could accurately distinguish the imprinting differences of normal and benign cases from cancerous
tissues for each of the ten cancer types.

Results: The Quantitative Chromogenic Imprinted Gene In Situ Hybridization (QCIGISH) method developed from a
1013-case study which provides a visual and quantitative analysis of non-coding RNA allelic expressions identified
the guanine nucleotide-binding protein, alpha-stimulating complex locus (GNAS), growth factor receptor-bound
protein (GRB10), and small nuclear ribonucleoprotein polypeptide N (SNRPN) out of five tested imprinted genes as
efficient epigenetic biomarkers for the early-stage detection of ten cancer types. A binary algorithm developed for
cancer diagnosis showed that elevated biallelic expression (BAE), multiallelic expression (MAE), and total expression
(TE) measurements for the imprinted gene panel were associated with cell carcinogenesis, with the formulated
diagnostic models achieving consistently high sensitivities (91–98%) and specificities (86–98%) across the different
cancer types.
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Conclusions: The QCIGISH method provides an innovative way to visually assess and quantitatively analyze individual
cells for cancer potential extending from hyperplasia and dysplasia until carcinoma in situ and invasion, which
effectively supplements standard clinical cytologic and histopathologic diagnosis for early cancer detection. In addition,
the diagnostic models developed from the BAE, MAE, and TE measurements of the imprinted gene panel GNAS, GRB10,
and SNRPN could provide important predictive information which are useful in early-stage cancer detection and
personalized cancer management.
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Background
Globally, cancer is one of the leading causes of death,
with worldwide incidence rate increasing rapidly. Early
detection and diagnosis can curb cancer mortality and
increase chances for curative treatment. The develop-
ment of molecular biology has provided a better way to
diagnose cancer earlier than traditional histopathology
[1–3]. Clinical application of gene markers such as mu-
tations in TP53, EGFR, KRAS, BRCA, and other genes
has greatly improved cancer diagnosis, prognostication,
and prediction of therapeutic responses to specific treat-
ments [4–7]. Whole genome or exome sequencing has
been added to the diagnostic portfolio for classifying tu-
mors [8]. There is also a strong evidence that epigenetic
changes, such as DNA methylation or histone methyla-
tion and acetylation, often occur at the precancerous
stages and promote carcinogenesis which may be re-
sponsible for up to 80% of cancers [9].
Genomic imprinting is one type of epigenetic regulator

that plays important roles in mammalian embryo devel-
opment. In normal post embryonic somatic cells,
imprinted genes are expressed either from the maternal
or paternal allele only, because one copy is silenced
through epigenetic markers such as DNA methylation
and histone acetylation [10]. In diseased states, the nor-
mally silenced copies of some imprinted genes may be
aberrantly activated via demethylation, leading to expres-
sion from both alleles. This phenomenon is normally
named loss of imprinting (LOI) and has been reported
to occur in various human cancers [11]. For example,
the H19/insulin-like growth factor 2 (IGF2) and insulin-
like growth factor 2 receptor (IGF2R) imprinted gene
network is involved in colorectal, prostate, lung and
breast cancers [12–14]. There is evidence suggesting that
LOI of the guanine nucleotide-binding protein, alpha-
stimulating complex locus (GNAS) gene may increase
the risk of thyroid cancer, osteosarcoma, skin cancer,
and neurofibromatosis [15]. Aberrant methylation and
increased LOI of growth factor receptor-bound protein
10 (GRB10) are related to breast cancer [16]. In addition,
hypomethylation of small nuclear ribonucleoprotein
polypeptide N (SNRPN) gene in germ cell tumors was
found to result in LOI [17].

Despite the growing evidence supporting a causal role
of LOI in tumorigenesis, imprinted genes have not been
used as diagnostic or predictive cancer biomarkers.
Current methods, including bisulfite DNA sequencing
and RNA sequencing [18, 19] have potential clinical value
as they can provide indirect indicators such as methylation
status or maternal/paternal expression ratios. However, an
easy, intuitive, and quantitative method to detect the aber-
rant expression of imprinted genes in clinical samples is
needed for clinical application.
An in situ hybridization (ISH)-based technique target-

ing the non-coding intronic nascent RNAs to visualize
the transcription loci of imprinted genes in cell nuclei
was developed to analyze the allele-specific expression of
imprinted genes and the behavior of X chromosome
[20]. Based on this technology, we designed a novel
quantification approach to identify the presence of allelic
expressions through the transcription signals in the nu-
clei. Using this method, most cells of normal tissues
would show single or no allelic expression. However, el-
evated allelic expressions would be observed for cells
from non-normal tissues. Based on these results, we de-
veloped the biallelic (BAE), multiallelic (MAE), and total
(TE) expression scores and evaluated their relationship
with cancer. We initially screened a panel of imprinted
genes composed of GNAS, GRB10, SNRPN, IGF2, and
IGF2R using our Quantitative Chromogenic Imprinted
Gene In Situ Hybridization (QCIGISH) method by
evaluating the aberrant expression of imprinting loci in a
variety of cancer tissue samples, and distinguishing the
imprinting differences of normal and benign cases from
cancerous tissues. This novel technique could provide a
quantitative determination of cancer status and serve to
complement traditional cytology and histopathology
examinations.

Results
Patient cohort and sample collection
In this study, 1013 patients with biopsies of known
normal and benign (260 cases) and cancerous (753
cases) diagnosis from ten different solid cancer types
(bladder, breast, colorectal, esophageal, gastric, lung
cancer, pancreatic, prostate, skin, and thyroid cancers)
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were recruited from six participating hospitals (Fig. 1
and Table 1) under the direction of the institutional
principal investigator (Dr. Bai). All methods were car-
ried out in accordance with relevant guidelines and

regulations. All experimental protocols of this retro-
spective study were approved by each hospital or in-
stitution’s licensing ethics committee review boards
(Shanghai Changhai Hospital Ethics Committee,

Fig. 1 Study design for imprinted gene biomarker screening and diagnostic model development
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Shanghai Changzheng Hospital Ethics Committee,
Zhongshan Hospital Fudan University Ethics Com-
mittee, Institute of Dermatology, Chinese Academy
of Medical Sciences Ethics Committee, Jiangsu Insti-
tute of Nuclear Medicine Ethics Committee, Shang-
hai Tenth People’s Hospital Ethics Committee;
approval number in Table 1). All subjects were
above 18 and informed consent was obtained from
all subjects. Fine-needle aspiration samples, core-
needle aspiration samples, and conventional biopsies
of ten specific tissue types (bladder, breast, colorec-
tal, esophageal, gastric, lung, pancreatic, prostate,
skin, and thyroid) were analyzed. Surgical samples
were processed by standard formalin-fixed paraffin-
embedded (FFPE) techniques. For the study of blad-
der cancer, additional urine samples were collected
from cancer patients and from a cohort of healthy
volunteers. With the exception of skin samples, all
pathology diagnoses by local expert pathologists,
were independently reviewed and confirmed by three
reference pathologists (Drs. Shen, Yu, and Lu) ac-
cording to the WHO criteria. The pathologic diagno-
sis of skin samples was provided by the Institute of
Dermatology, Chinese Academy of Medical Sciences.

Differential allelic expression of imprinted genes
observed in normal, benign, and malignant samples
To analyze the allelic expression of imprinted genes in
cancer, we selected 5 imprinted genes GNAS, GRB10,
SNRPN, IGF2, and IGF2R which were mostly reported
to be associated with cancer [12–17]. The expressions of
these 5 imprinted genes were evaluated on cancers of
ten solid tumor types: bladder, breast, colorectal,

esophagus, gastric, lung, pancreatic, prostate, skin, and
thyroid (Fig. 2). For each tumor type, 9 to 10 cancer
samples, 5 benign, and 3 pathologically identified normal
controls which were obtained near the benign lesions
were tested (Fig. 1). The differences in gene expression
ISH staining patterns between normal, benign, and malig-
nant samples were visually observed (sample images pro-
vided in Fig. 3), and were additive to the standard
histologic changes by H&E staining. In normal samples,
the GNAS, GRB10, SNRPN, IGF2, and IGF2R imprinted
genes showed mostly no signal including a considerable
number of cells with single signal (single allelic expression,
SAE) and only a few cells expressing two signals (biallelic
expression, BAE). Increased SAE and BAE with a few cells
showing three or more signals (multiallelic expression,
MAE) were however observed for benign cases. In con-
trast, BAE and MAE were shown to have significantly in-
creased for malignant samples (Fig. 3 and Fig. S2–S4).
Statistical analysis showed a significant increase in BAE,
MAE, and total expression (TE) scores between normal
and benign (p < 0.01, Table S1 and Fig. 4), and benign and
malignant cases (p < 0.01, Table S1 and Fig. 4), respect-
ively. When comparing normal samples with benign le-
sions, the computed p values for TE and BAE were
comparatively lower than MAE (Table S1). The observed
increase in TE and BAE scores are more efficient bio-
markers for benign lesions as compared to MAE. Very
low p values (<2.2e− 16) were also consistently obtained
for BAE, MAE, and TE when comparing benign and ma-
lignant cases (Table S1) signifying their efficiency in de-
tecting cancer. Statistical test results also showed
significantly higher expressions for the GNAS, GRB10,
SNRPN, IGF2, and IGF2R genes in malignant cases when

Table 1 Sources of tumor cases for cancer-specific diagnostic model building in this study

Tissue
type

Case numbers Hospitals IRB/IEC number

Benign* Malignant

Bladder 31 60 Shanghai Changhai Hospital CHEC2019-029

Breast 26 61 Shanghai Changzhen Hospital 2018SL015

Colorectal 16 42 Shanghai Changzhen Hospital 2018SL015

Esophagus 18 41 Shanghai Changzhen Hospital 2018SL015

Gastric 18 42 Shanghai Changzhen Hospital 2018SL015

Lung 26 154 Shanghai Changzhen Hospital; Shanghai Institute of Respiratory Diseases, Shanghai
Zhongshan Hospital

2018SL015, 2017-035R

Pancreatic 21 44 Shanghai Changzhen Hospital 2018SL015

Prostate 17 45 Shanghai Changzhen Hospital 2018SL015

Skin 13 38 Institute of Dermatology, Chinese Academy of Medical Sciences 2018-LKS-014

Thyroid 24 127 Jiangsu Jiangyuan Hospital, Shanghai Tenth People’s Hospital YL201811, SHSY-IEC-4.1/
19-6/01

Totals 204 654

*Benign samples were non-cancerous tissues from patients with benign lesions and used as negative control. Normal samples for gene screening were obtained
adjacent to the benign lesions
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compared with normal and benign samples (p < 0.01,
Table S1). The computed p values for GNAS, GRB10, and
SNRPN were however noted to be comparatively lower
than those obtained for the IGF2 and IGF2R genes (Table
S1). One particular exception is for the SNRPN gene ex-
pression in gastric cancer. We observed a decrease of the
BAE, MAE, and TE scores of SNRPN in advanced gastric
cancer which resulted in the exclusion of this particular
set of observations in this evaluation (Table S1 and Fig. 4).
This finding may potentially suggest a different behavior

of SNRPN in gastric cancer which needs further
investigation.

Imprinted genes GNAS, GRB10, and SNRPN identified as
efficient cancer biomarkers for clinical application
In order to find useful and efficient cancer biomarkers for
clinical applications, we generated the ROC curves for the
GNAS, GRB10, SNRPN, IGF2, and IGF2R imprinted genes
using the individual BAE, MAE, and TE measurements for
all the different cancer types combined (Fig. S5). Based on

Fig. 2 QCIGISH principle and workflow. a Different imprinted gene expression status and ISH visualized signals in thyroid cancer cells. b Workflow
of imprinting detection and diagnostic model building
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the optimal thresholds provided by the ROC curves for the
BAE, MAE, and TE measurements (Table S2), we developed
negative/positive classification models for each of the GNAS,
GRB10, SNRPN, IGF2, and IGF2R imprinted genes. In some
cases, when TE is relatively low (lower than 5% as noted in
certain cases), we observed a few cells with two or three sig-
nals which do not directly link to malignancy. In effect, the
BAE and MAE measurements tend to increase, as computed
based from the given equations, which could result to false
positives. So, a TE threshold was selected as a first restriction
in classifying benign from malignant cases to address such
issue. Samples with TE scores lower than the defined thresh-
old values for each gene were classified under the negative
class (Fig. 6). For the remaining samples, if either the BAE or

the MAE scores were above the threshold values, these were
identified under the positive class. When both the BAE and
MAE scores are below threshold, samples were considered
negative (Fig. 6). To evaluate the effectiveness of the diagnos-
tic models developed from each individual gene, we consid-
ered sensitivities and specificities higher than 80% to be
useful for the study. After evaluating and adjusting the
threshold values to achieve a specificity of at least 80% for
each gene, sensitivity values of > 80% were obtained for
GNAS, GRB10, and SNRPN, while < 60% sensitivities were
computed for IGF2 and IGF2R (Table S3). Using these re-
sults, imprinted genes GNAS, GRB10, and SNRPN were
identified as the more efficient cancer biomarkers over IGF2
and IGF2R, specifically using our QCIGISH method.

Fig. 3 A comparative example of the imprinted gene expression and histopathology for normal, benign, and malignant cases illustrated using breast
tissue samples. The left panels showed the allelic expression status of imprinted gene GNAS, and the right panels showed the corresponding standard
hematoxylin-eosin (H&E) staining morphology
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Quantitative imprinting diagnostic models built using
imprinted genes GNAS, GRB10, and SNRPN
We further analyzed the expression of imprinted genes
GNAS, GRB10, and SNRPN in 204 benign and 654 ma-
lignant samples across ten cancer types. The BAE, MAE,
and TE measurements for each gene were individually
normalized as z scores across all samples for each cancer
type and were shown in heat maps (Fig. 5). For each
cancer type, the benign and malignant cases were separ-
ately labeled with each heat map column corresponding
to the same observation. The observations were arranged
by clustering together those with similar characteristics

in terms of their GNAS, GRB10, and SNRPN expres-
sions. Statistical analysis showed that the TE, BAE, and
MAE scores of imprinted genes GNAS, GRB10, and
SNRPN were significantly increased in malignant sam-
ples for almost all ten cancer types (p < 0.01), with the
only exception of SNRPN in gastric cancer (Table S4).
These results confirmed that the biallelic and multiallelic
expressions of GNAS, GRB10, and SNRPN could be ef-
fectively used as cancer biomarkers for distinguishing
benign from malignant tumors.
To build the diagnostic models for the different cancer

types, we refined the thresholds of the primary

Fig. 4 Comparison of the expression status of imprinted genes GNAS, GRB10, SNRPN, IGF2, and IGF2R in the gene screening set. a Heat map showing
the expression status of imprinted gene GNAS, GRB10, SNRPN, IGF2, and IGF2R. N, normal samples; B, benign samples; M, malignant samples. Gastric
cancers and benign controls are framed with red dashed lines. Additional imprinted genes IGF2 and IGF2R studied are framed with blue dashed lines.
b Box plot showing the expression status of imprinted genes in normal, benign, and malignant samples. *p < 0.01
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classification models according to the ROC curves for dif-
ferent cancers (Fig. S6). Although the BAE, MAE, and TE
scores showed a significant difference between benign and
malignant samples, overlaps were observed. Considering
the potential differences of the gene expressions among
cancer types, we refined the thresholds for each individual
gene with emphasis on sensitivity. With the optimal
thresholds initially computed for the BAE, MAE, and TE
measurements for each gene per cancer type (Table S5–
S14), we evaluated and adjusted the individual thresholds
to generally achieve > 70% sensitivity and specificity. Only

those cases with two genes or more which exhibited a
positive class are classified as malignant (Fig. 6 and Table
S15–S16). However, as the BAE, MAE, and TE scores of
the SNRPN gene in advanced gastric cancer were previ-
ously noted to have behaved in opposite of those observed
from other cancer types, this gene was specifically not in-
cluded in the classification model for gastric cancer, and
only those with both GNAS- and GRB10-positive classes
can be identified as malignant (Fig. 6). Based from the re-
sults, we have noted low specificities for certain genes and
cancer types including GRB10 gene for lung cancer and

Fig. 5 Comparison of the expression status of imprinted genes GNAS, GRB10, and SNRPN in the diagnostic model building set. Benign cases were
indicated by blue bars, and malignant cases were indicated by orange bars. Gastric cancers and their benign controls are framed with red dashed lines
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GNAS gene for thyroid cancers. However, upon evalu-
ation, the specificities could be effectively improved when
these particular genes were combined with the other
genes together in the diagnostic model. We are still pursu-
ing further studies involving new epigenetic biomarkers to
improve cancer diagnostic specificities.

Imprinting diagnostic models exhibit high sensitivity and
specificity in cancer diagnosis
After building the imprinting diagnostic models based
on our dataset, we measured the sensitivities and speci-
ficities in the model building sets (Table 2 and Table
S16). The models exhibited sensitivities higher than 90%
in all the ten cancers, along with very high specificities,
being > 90% in six of ten cancer types and ≥ 85% in four
cancers (esophagus, lung, prostate, and thyroid). The

overall sensitivity of the ten cancer types was 94% and
overall specificity was 92%, with a diagnostic accuracy of
93%. These models will be further validated and refined
in later cancer-specific studies with larger sample sets.

Discussion
Current epigenetics research focuses on DNA methyla-
tion, histone acetylation, chromosomal architecture,
miRNAs, and lncRNAs [21–23]. Many technologies have
been developed to analyze the relationship between epi-
genetic changes and gene expression levels. The epigen-
etic changes detected by these technologies can infer the
altered expression status of genes; some of the changes,
such as DNA methylation and miRNA, are currently be-
ing tested in clinical practice [24, 25]. However, there is
still a lack of clear cancer biomarkers to meet the

Fig. 6 Cancer diagnostic model using the imprinted genes GNAS, GRB10, and SNRPN for the ten cancer types

Shen et al. Clinical Epigenetics           (2020) 12:71 Page 9 of 13



requirements for precision diagnostic medicine. In this
study, we applied a QCIGISH method targeting intronic
non-coding RNA to visualize and quantify the number
of allelic expressions of imprinted genes related to car-
cinogenesis. The diagnostic models built on the BAE,
MAE, and TE scores of imprinted genes showed consist-
ently high accuracy across ten cancer types, therefore
suggesting QCIGISH as an effective and readily suitable
tool for clinical applications.
Our preliminary results from 753 cases of ten cancer

types showed that biallelic and multiallelic expressions
of imprinted genes were dramatically increased in malig-
nant samples as compared to 260 organ-specific benign
and normal counterparts. This interesting finding vali-
dates the difference in signal information being provided
between non-coding RNA from introns and coding RNA
from exons. The involvement of introns in alternatively
spliced mRNAs has been reported in several cancers and
can be linked to epigenetics [26]. Our results provided
additional evidence that expression of introns could be
used as clear epigenetic markers for cancer. However,
the underlying mechanisms are not yet clear and need
further study.
From the analysis of the proportion of cells with differ-

ent expression status, we noted that the observed in-
crease in TE and BAE scores are more efficient
biomarkers for benign lesions as compared to MAE. In
addition, BAE, MAE, and TE are all elevated for carcino-
genesis. The biallelic and multiallelic expressions of
imprinted genes observed using the QCIGISH method
may include regular LOI, but it could also involve the
amplification of the normally activated allele with the
other allele remaining silenced [27]. However, our re-
sults clearly showed that BAE and MAE scores are re-
lated to cancer malignancy.

For our study, all the GNAS, GRB10, and SNRPN
genes shared a similar expression pattern in 753 cases of
ten cancers. It is reasonable to believe that this
phenomenon exists in other cancers as well, but more
accurate and precise diagnostic models may require the
incorporation of additional genes for different cancers
types. IGF2 and IGF2R are usually referred in the studies
on imprinted genes and cancers [12–14], which we have
also tested in our samples. Although IGF2 and IGF2R
genes were also observed to be related to cancer, they
were not the best biomarkers specifically using our
QCIGISH method. We therefore selected GNAS,
GRB10, and SNRPN genes as the more efficient cancer
biomarkers for our diagnostic model.
Based off of the results of this study, our preliminary diag-

nostic models will be upgraded to a more detailed grading
scoring system defining different levels of malignancy, char-
acterizing cell development from benign to early-stage can-
cer, and further validated in larger sample sets using
presurgical cytology samples across different cancer types.
More imprinted gene cancer biomarkers are also being tested
and will be incorporated into the upgraded model. The
present study conceptually opens a new diagnostic area in
cancer and demonstrates strong potential for high-
throughput clinical application. It is expected that this tech-
nology may go beyond a diagnostic technique to also provide
information on prognostic and predictive markers of treat-
ment response. We also anticipate the adoption of machine
learning and artificial intelligence (AI) through the inclusion
of automatic image recognition and big data analysis. The
large-scale clinical application of imprinting diagnosis could
complement current early cancer detection via serum bio-
markers and imageological examination, which ultimately is
one of the key steps in improving cancer prognosis and redu-
cing cancer mortality.

Table 2 Sensitivities and specificities of QCIGISH diagnostic models in different tumors

Type of
tumor

Sensitivity Specificity Benign Malignant

Imprinting negative Imprinting positive Imprinting negative Imprinting positive

Bladder 98% 96% 27 1 1 59

Breast 98% 96% 25 1 1 60

Colorectal 98% 94% 15 1 1 41

Esophagus 95% 89% 16 2 2 39

Gastric 93% 94% 17 1 3 39

Lung 92% 88% 23 3 13 141

Pancreatic 93% 90% 19 2 3 41

Prostate 93% 88% 15 2 3 42

Skin 97% 92% 12 1 1 37

Thyroid 91% 86% 18 3 12 115

Total 94% 92% 187 17 40 614
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Conclusion
We presented a novel QCIGISH method in the current
study that targets the non-coding intronic region of nas-
cent RNAs to visualize and quantify the allelic expres-
sions of imprinted genes in cancer development. For this
investigation, we focused on the expression status of
three imprinted genes—GNAS, GRB10, and SNRPN
known to be associated with cancer status. The testing
of the three imprinted gene panel on 1013 clinical sam-
ples, including 260 normal and benign, and 753 malig-
nant cases from bladder, breast, colorectal, esophageal,
gastric, lung, pancreatic, prostate, skin, and thyroid can-
cers demonstrated how the expression status of GNAS,
GRB10, and SNRPN significantly changed in cancer
cases versus their normal and benign tissue controls. We
have specifically built cancer-specific diagnostic models
based on the BAE, MAE, and TE scores, with the com-
bination of these three genes yielding an overall sensitiv-
ity of 94% and specificity of 92%. While this initial study
still needs confirmation in even larger cohorts of cancers
and benign controls, we believe that our observations re-
garding biallelic and multiallelic expressions of
imprinted cancer genes at the single-cell and regional
density levels will become a practically useful and
powerful clinical tool by effectively supplementing
standard cytologic and histopathologic diagnosis for
early-stage cancer detection. Based off of the research
from this initial study, we have also begun to explore the
incorporation of machine learning and artificial
intelligence to efficiently automate our image analysis
process. In addition, we have proceeded with a multi-
center prospective presurgical clinical study specifically
for lung and thyroid cancers involving a much larger co-
hort. With all these foregoing initiatives, we look for-
ward to further establishing the suitability of our
technology for future clinical applications.

Methods
Sample preparation for in situ hybridization (ISH)
Tissue blocks were prepared by standard FFPE sample
preparation protocol following the RNAscope (Advanced
Cell Diagnostics, ACD Bio, Newark, CA, USA) sample
preparation procedures [28] and serially cut into 10-μm
sections. The sections were then mounted on positively
charged slides and dried overnight at room temperature
(RT). The sections were deparaffinized in xylene and
pretreated following the RNAscope sample preparation
procedures.
Fine-needle aspiration samples from thyroid, breast,

lung, pancreas and prostate, and bronchial brushing
samples were fixed immediately after sampling in 10%
NBF (neutral buffered formalin) for 48 h at RT. The
samples were directly mounted onto positively charged

slides and pretreated following the RNAscope sample
preparation procedures [28].
Surgical biopsies from the thyroid, breast, and pan-

creas; endoscopic biopsies from the bladder, esophagus,
stomach, colorectum, and lung; and core-needle aspira-
tions from the breast were fixed immediately after sam-
pling in 10% NBF for 48 h at RT. Cells dissociated from
these tissues were mounted on positively charged slides
and pretreated following the RNAscope sample prepar-
ation procedures [28].
Exfoliated uroepithelial cell samples from healthy vol-

unteers and cancer patients were collected using the fol-
lowing protocol. After the first morning void, patients
consumed 500 ml of water; then, 80 ml of the next urine
was collected and fixed for 48 h at RT. The samples were
then centrifuged at 8000×g for 15 min to pellet the cells.
The cells were mounted on positively charged slides and
pretreated following the RNAscope sample preparation
procedures [28].

In situ hybridization
The ISH probes were designed to target the introns of
nascent RNAs from GNAS, GRB10, SNRPN, IGF2, and
IGF2R [29] and were synthesized by ACD Bio. A positive
control probe, PPIB (targeting Homo sapiens Peptidyl-
prolyl Isomerase B, a ubiquitously expressed gene), and
negative control probe, dapB (targeting Bacillus subtilis
strain SMY dihydrodipicolinate reductase), were pur-
chased from ACD Bio. For each sample, the five
imprinted gene probes were hybridized individually with
serially cut sections from the same tissue block using
RNAscope 2.5 HD assay kit (ACD Bio) according to the
manufacturer’s instructions [28]. The probe design as
well as the pretreatment and hybridization condition
were optimized for detecting single-stranded RNA and
not for double-stranded genomic DNA wrapped by his-
tones. RNase treatment was also performed to verify that
the signals came from RNA (Fig. S1). The positive and
negative control probes were both applied onto every
slide. After hybridization, the signals were amplified via
six steps and detected using chromogenic reagents (Fast
Red for red signals and DAB for brown signals, ACD
Bio) [28]. Each gene expressing site appears as a distinct
red or brown dot under common bright field micro-
scope (Fig. 2a).

Data collection
After the images were captured under × 400 microscope,
the number of nuclei containing no signal (no expression
= N0), one signal (single allelic expression = N1), two sig-
nals (biallelic expression = N2), and more than two signals
(multiallelic expression = N2plus) were counted manually
from four representative high power fields per gene/sam-
ple (Fig. 2b). The technologists performing the counting
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were blinded to the diagnosis of the samples. The BAE,
MAE, and TE were then calculated according to the fol-
lowing equations (Fig. 2b):

BAE ¼ N2

N1 þ N2 þ N2plus
� 100%

MAE ¼ N2plus

N1 þ N2 þ N2plus
� 100%

TE ¼ N1 þ N2 þ N2plus

N0 þ N1 þ N2 þ N2plus
� 100%

Statistical analysis
Statistical analysis was proceeded to investigate for signifi-
cant differences between the BAE, MAE, and TE scores
among the GNAS, GRB10, SNRPN, IGF2, and IGF2R
imprinted genes in normal controls, benign lesions, and
malignant case groups for both the gene screening and
model building data sets involving the various cancer
types. Continuous variables were presented as medians
with interquartile ranges (IQR). To facilitate the compari-
son between the aforementioned groups, a one-tailed ro-
bust rank-order nonparametric test was applied because
the study parameters used continuous measurements and
involved various pairs of small-sized independent samples
with differing variabilities. A computed p of less than 0.01
indicates a significantly higher BAE, MAE, or TE level for
the independent groups being compared. The heat maps
were generated using Multiple Experiment Viewer (MeV)
software [30]. The receiver operating characteristic (ROC)
curves were generated through R code package pROC
[31]. Classification thresholds for the BAE, MAE, and TE
scores of each gene were determined according to the
ROC curves (Fig. 2b). The classification models for each
cancer were generated by combining the classification re-
sults of the three genes (Fig. 2b). Both sensitivity and spe-
cificity values were calculated using standard formulas.
The analysis was conducted using R software (version
3.5.0).
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