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Abstract

Background: Non-alcoholic fatty liver disease is the most common chronic liver disease in children in western
countries. Adverse early-life exposures are associated with higher liver fat percentages in children. Differential DNA
methylation may underlie these associations. We aimed to identify differential DNA methylation in newborns and
children associated with liver fat accumulation in childhood. We also examined whether DNA methylation at 22
cytosine-phosphate-guanine sites (CpGs) associated with adult non-alcoholic fatty liver disease is associated with
liver fat in children. Within a population-based prospective cohort study, we analyzed epigenome-wide DNA
methylation data of 785 newborns and 344 10-year-old children in relation to liver fat fraction at 10 years. DNA
methylation was measured using the Infinium HumanMethylation450 BeadChip (lllumina). We measured liver fat
fraction by Magnetic Resonance Imaging. Associations of single CpG DNA methylation at the two-time points with
liver fat accumulation were analyzed using robust linear regression models. We also analyzed differentially methylation
regions using the dmirff package. We looked-up associations of 22 known adult CpGs at both ages with liver fat at 10

years.

children.

rather than a determinant of liver fat.

resonance imaging

Results: The median liver fat fraction was 2.0% (95% range 1.3, 5.1). No single CpGs and no differentially methylated
regions were associated with liver fat accumulation. None of the 22 known adult CpGs were associated with liver fat in

Conclusions: DNA methylation at birth and in childhood was not associated with liver fat accumulation in 10-year-old
children in this study. This may be due to modest sample sizes or DNA methylation changes being a consequence
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Background

Non-alcoholic fatty liver disease is a pathologic excess of
> 5% fat in hepatic cells, not caused by alcohol consump-
tion, genetic or metabolic disorders, medication, or viral
infections [1]. Due to the high prevalence of obesity,
non-alcoholic fatty liver disease has become the most
common chronic liver disease in both children and
adults in western countries [2-5]. Non-alcoholic fatty
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liver disease is associated with an adverse cardio-
metabolic risk profile in children [3]. In adults, it is asso-
ciated with cardio-metabolic diseases and hepatocellular
carcinoma, and it is a leading indication for liver trans-
plantation [4, 6]. An accumulating body of evidence sug-
gests that adverse exposures in early life contribute to
the development of obesity and non-alcoholic fatty liver
disease [5, 7].

The mechanisms underlying the observed associations
of early-life factors with liver fat in children and adults
may include changes in DNA methylation [5, 7]. DNA
methylation is an epigenetic mechanism that is highly dy-
namic in early life and affects the accessibility of DNA for
transcription and thereby gene expression [8]. Various
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adverse early-life factors have been associated with
differential DNA methylation [9-12]. Recent studies
using liver biopsy samples of adults with non-
alcoholic fatty liver disease suggest differential DNA
methylation is cross-sectionally associated with non-
alcoholic fatty liver disease [8, 13-15]. A meta-
analysis of population-based cohorts in adults identi-
fied 22 cytosine-phosphate-guanine sites (CpGs) in
peripheral blood at which DNA methylation was asso-
ciated with non-alcoholic fatty liver disease [6].

We hypothesized that differential DNA methylation at
birth and in childhood is associated with liver fat accu-
mulation in children. We performed an epigenome-wide
association study (EWAS) to assess whether DNA
methylation at birth and at age 10 years is associated
with liver fat accumulation measured with magnetic res-
onance imaging (MRI) in 10-year-old children partici-
pating in a population-based prospective cohort study.
Analyses were focused on both single CpGs and differ-
entially DNA methylated regions (DMRs). As a second-
ary analysis, we examined if DNA methylation at birth
and at age 10 years is associated with higher (>2%) ver-
sus lower (<2%) liver fat accumulation. We also exam-
ined whether DNA methylation at the 22 CpGs known
to be associated with non-alcoholic fatty liver disease in
adults, is also associated with liver fat in children [6].

Table 1 Subject characteristics
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Results

Subject characteristics

The median liver fat fraction was 2.0% for both groups
(newborns 95% range 1.3, 4.6, 10-year-old children 95%
range 1.3, 5.1)). The prevalence of non-alcoholic fatty
liver disease at age 10 years was 2.2% (n = 17/785) in the
group with DNA methylation data at birth and 2.6% (n
= 9/344) in the group with DNA methylation data at age
10 years. The baseline characteristics of the study popu-
lation are presented in Table 1. Non-response analyses
comparing singleton children with DNA methylation
data, with and without information on liver fat fraction
available, showed that participants in the newborn group
were slightly more often female and more often over-
weight, had somewhat older and higher educated
mothers, who more often stopped smoking during preg-
nancy compared to non-participants in the newborn
group. In the childhood group, non-response analyses
showed that participants were slightly older compared to
non-participants (Table 2).

Epigenome-wide association study of childhood liver fat
accumulation

We assessed associations of DNA methylation in cord
blood and in whole peripheral blood at 10 years with
liver fat as a continuous measure in 10-year-old children.

Newborns Childhood
(n=785) (n = 344)
Maternal characteristics
Age, mean (SD), years 32.1+40 321 +40
Prepregnancy body mass index, mean (SD), kg/m? 232 +39 234+ 40

Parity, n (%), nulliparous
Education, n (%), higher education
Smoking during pregnancy, n (%), continued
Child characteristics
Gestational age at birth, median (95%), weeks
Age, mean (SD), years
Males, n (%)
Birth weight, mean (SD), g
Body mass index at 10 years, mean (SD), kg/m2
Children with
Underweight, n (%)
Normal weight, n (%)
Overweight, n (%)
Obesity, n (%)
Liver fat fraction, median (95% range), %

Prevalence non-alcoholic fatty liver disease, n (%)

477 (60.8%)
535 (68.2%)
94 (12.0%)

205 (59.6%)
232 (67.4%)
43 (12.5%)

404 (37.0-42.3) 40.3 (36.9-42.4)

0 98+ 03
378 (48.2%) 170 (49.4%)
3556 + 505 3578 + 515
170+ 2.1 17.1 £ 20
62 (7.9) 19 (5.5)
637 (81.1) 287 (834)
79 (10.1) 37.(108)

7 (0.9) 1(03)

20 (1.3-46) 20 (13-5.1)
17 (2.2%) 9 (2.6%)

Values are observed data and represent means + SD, medians (95% range), or numbers of subjects (valid %)
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Table 2 Comparison of child characteristics between children included and not included in the analyses

Newborns participants Non-participants P value Children Non- P value
participants participants
(n = 785) (n = 604) (n = 344) (n=120)

Maternal characteristics
Age, mean (SD), years 321 +40 313 +45 <0.01 321 +40 325+ 41 041
Prepregnancy body mass index, mean (SD), I<g/m2 232 +39 232+ 38 0.95 234 +40 227 £32 012
Parity, n (%), nulliparous 477 (60.8%) 365 (60.6%) 0.96 205 (59.6%) 73 (61.3%) 0.74
Education, n (%), higher education 535 (68.2%) 357 (61.1%) <0.01 232 (67.4%) 75 (65.2%) 0.86
Smoking during pregnancy, n (%), continued 94 (12.0%) 88 (18.0%) <0.01 43 (12.5%) 8 (9.3%) 0.70
Child characteristics
Gestational age at birth, median (95%), weeks 404 (37.0-42.3) 403 (36.3 - 424) 045 403 (36.9 — 424) 404 (376-424) 063
Age, mean (SD), years NA NA NA 98 +0.3 97 +03 <0.01
Males, n (%) 378 (48.2%) 325 (53.8%) 0.04 170 (49.4%) 61 (50.8%) 0.79
Birth weight, mean (SD), g 3556 + 505 3528 £ 518 0.31 3578 £ 515 3547 + 498 0.57
Body mass index, mean (SD), l<g/m2 170 £ 2.1 170 £ 2.1 0.77 171 +£20 172 +22 062
Children with

Underweight, n (%) 62 (7.9) 30 (8.1) 0.12 19 (5.5) 8 (6.7) 0.21

Normal weight, n (%) 637 (81.1) 299 (80.6) 0.05 287 (834) 97 (80.8) 042

Overweight, n (%) 79 (10.1) 38 (6.3) 0.01 37 (10.8) 13 (10.8) 0.52

Obesity, n (%) 709 4(0.7) 0.09 1(03) 2(1.7) 0.11

Values are observed data and represent means + SD, medians (95% range), or numbers of subjects (valid %). Differences were tested using Student’s t tests and
Mann-Whitney tests for normally and non-normally distributed variables, respectively and using x2-test for dichotomous variables

In the main models, adjusted for maternal age, education
level, early-pregnancy BMI and smoking, gestational age
at birth (cord blood analyses) or child age (childhood
analyses), child sex, cell-type proportions, and batch, we
did not observe any CpGs at birth or at 10 years to be
associated with liver fat accumulation at 10 years after
Bonferroni (p value <1.0 x 1077) or false-discovery rate
(FDR) correction. The Manhattan plots of both EWAS
analysis of liver fat accumulation are presented in
Additional file 1: Figure Sla and Figure S1b. Additional
file 2: Table S1 and Table S2 show the CpGs with p
values <1.0 x 10™* for newborns and for 10-year-old
children, respectively. We did not identify significantly
associated differentially methylated regions associated
with liver fat accumulation, nor did we find associations
of individual CpG sites with higher versus lower liver fat
accumulation. Additional file 3: Table S3 and Table S4
show the differentially methylated regions with p values
<1.0 x 10™* for newborns and 10-year-old children, re-
spectively. Additional file 4: Table S5 and Table S6 show
the CpGs with p values <1.0 x 10™* for newborns and
for 10-year-old children for higher versus lower liver fat,
respectively. Results of the basic model and of the model
additionally adjusted for childhood body mass index
(BMI) were not substantially different from the results in
the main model. The mean percent differences in effect

estimates between the main model and the basic model,
and between the main model and the childhood BMI
model in cord blood were 2.5% and 10.9%, respectively.
In the child peripheral blood analyses at 10 years, the
mean percent differences were 1.6% and 3.9%, respect-
ively. In Additional file 5: Table S7 and Table S8, we
show the results of the basic and childhood BMI models
for the CpGs probes with p values < 1.0 x 10™* identified
in the main model.

Look-up of CpGs associated with adult liver fat

None of the 22 CpGs differentially methylated regions
known for their associations with non-alcoholic fatty
liver disease in adults were associated with liver fat in
children (Bonferroni corrected p value cutoff < 0.05/22 =
2.3 x 1073, Table 3). We found no evidence for enrich-
ment of the 22 CpGs among the 18,848 nominally sig-
nificant CpGs from the cord blood analysis and among
the 23,173 nominally significant CpGs from the 10-year-
old analysis (Fisher combined probability p value = 1.00
in newborns and p value = 0.68 in 10-year-old children).

Candidate genes analysis associated with liver fat

We examined if there was an enrichment of CpGs lo-
cated in regions within a 4 Mb window (+2 Mb) sur-
rounding the 9 single-nucleotide polymorphisms (SNPs)
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Table 3 Associations of 22 adult non-alcoholic fatty liver disease-associated CpGs with liver fat fraction in children

Newborns Children
CpG Chromosome Position Gene Effect’ SE’ P value Effect’ SE’ P value
€g09469355 1 2161886 SKI 0.002 0.03 0.96 —0.002 0.07 0.98
€g17901584 1 55353706 DHCR24 —0.005 0.02 0.74 —0.069 0.04 0.08
cg03725309 1 109757585 SARS -0.012 0.02 045 0.027 0.05 0.56
€g14476101 1 120255992 PHGDH —0.003 0.02 0.99 0.011 0.04 0.78
€g19693031 1 145441552 TXNIP -0011 0.03 0.72 —0.031 0.04 045
906690548 4 139162808 SLC7ATT —0.086 0.05 0.08 -0.027 0.06 067
€g05119988 4 166251189 SC4MOL 0.003 0.02 0.88 0.003 0.03 092
cg03957124 6 37016869 COX6A1P2™ 0.011 0.02 0.59 0.027 0.05 0.58
€g18120259 6 43894639 LOC100132354" 0.024 0.02 0.31 -0.124 0.05 0.02
cg17501210 6 166970252 RPS6KA2 0.086 0.07 0.21 -0.137 0.08 0.10
€g21429551 7 30635762 GARS 0.015 0.02 042 0.017 0.03 052
cg11376147 1 57261198 SLC43A1 —0.004 0.03 0.89 0.107 0.07 0.1
cg00574958 1 68607622 CPTIA 0.028 0.04 043 -0.019 0.08 0.79
€g26894079 11 122954435 ASAM 0.004 0.03 0.88 —0.020 0.04 0.63
€g11024682 17 17730094 SREBF1 -0.023 0.04 0.54 —0.005 0.07 0.93
€g14020176 17 72764985 SLC9A3R1 0.006 0.03 0.84 —0.007 0.06 0.90
€g19016694 17 80821826 TBCD 0.016 0.03 0.55 —0.062 0.06 0.30
€g15860624 19 3811194 ZFR2 0011 0.02 061 0.002 0.05 0.97
€g02711608 19 47287964 SLCTAS -0.025 0.03 044 0.004 0.06 0.95
€g08309687 21 3532059% LINCO0649™ —0.004 0.03 0.88 —0.008 0.04 0.84
€g27243685 21 43642366 ABCGI 0.042 0.04 0.32 -0.023 0.09 0.81
€g06500161 21 43656587 ABCGT 0.018 0.03 0.57 0.023 0.05 0.66

“Effect estimates represent the change in liver fat fraction (%) per 10% difference in DNA methylation beta and standard error. Associations are adjusted for
maternal age, education level, early-pregnancy BMI and smoking, age at birth or child age at measurement, child sex, cell type proportions, and batch. “Gene
names added using information from the UCSC Genome Browser build hg19. Other gene names from original paper by Ma et al. 2019. BMI body mass index,

n number, SE standard error

identified to be associated with non-alcoholic fatty liver
disease in adults, among all nominally significant CpGs
in our analyses [16, 17]. A total of 7225 CpGs were
present in these regions in the newborn dataset and
7244 CpGs in the 10-year-old dataset. In newborns, 299
of these CpGs were nominally significant (p value <
0.05). In 10-year-old children, this was the case for 347
CpGs. There was no enrichment for CpGs associated
with liver fat accumulation at either age (Fisher com-
bined probability p value = 0.47 in newborns and p value
= 0.86 in 10-year-old children).

Top CpG probes functions and related biological processes
In an explorative analysis, significantly enriched gene
ontology (GO) terms based on the annotated genes of
the 32 CpG probes with p values <1.0 x 10™* in cord
blood pointed towards processes related to triglyceride,
acylglycerol and lipid metabolic processes, digestive tract
development, digestive system development, and digest-
ive tract morphogenesis, among others (Additional file 6:
Table S9). The same analysis using the 76 CpG probes

with p values <1.0 x 10™* in child peripheral blood re-
vealed processes related to cell cycle functions, organ mor-
phogenesis, and development, among others (Additional
file 6: Table S10). We did not observe the functional en-
richment of Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms ((FDR < 0.05). Next to this, we did not ob-
serve significant enrichment of DNAse hypersensitivity
sites among the CpG probes with p values <1.0 x 10™*
(smallest p value in cord blood analyses 0.09 and in child-
hood analyses 0.25).

Discussion

In the first epigenome-wide association study on liver fat
accumulation in children, we did not observe differential
DNA methylation in newborns or 10-year-old children
related to liver fat accumulation analyzed as a continu-
ous measure or related to higher versus lower liver fat
accumulation measured by MRI at age 10 years. Also,
DNA methylation at 22 CpGs known to be associated
with non-alcoholic fatty liver disease in adults was not
associated with liver fat in children.
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Interpretation of main findings

Non-alcoholic fatty liver disease has an increasing preva-
lence in both children and adults [5, 18]. It is a major risk
factor for adverse cardio-metabolic health in children and
for cardio-metabolic diseases and liver diseases in adults
[3, 4, 6]. Adverse early-life factors have been described to
be associated with liver fat development [5, 7]. These asso-
ciations may be explained by DNA methylation changes
in response to these early-life exposures that lead to liver
fat development [5, 19].

Among adults, it has been demonstrated that differential
DNA methylation is present in liver biopsy samples of
adults with non-alcoholic fatty liver disease [8, 13—15, 20].
All these studies used liver histology, the current gold
standard for diagnosing non-alcoholic fatty liver disease
[2, 5]. As a consequence, these studies are limited by small
sample sizes, histologically heterogeneous groups varying
in the severity of the non-alcoholic fatty liver disease,
older study populations, wide BMI ranges, and having
only few or no healthy controls. None of these reports
controlled for cell heterogeneity in their analyses. A recent
meta-analysis of four multiethnic population-based cohort
studies in adults showed that DNA methylation at 22
CpGs in peripheral blood was associated with non-
alcoholic fatty liver disease diagnosed with either com-
puted tomography or ultrasound imaging (FDR < 0.05)
[6]. In this study, in newborns and 10-year-old children
we did not observe differential DNA methylation at single
CpGs or differentially methylated regions in cord blood or
child peripheral blood in association with MRI diagnosed
liver fat accumulation in 10-year-old children. The associ-
ations of the 22 CpGs identified in adults could also not
be replicated in children [6]. It is possible that small, but
potentially biologically important DNA methylation differ-
ences may be associated with liver fat accumulation in
children. These differences would be difficult to detect in
the moderate sample size of the current study. Besides
this, the variability in liver fat accumulation in this popula-
tion of children was relatively small, which may also partly
explain the lack of identified associations. In addition, our
study population is a relatively lean population. Associa-
tions of DNA methylation with liver fat accumulation may
be more apparent among higher-risk populations, as ob-
served in adult studies [8, 13—15, 20]. Another possibility
is that DNA methylation truly is not associated with liver
fat accumulation in children. As has been suggested for
phenotypes such as obesity, differential DNA methylation
may be mostly a consequence rather than a cause of liver
fat accumulation. If that is indeed the case, then the dur-
ation of exposure to increased liver fat in this population
of 10-year-old children may not have been sufficient to in-
duce differential DNA methylation [21].

The present population-based study is the first to
examine the association of differential DNA methylation
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with liver fat fraction measured with MRI in children.
Although the hypothesis of early-life factors contributing
to the development of liver fat accumulation through
DNA methylation cannot be completely discarded based
on this study, we found no evidence to support associa-
tions of differential DNA methylation in newborns or
children with liver fat accumulation at 10 years. Future
studies should investigate in large longitudinal studies
the associations of differential DNA methylation with
liver fat accumulation in children.

Methodological considerations

The strengths of this study are the prospective and
cross-sectional analyses with information on DNA
methylation at two ages. We used a sensitive imaging-
based method to enable non-invasive measurement of
liver fat [22, 23]. Although our sample size is relatively
large for epigenome-wide analyses, it might still be too
small to detect more minor effect sizes [8, 13—-15]. We
identified no Bonferonni or FDR significant associations
for differential DNA methylation in cord blood and in
child peripheral blood at 10 years to be associated with
liver fat accumulation in childhood. Therefore, the path-
way analyses based on the annotated genes of the CpG
probes with p values < 1.0 x 107 need to be carefully
interpreted. Many of the enriched pathways are based
on a relatively low number of genes. As such, the results
of the pathway analysis should be considered exploratory
and need further confirmation. To the best of our know-
ledge, similar data on DNA methylation and MRI-
measured liver fat accumulation in children are not cur-
rently available elsewhere. DNA methylation was mea-
sured in blood, which may differ from DNA methylation
in liver cells. The relatively small number of children
with obesity in the included sample indicates a selection
towards a lean population that may affect the
generalizability of our findings.

Conclusions

DNA methylation at birth and in childhood was not as-
sociated with liver fat accumulation in 10-year-old chil-
dren in this study. This may be due to modest sample
sizes or DNA methylation changes being a consequence
rather than a determinant of liver fat. Future studies
should investigate in large longitudinal studies the asso-
ciations and timing of differential DNA methylation with
liver phenotypes in children.

Methods

Study design

This study was embedded in the Generation R Study, a
population-based prospective cohort from early fetal life
onwards, based in Rotterdam, the Netherlands [24]. The
study has been approved by the Medical Ethical Committee
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of the Erasmus MC, University Medical Center Rotterdam
(MEC 198.782/2001/31). Written informed consent was
obtained for all participants [24]. All 9778 participating
live-born children were born between April 2002 and Janu-
ary 2006. DNA methylation was measured in a randomly
selected European-ancestry subset of 1396 newborns and
464 10-year-old children. The liver fat MRI measurements
were performed in a subgroup of children at age 10 years.
We excluded children without complete data on liver fat
fraction and covariates. The population for analysis of this
study comprised 785 newborns and 344 10-year-old chil-
dren (Fig. 1).

DNA methylation

DNA was extracted from cord blood and whole peripheral
blood at 10 years using the salting-out method. Five hun-
dred nanograms of DNA per sample underwent bisulfite
conversion using the EZ-96 DNA Methylation kit (Shal-
low) (Zymo Research Corporation, Irvine, CA, USA).
Samples were plated randomly onto 96-well plates. Sam-
ples were processed with the Illumina Infinium Human-
Methylation450 (450k) BeadChip (Illumina Inc., San
Diego, CA, USA). Quality control of analyzed samples was
performed using standardized criteria. Quality control and
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normalization of the HumanMethylation450 BeadChip
array data was performed according to the Control Probe
Adjustment and reduction of global CORrelation (CPA-
COR) workflow using R [25, 26]. Probes that had a detec-
tion p value > 1E- 16 were set to missing per array. Next,
the intensity values were quantile normalized for each of
the six probe-type categories separately: type II red/green,
type I methylated red/green, and type I unmethylated red/
green. Beta values were calculated as the proportion of
methylated intensity value to the sum of methylated and
unmethylated intensities plus 100. Arrays with observed
technical problems such as failed bisulfite conversion,
hybridization or extension, as well as arrays with a sex
mismatch were removed from subsequent analyses.
Additionally, only arrays with a call rate >95% per
sample were processed further. Probes on the X and
Y chromosomes were excluded from the analyses.
The final datasets contained 457,774 probes in the
newborn dataset and 458,563 probes in the 10-year-
old dataset. For all CpGs and differentially methylated
regions, the official gene name of the nearest gene
was noted using Illumina’s annotation information
and we enhanced the annotation provided by Illumina
with the UCSC Genome Browser build hgl9 [27, 28].

-

Newborns with DNA methylation

n= 1396

10-year-old children with DNA methylation

n = 464

|<7

A4

n =7 excluded siblings

4>| n = 2 excluded siblings

\4

n = 1389 cord blood

Singleton children in DNA methylation subgroup

n = 462 10-year-old blood

n =529 excluded due to no
data on liver fat fraction

A4

n = 91 excluded due to no data
on liver fat fraction

A\ 4

A4

fraction at 10 years

n = 860 cord blood

Children with information available on liver fat

n = 371 10-year-old blood

n = 75 excluded due to missing
data on covariates

| n =27 excluded due to missing
| data on covariates

v n = 5 education

n = 1 early-pregnancy BMI v

n = 10 education

n = 785 cord blood
n = 63 smoking

Children included in the population for analysis

n = 344 10-year-old blood

n = 22 smoking

Fig. 1 Study participants flow chart
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Liver fat fraction at 10 years

We measured liver fat using a 3.0 Tesla MRI (Discovery
MR750w, GE Healthcare, Milwaukee, WI, USA) [1, 22—24].
The children wore light clothing without metal objects
while undergoing the body scan. A liver fat scan was per-
formed using a single-breath-hold, 3D volume and a special
3-point proton density-weighted Dixon technique (IDEAL
IQ) for generating a precise liver fat fraction image [29].
The IDEAL IQ scan is based on a carefully tuned 6-echo
echo-planar imaging acquisition. The obtained fat-fraction
maps were subsequently analyzed by the Precision Image
Analysis (PIA, Kirkland, WA, USA) using the sliceOmatic
(TomoVision, Magog, QC, CAN) software package. All ex-
traneous structures and any image artifacts were removed
manually [30]. The liver fat fraction was measured inde-
pendent of any outcome, determined by taking four sam-
ples of at least 4 cm® from the central portion of the
hepatic volume. Subsequently, the mean signal intensities
were averaged to generate an overall mean liver fat fraction
estimation. Liver fat fraction measured with IDEAL IQ
using MRI is reproducible, highly precise, and validated in
adults [31, 32]. As previously described, non-alcoholic fatty
liver disease was defined as liver fat fraction >5.0%
[1, 32, 33]. We studied liver fat accumulation across
the full spectrum as our primary objective. As the
secondary objective, we dichotomized liver fat into
low, <2.0%, and high, >2.0%, liver fat accumulation.
This cutoff was based on the median in our popula-
tion and on previous work from our group describing
that liver fat accumulation above 2.0% is already asso-
ciated with an increased cardio-metabolic risk profile
in children [34]. Due to the lower numbers of cases,
we could not dichotomize liver fat accumulation
based on the clinical cutoff of > 5.0%.

Covariates

At enrolment in the study, information on maternal age
and educational level was obtained by questionnaires.
Maternal smoking during pregnancy was assessed by
questionnaires in pregnancy. We measured maternal
height and weight at enrolment to calculate early-
pregnancy BMI [35]. Information on gestational age at
birth, child sex, and age at 10 years visit was obtained
from medical records. We measured height and weight
in the children, without shoes and heavy clothing. Child-
hood BMI was calculated and sex- and age-adjusted
childhood BMI standard deviation scores were calcu-
lated (Growth Analyzer 4.0, Dutch Growth Research
Foundation) [36].

Look-up study of adult CpGs associated with liver fat

We examined in our data the associations of the 22
CpGs known from previous literature to be associated
with liver fat accumulation in adults with liver fat
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accumulation in children [6]. A Bonferroni corrected p
value <0.05/22 = 2.3 x 107> was used to define signifi-
cance. We also evaluated whether the 22 CpGs were
enriched among CpGs with a p < 0.05 in our results
using a hypergeometric test.

Genes previously associated with liver fat

We assessed the number of nominally significant sin-
gle CpGs from our analyses that were located within
a 4 Mb window (+2 Mb) surrounding the 9 SNPs
identified in 2 previous genome-wide association
studies (GWAS) of liver fat accumulation in adoles-
cents and adults of European descent [16, 17]. With
a hypergeometric test, we calculated enrichment of
the CpGs surrounding the 9 SNPs among CpGs with
a p < 0.05 in our results.

Pathway analysis

To identify biological processes associated with the genes
annotated to the CpG probes with p values <1.0 x 10™*
identified in cord blood and in child peripheral blood at
10 years associated with liver fat accumulation, we used
the DAVID version 6.8 released October 2016 bioinfor-
matics resource to test for enrichment in GO biological
processes and KEGG pathways [37]. The online program
epigenetic Functional element Overlap analysis of the Re-
sults of Genome-Wide Association Study Experiments
(eFORGE) was used to examine enrichment for DNAse
hypersensitivity site enrichment among the most signifi-
cantly associated CpGs in both cord blood and in child
peripheral blood at 10 years [38].

Statistical analysis

First, non-response analysis was conducted among
singleton children with DNA methylation data, and with
or without complete data on liver fat and covariates
available, using Student’s ¢ tests, Mann-Whitney tests,
and chi-square tests. Second, we used robust linear re-
gression models to assess the associations of DNA
methylation in cord blood and in whole peripheral blood
at 10 years with liver fat fraction as a continuous meas-
ure in 10-year-old children [26]. The analyses were per-
formed in three models, namely, a basic model (adjusted
for gestational age at birth, child sex, cell type propor-
tions, and batch), a main model (additionally adjusted
for maternal age, education level, early-pregnancy BMI,
and smoking), and a childhood BMI model (additionally
adjusted for childhood BMI at 10 years). The statistical
models for DNA methylation measured in 10-year-old
children were the same, with the only difference that
they were adjusted for child age at the time of measure-
ment instead of gestational age at birth. We adjusted for
leukocyte subtypes using the cord blood-specific Gervin
reference for the cord blood analyses and the Reinius
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reference set for the analyses at 10 years using the minfi
Bioconductor package in R [39-42]. Included covariates
were based on previous studies and strong correlations
with DNA methylation and liver fat [2, 6]. Since the out-
come of liver fat had a skewed distribution, it was nat-
ural log-transformed. Multiple testing was accounted for
using Bonferroni correction, with CpGs with a p value <
1.0 x 1077 considered significant. Additionally, we
planned to report results using FDR correction for mul-
tiple testing, using the method by Benjamini and Hoch-
berg [43]. Third, we identified differentially methylated
regions using the dmrff package (https://github.com/per
ishky/dmrff), which identifies differentially methylated
regions by combining EWAS summary statistics from
nearby CpGs [44]. Significant differentially methylated
regions were defined based on the following criteria:
(1) within one differentially methylated region, the
distance between two neighboring probes can be at
most 500 base pairs; (2) the regions have nominal
EWAS p values <0.05, and (3) EWAS effect estimates
for the individual CpGs in a differentially methylated
regions have the same direction. All analyses were
performed using R version 3.4.3 [26]. All authors had
access to the study data and reviewed and approved
the final manuscript.
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