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Abstract

Background: It is widely accepted that genomic instability is associated with several mechanisms involving
oxidative stress, which can increase the rate of DNA breaks. Such factors include smoking, impairments in body
composition, an unhealthy lifestyle, and a hereditary history of cancer. The aim was to evaluate the degree of
association of genomic instability in smokers and non-smokers, and how the risk could change depending on the
lifestyle and other causes. For this purpose, a survey of tobacco consumption, dietary patterns, physical activity,
antecedents of cancer, and body composition assessment was carried out. Genomic instability was evaluated
through a single-cell gel electrophoresis using peripheral blood mononuclear cells in three different conditions of
oxidative stress. The analysis of genomic damage degree was performed through a dimension reduction procedure
(principal component analysis) from 16 parameters per treatment (adding up 48 parameters of genomic damage
per subject) and a binary logistic regression model for DNA fragmentation risk.

Results: The sample consisted of 82 participants, divided into three age groups: young adults (18–35 years), adults
(36–59 years), and older adults (60–95 years). As expected, the results showed a significant positive correlation of
age with genomic damage rates, represented by 2 PCA groups (p = 0.027, p = 0.004). There were consistent
significant positive associations of genomic damage rates with smoking index and three PCA groups (p = 0.007, p =
0.004, p = 0.009). The smoking status and age group analysis revealed that there were significant differences for
adult smokers with the same aforementioned PCA groups (p = 0.002, p = 0.001, p = 0.010). In addition, higher DNA
damage rates were found in subjects with incorrect diet patterns, long sitting hours, and previous exposure to
radiation. The analysis with binary logistic regression displayed two models in which lifestyles (age, diet, and/or
sedentarism) did not change the significance of smoking index for DNA fragmentation risk; however, when physical
activity was present in the model, the smoking index was not a significant factor for DNA damage risk.

Conclusions: Although it is well known that smoking affects human health in different ways, DNA fragmentation
can be analyzed by a damage phenotypic analysis and integrate a risk analysis reshaped by diet and lifestyle in
general.
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Background
The global tobacco epidemic is responsible for more than
seven million deaths each year. The World Health
Organization (WHO) has proposed specific measures for
every country to protect their population from this threat,
which is one of the biggest single preventable causes of
death [1]. Nowadays, it is widely accepted that smoking
produces obstructive lung disease, predisposes to respira-
tory tract infections, and increases the risk of neoplasms
in the airway and other peripheral tissues (tongue, colon,
cervix, etc.) [2]. In spite of this, and public institutions’ ef-
forts to ban the consumption of cigarettes in public
spaces, the rates of smoking have not decreased and, par-
ticularly, in Mexico, the smoking rate reaches 17.6% of the
population. Even more alarming is that 98.4% of smokers
are conscious about the harmful (and potentially fatal)
consequences of this habit [3]. It is noteworthy to mention
that smoking is one of the six modifiable factors in the
“25 × 25 program” which, by 2025, aims to reduce non-
communicable disease mortality by 25% from the levels
reached in 2010. This includes cardiovascular disease,
chronic respiratory diseases, cancers, and diabetes [4].
The association of smoking and genomic damage has

been explored previously, identifying a connection with
some specific compounds present in different type of
cigarettes [5], as well as different types of tobacco [6].
However, the clinical importance of this connection
(smoking and DNA damage) is still a topic of ongoing
research. On the other hand, it has been proposed that
epigenetic alterations could explain many of the mani-
festations of the deleterious effects of smoking, even at a
metabolic level, with changes, for example, in the adi-
pose tissue [7]. These epigenetic changes may arise from
inheritance and lifestyle factors (nutrition, physical activ-
ity, addictions). The single cell gel electrophoresis
(SCGE) or comet assay is a technique that provides a
rapid analysis and is recognized as a sensitive bio-
indicator of genomic damage [8]. This assay has proven
to be useful throughout the years in the study of geno-
toxic effects of pollutants, pesticides, and other sub-
stances either in animal or plant cells/tissues [9]. SCGE
has been used in clinical setting to investigate the exist-
ence of concurrent genomic damage in different illnesses
(asthma, cervical dysplasia, diabetes mellitus type 2, mal-
nutrition, infectious diseases, among others) [10] and to
screen the extent of damage caused by chemotherapeu-
tic agents [11]. As for studying the habit of smoking,
SCGE has been used to demonstrate genomic instability
(DNA damage) attributable to cigarette smoking, but
there have been inconsistencies in the reported results,
as they generally vary depending on the score method-
ology used to grade genome fragmentation [12].
In Mexico, there are very few studies specifically dedi-

cated to analyzing the genomic damage of smoking; we

only found four of them that have taken a history of
smoking into account. Two of those [13, 14] were related
to the use of pesticides and its association with genotoxi-
city, where smoking was included as a possible confound-
ing variable. None of them found a significant association
either with micronuclei assay (another procedure for
phenotypic study of genomic instability) or with SCGE.
The other two studies explored the direct connection be-
tween smoking and genomic damage in buccal cells using
SCGE, with a small sample size (n = 20) [15] and micronu-
clei frequency in lymphocytes [16], with significant and
non-significant results for association to smoking,
respectively.
In the present investigation, we aimed to evaluate gen-

omic damage in peripheral blood mononuclear cells
(PBMCs), in terms of basal DNA damage and oxidative
stress-induced damage (H2O2 treatment), using image
analysis for SCGE, in current and former smokers, as
well as non-smokers. The analysis also included those
factors that could exert some epigenetic regulation, like
diet, exercise, nutritional status, lifestyle habits, and a
family history of cancer. In order to make the analysis of
genomic damage more inclusive, we integrated a princi-
pal component analysis procedure (PCA) and a model of
binary logistic regression with the aforementioned vari-
ables. We hypothesized that genomic instability caused
by smoking is epigenetically regulated by other factors
that modify the extent of the damage.

Results
Study design
Data in this study were drawn from a sample of 82 vol-
unteer participants, aged 18–95 years old. The sample
was divided into three age categories and defined as fol-
lows: young adults (18 to 35 years), adults (36 to 59
years), and older adults (60 years and older).
The groups were composed of 26, 32, and 24 partici-

pants, respectively. All of them were interviewed and re-
quested to sign the informed consent form.
Once the form was completed, the subjects were asked to

answer a specially designed questionnaire, composed of five
domains: smoking history, diet, physical activity, family his-
tory of cancer, and miscellaneous data. Also, the nutritional
status and body composition were recorded. To analyze
genomic damage, a venous blood sample was collected and
processed immediately. Our sample was composed of about
half being smokers (n = 39) and half being non-smokers
(n = 43). Furthermore, the smoker group was split into
current smokers and former smokers (Table 1).
The OpenComet software retrieved 16 parameters per

treatment (control, 5% and 10% of H2O2) to add up 48
variables of genomic damage per case.
A dimension reduction was carried out with a PCA

procedure, obtaining scores (coefficients) that were
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used to perform all the comparisons and correlations.
The PCA procedure subsequently loaded into the fol-
lowing genomic damage indexes: comet, head, and
tail, with corresponding treatment groups: control, 5%
(T5) and 10% (T10) of H2O2. The analysis is de-
scribed for age, each surveyed domain, and body
composition.

Genotoxicity and age
Two PCA groups showed positive statistically significant
correlations for age and DNA damage: comet T10
(r = .246, p = 0.027) and tail T5-T10 (r = .313, p = 0.004)
(Fig. 1a).
One-way ANOVA with subsequent post hoc t tests

among the different groups confirmed differences within
the age group categories. Two PCA groups (comet T10
and tail T10) showed a higher significant difference (p =
0.034, p = 0.041, respectively) between older adults ver-
sus young adults (Fig. 1b).

Genotoxicity and smoking
The relationship between smoking (determined by the
smoking index) and genomic instability was assessed by
Spearman correlation. There was a statistically significant,
positive correlation between the smoking index and the
following PCA score groups: comet C-T5-T10 (r = .299,
p = 0.007), head C-T5 (r = .318, p = 0.004), and tail C-T5-
T10 (r = .287, p = 0.009) (Fig. 2a). Outliers were detected
with Cook’s distance analyses, using the 4/n approach
[17]. After taking them out, the correlation examination
still resulted significantly; therefore, the whole real data
were kept and are presented in the corresponding graph.
Independent samples t test confirmed significant differ-

ences in genomic instability between the groups of smokers
and non-smokers in the comet C-T5-T10, head C-T5, and
tail C-T5-T10 PCA groups (p = 0.002, p= 0.001, p= 0.010,
respectively) with higher scores for smokers (Fig. 2b).
A PCA group (head C-T5-T10) mean score was signifi-

cantly different for the three smoking category groups
defined as former smokers, current smokers, and non-
smokers. Greater DNA damage was found in former and
current smokers compared to non-smokers (p = 0.020,
p = 0.025, respectively) (Fig. 2c). Regarding age and smok-
ing group, we ran an analysis for 6 groups (three age
groups, subdivided into smokers and non-smokers each).
The greatest difference lied on the adult category for the
same three PCA mean score groups observed in smoker
vs non-smoker comparison (p = 0.035, p = 0.016, p =
0.025) (Fig. 2d). We did not find significant differences in
PCA scores between the groups of non-smoker young
adults or non-smoker older adults versus their counter-
parts for the same age group. Notwithstanding, in the case
of younger adults when individual parameters (non-PCA
scores) were scrutinized, we found significant differences
for two single components: comet intensity (p = 0.049)
and head intensity (p = 0.023).

Genotoxicity and lifestyle
Diet
Correlation analysis revealed that there was a significant
positive association with the consumption of alcohol, en-
ergy drinks, and milk (higher frequency, higher genomic

Table 1 Characteristics of the study population

Smokers Non-smokers Total

Current
smokers

Former
smokers

Participants (%) 22
(26.8%)

17
(20.7%)

43
(52.4%)

82
(100%)

Men (%) 12
(14.6%)

11
(13.4%)

12
(14.6%)

35
(42.7%)

Women (%) 10
(12.2%)

6
(7.3%)

31
(37.8%)

47
(57.3%)

Age mean 40.6 55.3 47.2 47.1

(95% CI) (31–50.2) (45–65.6) (41–53.4)
(42.5–51.7)

Range 18–89 19–95 18–93 18–95

Age

Young adults group
(18–35 years)

11
(13.4%)

3
(3.7%)

12
(14.6%)

26
(32%)

Adults group 2
(36–59 years)

6
(7.3%)

7
(8.5%)

19
(23.2%)

32
(39%)

Older adults group 3
(60–95 years)

5
(6%)

7
(8.5%)

12
(14.6%)

24
(29%)

BMI

Normal 6
(7.3%)

6
(7.3%)

9
(11%)

21
(25.6%)

Overweight 10
(12.2%)

7
(8.5%)

19
(23.2%)

36
(43.9%)

Obesity 6
(7.3%)

4
(4.9%)

15
(18.3%)

25
(30.5%)

Passive smokers N/A 7
(8.5%)

8
(9.7%)

15
(18.2%)

Non-passive N/A 10
(12.2%)

35
(42.6%)

45
(54.8%)

Diet

Correct 9
(11%)

10
(12.2%)

30
(36.6%)

49
(59.8%)

Incorrect 13
(15.8%)

7 (8.5%) 13
(15.8%)

33
(40.2%)

Regular exercise 14
(17%)

11
(13.4%)

35
(42.6%)

60
(73%)

Family history of
cancer (grandparents)

4
(4.9%)

5 (6%) 16
(19.5%)

25
(30.4%)

Family history of
cancer (parents)

5
(6%)

4 (4.9%) 10
(12.2%)

19
(23.1%)

Data are presented as the number and percentage of participants; age is the
mean and corresponding confidence intervals. 95% CI = 95%
confidence interval
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damage). On the other side, the foods that showed nega-
tive correlations were coffee, tea, sweeteners, tortillas,
and nuts (Table 2).
An independent sample t test was used to compare

the means of PCA scores between correct and incorrect
diets. The latter classification was integrated as recom-
mended by Official Mexican Standard (NOM-043) [18].
The PCA group that exhibited significant differences
corresponded to head C-T5, with higher rates of gen-
omic damage displayed in the incorrect diet category
(p = 0.023) (Fig. 3).

Exercise
For this analysis, we classified the participants according
to the level of physical activity they declared as stated by
the International Physical Activity Questionnaire (IPAQ)
[13]. The comparison of means showed higher scores in
tail T10 for those participants that do not exercise in
contrast to those that exercise regularly (p = 0.019)
(Fig. 4a). As for the individual correlations, mild physical
activity (i.e., walking with moderate pace) demonstrated
a significant negative correlation with genomic instability
rates: PCA head C group (r = − .270, p = 0.015) and PCA
tail T10 (r = − .346, p = 0.002) (Fig. 4b). A small number
of subjects who were classified under the intense

physical activity category showed a positive significant
correlation with PCA comet C-T5-T10 (r = .224, p =
0.045) and PCA tail C-T5-T10 (r = .245, p = 0.027).

Inactivity
Inactivity was surveyed as the average time spent sitting
in hours throughout the day, and, interestingly, it dis-
played significant positive correlations with 3 PCA group
scores: comet C (r = .227, p = 0.041), comet T5 (r = .260,
p = 0.019), head C (r = 0.271, p = 0.014), and tail T10
(r = .221, p = 0.046) (Fig. 5).

Sleeping hours
We found a negative correlation between hours sleeping
(at night) and two PCA groups: comet T5 (r = − .279,
p = 0.012) and head T5 (r = − .320, p = 0.004), indicating
an inverse relationship between sleeping time and gen-
omic damage; that is to say the more time spent sleep-
ing, the less genomic damage there is.

Genotoxicity and family history of the disease
A comparison was completed to determine whether
there were differences in genomic instability between
the participants with a family history of cancer and those
without any antecedent. Although no significant

Fig. 1 DNA damage and age. a PCA group involving body comet (green squares) (r = .246, p = 0.027), and PCA group related to Tail length (red
circles) (r = .313, p = 0.004), displayed positive significant correlation with age. b DNA damage was higher in older adults. Two PCA groups (comet,
p = 0.034 and tail, p = 0.041), exhibited higher significant rates of DNA fragmentation in older adults (orange bars) group when compared with
young adults (blue bars). Adults (age middle group, green bars) did not show any significant differences with the rest of the groups
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differences were found for the established PCA groups,
there were some single parameters that displayed more
damage when at least one grandparent had been diag-
nosed with cancer (comet tail DNA, p = 0.040; comet tail
moment, p = 0.035; comet olive moment, p = 0.033).

Genotoxicity and body composition
No significant results were observed when analyzing
body mass index, muscle mass, fat percentage, hip, and
waist girths. However, the arm girth showed moderate
positive correlations with two PCA groups: head C-T5-
T10 and head C-T5 (r = .262, p = 0.043, and r = .267, p =
0.040, respectively).

Regarding body composition, an interesting finding
was the fact that non-smokers had a higher fat percent-
age than current smokers (p = 0.026) and former
smokers (p = 0.015), using either the bioimpedance ana-
lysis or the relative fat mass (RFM) equation [19].

Genotoxicity and radiation
A comparison was performed to determine whether re-
cent exposure to radiation, in terms of X-ray affected
genomic instability. We found higher rates of damage in
participants who were exposed in a group of PCA,
comet C (p = 0.009).

Fig. 2 DNA damage and smoking. a Three PCA groups involving comet (blue diamonds), head (green squares), and tail (orange triangles)
showed direct significant correlation with smoking index (r = .299, p = 0.007; r = .318, p = 0.004; and r = .287, p = 0.009, respectively). b Group
comparison showing higher rates of DNA damage in smokers group (green bars); the three combined PCA that displayed significant differences
(p ≤ 0.01) were the same for smoking index: comet, head, and tail (p = 0.002, p = 0.001, p = 0.010). c Former and current smokers had higher DNA
damage rates represented by one group of PCA (head), p < 0.03 when compared to never smoker group. d Adult smokers (green bars) displayed
higher DNA damage in three combined PCA groups (comet, head, tail) compared to their counterparts, non-smokers (blue bars), p = 0.035, p =
0.016, p = 0.025, respectively
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Binomial logistic regression models
A binomial logistic regression analysis was performed to
investigate whether or not the smoking index remained a
significant predictor of the genomic damage when other
factors were added to the model. To integrate “high”

damage or “low” damage categories, we used a K-means
cluster procedure in which all the comet parameters were
analyzed and clustered into two categories. Three models
were analyzed, in which the independent variables in-
cluded age, diet, and exercise (Table 3). Two models
showed that the smoking index was still a significant pre-
dictor (OR = 1.068, 95% CI 1.001–1.039; OR = 1.095, 95%
CI 1.013–1.183) when inactivity was taken into account.
The model 2 also showed that mild physical activity might
indeed be significant for the less fragmentation outcome
(OR = 0.993, 95% CI .987–.999). However, in the third
model, where the categorical variable “exercise or not-
exercise” was present, the smoking index was not found to
be a significant predictor of damage indicating that smok-
ing can be modulated by modifiable lifestyle factors like
exercise. The models were tested for interactions between
the significant terms, but no statistical significance was
reached, indicating that predicted probabilities for gen-
omic damage were dependent on the individual covariates
included in the models.
The comparison of the empty model (M0) against

model 1 (M1), model 2 (M2), and model 3 (M3) revealed
significant differences and notable improvements of the
model. Also, there were significant differences between
models (Table 4), except for M1 versus M3.

Discussion
With the assumption that genomic instability is one of
the factors that trigger various types of cancer and other
chronic diseases, we have designed a comprehensive
analysis of the levels of genomic stability in a sample of

Table 2 Correlation coefficient: food versus PCA score groups

Food Correlation coefficienta p PCA group

Negative
correlations

Coffee − .269 0.015 Comet C

− .238 0.032 Comet C-T10

− .241 0.031 Tail C

Tea − .244 0.028 Comet T5-T10

− .226 0.043 Head T5

− .236 0.034 Head T10

Sweeteners − .259 0.020 Comet T5

Tortillas − .235 0.036 Comet C

− .234 0.036 Head C

− .226 0.044 Head C-T5

Nuts − .248 0.026 Tail T10

Positive
correlations

Energizing
drinks

.244 0.028 Comet C

Alcohol .263 0.018 Head C-T5

Milk .227 0.041 Comet T10
aCorrelation was analyzed using two tails, Spearman, and weekly frequency
consumption versus PCA scores

Fig. 3 DNA damage and diet pattern. Subjects who were classified as having a “correct” diet, had decreased genomic damage as assessed by a
head PCA group, p = 0.023
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smokers and non-smokers, with their corresponding as-
sessment of anthropometry, lifestyle, and family history.
Although it has been widely documented and accepted that
smoking causes genomic damage, there have also been con-
flicting results when the assays include a phenotypic analysis,
in which the extent of the damage is measurable visually.
SCGE is a technique which is low cost and sensitive;

however, the published results related to smoking have,
sometimes, not confirmed the damage in a convincing man-
ner. Some authors [20, 21] state that the lack of agreement
upon the methodology is the main cause of variations in the
results; in addition, most use only around 3 to 5 parameters
when scoring genome instability, this is in contrast to our
use of 16 variables added to the PCA procedure.

Fig. 4 DNA damage and exercise. a Significant differences were observed between subjects who exercise versus those who do not exercise, with
higher genomic damage (PCA tail group) for the latter, p = 0.019. b Mild physical activity time correlated significantly, inversely, with two PCA
groups, head (blue diamonds) (r = − .270, p = 0.015) and tail (orange squares) (r = − .346, p = 0.002)

Fig. 5 DNA damage and inactivity (sitting hours). Genomic damage was correlated significantly directly with 4 PCA group scores: comet C (blue
diamonds) (r = .227, p = 0.041), comet T5 (red squares) (r = .260, p = 0.019), head C (green triangles) (r = 0.271, p = 0.014), and tail T10 (gray circles)
(r = .221, p = 0.046)
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In the present study, we used those 16 parameters,
and three treatments to add up to 48 measurements per
participant, as retrieved from the image analysis open
source, namely OpenComet [22]. In order to not discard
any of the parameters arbitrarily, we undertook a PCA
procedure for dimension reduction to integrate groups
that load in one or combined categories of genomic in-
stability. We refer to the latter as the fact that the score
(coefficient or parameter) reported by the output of
OpenComet is proportional to the damage. In other
words, as the score increases (either for the whole comet
body, comet head, or comet tail), the damage also in-
creases (the greater the DNA fragmentation, the greater
the scores for sizes and intensities) [23]. We assumed

that the controversies reported were due to the fact that
some variables may not have been taken into account.
That prompted us to, systematically, include other as-
pects that can modify the outcome for genomic instabil-
ity and analyze the variables in an individual manner
(bivariate correlations and group comparisons) for age,
smoking index, lifestyle (diet, exercise, inactivity), dietary
pattern, and body composition with PCA groups. Also,
according to our hypothesis, we confirmed that the asso-
ciation between genomic instability and smoking could
be modulated and smoking index loses its predictive
value when those co-variables were included in a model
of logistic regression.
We will discuss every analyzed variable and the results

obtained with genomic damage scores, as well as the re-
sults of logistic regression models.
In the first place, our results consistently showed a sig-

nificant positive association between smoking index and
some PCA groups. In this regard, some studies have
failed to find a significant difference between smokers
and non-smokers using SCGE or significant association
dependent on the score methods [12, 24]. On the other
hand, some others have concluded that smoking can
cause DNA instability when analyzed on peripheral
blood cells as measured by the comet assay [21, 25]. We

Table 3 Binary logistic regression models

Model Variables Odds ratio 95% CI p value

1. Omnibus test of
model coefficients: 0.040
Hosmer-Lemeshow test: .910

Smoking index 1.068 1.001–1.139 0.046

Age group (young adults)a

Age group (adults) 0.403 0.115–1.419 0.157

Age group (older adults) 1.095 0.306–3.912 0.889

Diet pattern (correct vs incorrect) 1.351 0.470–3.889 0.576

Intercept .694 0.409

2. Omnibus test of
model coefficients: 0.008
Hosmer-Lemeshow test: .345

Smoking index 1.095 1.013–1.183 0.023

Age group (young adults)a

Age group (adults) 0.312 0.076–1.281 0.106

Age group (older adults) 0.928 0.231–3.733 0.916

Diet pattern (correct vs incorrect) 1.862 0.588–5.896 0.290

Inactivity 0.939 0.812–1.085 0.393

Mild physical activity 0.993 0.987–.999 0.030

Intercept 1.295 .698

3. Omnibus test of
model coefficients: 0.034
Hosmer-Lemeshow test: .951

Smoking index 1.065 0.999–1.136 0.054

Age group (young adults)a

Age group (adults) 0.358 0.098–1.309 0.120

Age group (older adults) 0.961 0.260–3.547 0.952

Diet pattern (correct vs incorrect) 1.348 0.459–3.960 0.588

Physical activity or not 0.460 0.157–1.345 0.156

Intercept 1.334 0.653
aReference category for age group. Significant p values are shown in italics

Table 4 Comparison of binary logistic regression models

Comparison Likelihood-ratio test p value

M1 vs M0 9.82 0.043

M2 vs M0 17.67 0.007

M3 vs M0 11.41 0.044

M1 vs M2 7.85 0.020

M1 vs M3 1.59 0.207

M2 vs M3 6.26 0.012

Significant p values are shown in italics
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actually found a significant correlation with the smoking
index, which has indeed been reported to have an in-
volvement in the development of some diseases such as
chronic obstructive pulmonary disease and lung cancer.
The reports have established that high smoking indexes
were associated with a greater risk of contracting those
pathologies [26]. Nonetheless, it has been shown that
DNA damage can be reversible when people quit the
habit [27], and cessation can reduce all-cause mortality
up to 30% [28]. We have detected higher genomic dam-
age in former smokers than never smokers, and it has
been reported the identification of epigenetic modifica-
tion in those who quit for up to 22 years [29]. We dem-
onstrated, as expected, that DNA damage was associated
with age in agreement with other studies [30] which
have shown higher scores of comet assay parameters as
age increases. However, to our knowledge, this is the
first study to analyze the comet assay using PCA scores
and the smoking habits by age group.
An interesting outcome was the fact that the highest dif-

ferences of DNA damage were present in smoking adult
group vs non-smoking adult group, but no differences were
found in their younger or older counterparts. In this regard,
there is one study that did not show any significant differ-
ences between smokers and non-smokers within the same
age group of our younger adults [31]. Another study also
did not report any significant differences but the authors did
not specify the mean age of smokers and non-smokers, and
certainly, no older adults participated in the study [32].
These discrepancies, lead us to consider other factors that
could be influencing the outcomes of phenotypic analysis
for genomic damage, apart from the fact that it is known
that younger people have higher rates of DNA repair while
older people exhibit higher basal DNA damage [30]. Several
of those factors have been analyzed in some of the studies
previously mentioned and so have we in the present report.
In the case of physical activity, we found that those subjects
who did not perform any kind of workout exhibited higher
rates of genomic instability; moreover, a positive significant
relationship was observed with the number of hours spent
sitting (inactivity). Those findings agreed with other studies
showing that mild or moderate physical activity reduces the
risk of diseases [33] and sitting time increases the risk of
death, independently of physical activity [34]. We also found
that high-intensity workout is associated with greater in-
stability, as it has been demonstrated by others [35, 36].
Among other analyzed variables related to lifestyle, we found
less damage in people who reported more sleeping hours
(negative correlation). This association has been reported in
two studies with rat models [37, 38] specifically designed to
quantify the damage with SCGE and in a very recent study
in humans that used a different gene expression approach
[39]. In the case of genomic instability and some groups of
food, it is well known that dietary factors exert changes in

DNA, either protecting it or damaging it. In our case, coffee,
tea, sweeteners, tortillas, and nuts presented a negative asso-
ciation with genomic damage; in other words, less damage
was found. A note about sweeteners is the fact that this diet
component showed a significant positive correlation with
coffee consumption (r= .250, p= 0.024), which may partly
explain the inverse correlation with genomic damage. There
exists widely accepted evidence that coffee and tea are a rich
source of antioxidants and could contribute to lower the
DNA damage [40–42]. As for nuts, there is a publication
[43] that demonstrated some preventive effects on DNA
damage caused by smoking an assessed by SCGE. Mean-
while, for tortillas, we did not find any report other than the
fact that niacin enhances its bioavailability because of the
process that goes into the production of tortillas (alkali treat-
ment), so people who consume this food generally do not
have niacin deficiency [44].
Even though it has been postulated that being over-

weight (and obesity) is associated with an increased risk
for cancer, we only found a significant association with
arm girth and DNA damage. In this regard, there are
some contradictory findings from no significant associ-
ation of DNA repair capacity and weight loss [45] to an
increased level of DNA damage in tumor cells and
PBMC obtained from endometrial cancer associated
with BMI [46].
Precisely, in the latter paper, the authors also found

that DNA damage increases in volunteers with a family
history of cancer, the same as in our study. However, in
our case, we only found significant differences for indi-
vidual parameters (not in PCA groups) in participants
who said to have at least one grandparent who was diag-
nosed with any type of cancer.
Among other significant findings, we detected that

even small occasional exposure to radiation (X-ray)
was positively correlated with one group of PCA, the
fact that has been previously reported in radiology
personnel [47].
Finally, when we integrated the logistic models, the

smoking index was still associated to an increased risk of
pertaining to the high fragmentation group by around 7
to 9%, adjusted for age, diet, and inactivity; however,
when a category of exercise or not exercise was present,
the smoking index lost its significance. The models were
significantly different when compared to the baseline,
and the addition of the variables related to physical ac-
tivity showed significant improvements to the fit. How-
ever, no differences were found when mild physical
activity and inactivity were substituted for the categorical
presence or absence of exercise.
We believe that our study has strengths since we

used all the comet assay parameters, without choosing
only the ones which were significant but simplifying
the complexity in high-dimensional data while
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retaining trends and patterns, as the PCA procedure
implies.
We acknowledge that the correlation coefficient

reached a small, yet a significant effect size; however, the
bivariate analysis was performed with the scores of an
integrated multivariate analysis (PCA) in which all of the
parameters retrieved from SGCE image analysis were in-
cluded, and in most of the cases, more than one PCA
group displayed consistent results.
Among other factors, genomic instability might arise

from and intrinsic impairment of DNA repair systems [48],
and as it has been discussed previously, some lifestyle fac-
tors or environmental exacerbate the burden of chronic de-
generative diseases like diabetes or neurological diseases
[49, 50]. For the present study, we reckon that one of the
limitations was that we did not scrutinize the DNA repair
systems which are constantly active and receive influence
from various exogenous and endogenous signals that can
change the rate of damage. In connection with the exogen-
ous signal point, there is a review that evaluated 28 studies
in terms of DNA damage related to occupational and envir-
onmental exposure to miscellaneous chemicals, and 75% of
them showed some type of genomic damage, probably due
to a defective homeostasis of metal ion which can interfere
with DNA repair [51]. Prospectively, there should be more
designs in this regard to possibly perform again the PCA
system in bigger samples which is one of the most powerful
tools in the data analysis.
In general, even though SCGE is a cost-effective approach

to screen genomic damage, and it has been used widely in
many contexts, it still holds some limitations, which span
from developing technical skills and standardizing the
method in the laboratories to the statistical analysis. In the
first case, the preparations should be the cleanest possible
and the image analysis should be operated by a trained
technician that must be blinded to the nature of the speci-
men origin. A very carefully experimental plan should be
planned ahead to avoid time-consuming failures. Another
constraint regarding the use of the SCGE is the analysis of
the damage at a microscopic level, leaving the analysis at a
phenotypic evaluation. The statistical analysis can be an
issue; however, most of the outputs from the image analysis
software retrieve continuous data which are a valuable in-
put in parametric inferential statistics.

Conclusion
In conclusion, we evaluated genomic instability associ-
ated with smoking, and other lifestyle factors such as
diet, exercise, and age, using PCA scores to evaluate the
phenotypic analysis of damage and binomial logistic re-
gression analysis. The punctuation of genomic damage
could be incorporated into a risk predictor model that
takes into account the covariates that can modify the
predicted probability of smoking index for genomic

damage. The phenotypic analysis of detectable damage
by SCGE could be conditional of age group.

Methods
Study subjects
A sample size of 85 subjects aged 18–95 years was
selected for the study. The calculation for the sample
size was performed to obtain the minimum sample size,
following the procedure for determining whether a cor-
relation coefficient differs from zero. The assumptions
included a statistical power of 80% and an expected cor-
relation coefficient of 0.3 as a medium effect size [52].
Their participation was voluntary, and all of them pro-
vided written informed consent. However, 3 subjects
retired their consent, leaving 82 subjects with completed
tests. This sample size led to a still reasonable statistical
power of 78%. Our inclusion criteria were a minimum
age of 18 years old and have been residing in the Yuca-
tan Peninsula for at least a year. In addition, we defined
our sample to allow for two groups to form based on the
smoking habits, so we would have half of the partici-
pants classified as smokers and the other half as non-
smokers. The sampling strategy was as follows: after an
open call to participate, with a deadline, our sample was
selected from a list of registered volunteers and the final
participants were chosen using a systematic probabilistic
sampling.
We did not exclude participants based on whether

they had any disease, were under any medication, or
suffered any medical condition, as it was an open call
and we aimed to integrate a more representative sample.
At baseline, participants completed a comprehensive-
specific questionnaire (collecting information on socio-
demographic characteristics, lifestyle factors, and history
of major diseases among others). The ethics committee
of the School of Medicine at University Anahuac Mayab
approved the study (MED/066/17).

Questionnaire
The administered survey to each participant covered five
domains, namely smoking habits, nutrition, physical ac-
tivity, family history of cancer, and miscellaneous data.
The first domain explored the smoking status, in order

to define a categorical variable based on current or past
smoking habits. We defined non-smokers as those who
have never smoked and smokers who have smoked in
the past or are currently into smoking. We also deter-
mined the smoking index for each individual as a unit
for measuring cigarette consumption over a long period
in current and former smokers. It was calculated using
the following formula: smoking index = cigarettes
smoked per day multiplied by the smoking time in years
divided by 20. In this regard, the published literature re-
fers to this term as pack-years, [26]; however, there are
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some reports that mention this indicator as smoking
index [53, 54] as well as is denoted in that way in the
National Clinical Practice Guidelines (MEX) [55].
The nutritional aspect was explored through an

adapted CDC’s National Health and Nutrition Examin-
ation Survey (NHANES), which was applied to partici-
pants to examine their diet over the last 6 months [56].
Based on the collected information, a certified nutrition-
ist classified the dietary pattern of each participant as
“correct” or “incorrect” according to the NOM-043 [18].
In this document, a correct diet is described as
complete, balanced, innocuous, sufficient, varied, and ad-
equate. So, to qualify as a correct diet, the participant
must include the three food groups in every meal: fruits
and vegetables, legumes and food of animal origin, and
finally cereal, with adequate proportions.
Regarding physical activity, a modified IPAQ [13] was

applied to define the characteristics of the physical activity
for each participant. It classifies the type of exercise as in-
tense, moderate, or mild according to the frequency of ac-
tivity in terms of minutes of exercise per day and number
of exercise days per week. We also recorded hours of sleep
and inactivity (measured as hours spent sitting).
The fourth domain was designed to investigate whether

the participants had a family history of cancer, since it is
widely accepted that some genomic alterations have an
inherited component. We only considered parents and
grandparents for this variable that was categorically re-
corded as the presence or absence of history of cancer in
any of the aforementioned relatives.
We also registered other aspects (“miscellaneous” do-

main), in which we looked for information on the per-
sonal and family history of the disease (different from
cancer), exposure to radiation, passive smoking, expos-
ure to smoke other than cigar, prescribed drug con-
sumption, recreational drug use, and antioxidant
supplementation.

Body composition evaluation
Weight and height were measured to the nearest 100 g
and 0.1 cm, respectively, during a physical exam by
trained nutritionists according to strict standard operat-
ing procedures, using SECA 875 electronic scales (SECA,
UK) and SECA 217 stadiometer (SECA, UK). Addition-
ally, waist, hip, and arm girths were measured in centi-
meters with Gulick II Plus Tape Measure (Performance
Health, Chicago, USA). The body mass index was calcu-
lated with Quetelet’s formula [57]. A bioelectrical
impedance analysis was performed with a portable
device (InBody 270, Seoul, Korea) to determine water
content, muscle, and bone mass percentages. Addition-
ally, we used the recently RFM equation to estimate
whole-body fat percentage [19].

Determination of genomic instability
SCGE was used to detect DNA damage in white blood
cells and was performed as described previously [23].
Briefly, a peripheral blood sample was obtained from
each participant, layered onto a volume of histopaque,
and centrifuged according to the manufacturer’s recom-
mendations. After centrifugation, a volume of the PBMC
buffy coat was aspirated, washed, and resuspended with
phosphate-buffered saline. Cell count was performed
using an aliquot of diluted cells, using a hemocytometer.
The cell suspension was adjusted to a final dilution of
3 × 105 cells per milliliter and split for 3 treatments: one
with PBS as a control (C), the second, and third ones
were added 5% (T5) and 10% (T10) hydroxide peroxide
(H2O2) from a stock solution of 3%, to induce cell dam-
age (oxidation), so we had three different treatments for
each subject. The cells were treated for 20 min at 37 °C.
Then, each dilution was included in low melting point
agarose mini-gels and layered onto normal melting point
agarose-primed slides. Once the mini-gels dried out,
they were immersed in a lysis buffer to expose nuclear
material. Afterwards, alkaline electrophoresis was per-
formed at 25 V (constant) for 40 min (Thermo Scien-
tific™ Owl™ Horizontal Gel Electrophoresis System, MA,
USA). Finally, a neutralizing buffer was added and the
gels were stained with an intercalating agent (ethidium
bromide). The slides were scrutinized with fluorescence
microscopy (Zeiss Imager.A2, camera AxioCam Icc1,
Germany) to identify nuclear (DNA) damage. The image
analysis was carried out with specialized image acquisi-
tion software (ZEN 2 lite, blue edition) and to perform
the genomic damage measurements (OpenComet v1.3.1)
[22]. For each component of the image (head, comet
body, and tail), 16 parameters were analyzed and
retrieved by the software OpenComet, per treatment, be-
ing 48 parameters in total for each participant. In total,
we analyzed 82 biological samples. The technician who
analyzed the images was blinded on the characteristics
of the individual whose biological samples were under
study.

Statistical analysis
The analysis was carried out (using IBM® SPSS® Statis-
tics, v. 24 for Windows) with all of the 16 comet assay
parameters per cell suspension treatment (C, T5, T10),
to add up a total of 48 variables per participant. To
establish the internal consistency and the correlation be-
tween them, we ran a Cronbach’s alpha, which displayed
a value of 0.812. Moreover, we confirmed that the 48
variables exhibited a significant correlation (p < 0.05) be-
tween them, so we can state that a high value is coherent
with more damage, as detected with induced oxidation
level (T5 and T10).
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Every variable was tested for data distribution, and
normality was assessed with Shapiro-Wilk’s test [58].
However, because of the sample size, in the case of cor-
relation, two-sided Spearman correlation was applied.
For comparisons, if the testing variable showed a normal
distribution, we used independent samples t test or
ANOVA. If the distribution was non-normal, for two in-
dependent samples, we used Mann-Whitney U test, and
for more than two groups, we used Kruskal-Wallis test.

Principal component analysis
We performed a dimension reduction to integrate valid
patterns per treatment; therefore, we applied PCA and ro-
tation to derive genomic damage. A correlation matrix
was constructed to assess the correlation between gen-
omic damage. The Kaiser-Meyer-Olkin test (≥ 0.6) and
Bartlett’s test of sphericity (p value < 0.05) were applied to
verify whether the PCA assumptions were met [59]. Vari-
max rotation was applied to obtain orthogonal factors.
Genomic damage groups that showed factor loadings
greater than 0.3 were considered to have strong associa-
tions with that factor. The number of factors that best
represents the data was based on the screen plot and ei-
genvalues above 1.5. Genomic damage patterns were
named according to the segment of the comet retrieved
by the software, OpenComet, and the treatment under
scrutiny, that way the genomic damage parameters were
defined as comet, head, or tail, with their 3 treatments
each: control, 5% (T5), and 10% (T10) of H2O2 (from a
stock solution of 3%) for each segment. The PCA groups
are named individually (according to the part of the comet
and their treatment or as a combined score composed of
comet body, head, and tail in their different treatments).
Table 5 shows the nomenclature for each PCA group.

Binomial logistic regression
Firstly, we defined our dependent variable as “higher dam-
age” (higher fragmentation of nuclear content) or “lower
damage.” In order to do so, we used a K-means cluster
strategy, in which all of the 48 observations (per subject)
were input in order to find scores that cluster into two
groups: higher and lower damage. Afterwards, we con-
firmed that the comet assay parameters exhibited a signifi-
cant difference for the two groups (Table 4) with higher
scores for that group labeled as higher damage.
Secondly, our aim was to build a model to ascertain the

effects of smoking index, age, and lifestyle (diet, exercise,
inactivity) on the likelihood that participants have “higher”
genomic damage. From a K-means cluster analysis, we ob-
tained two different clusters, which we considered as the
dependent variable for the binomial logistic regression by
using the method “enter,” with the following predictor vari-
ables taken into account for each model: for model 1,
smoking index, age, and diet; for model 2, smoking index,

age, diet, inactivity, and mild physical activity; and for
model 3, smoking index, age, diet, and exercise or not. The
three models were statistically significant as follows: model
1, X2 (4) = 10.044, p = 0.040; model 2, X2 (6) = 17.451, p =
0.008; model 3, X2 (5) = 12.084, p = 0.034.
The models explained 15.6%, 25.9%, and 18.9% of the

variance in the class of higher damage, (based on Nagelk-
erke R2), for models 1, 2, and 3, respectively, and correctly
classified 63%, 67.9%, and 61.7% (models 1, 2, and 3, re-
spectively) of cases. No multicollinearity was detected in
any of the models using variance inflation factor and toler-
ance. This is none of the variables included in the models
showed a VIF less than 3, all tolerance values were higher
than 0.2, the condition indexes were smaller than 15, and
there were not two or more variables with an eigenvalue
greater than 0.90. Interactions between covariates were
carried out in those models which fulfilled a significant
omnibus test (p < 0.05) and an appropriate Hosmer-
Lemeshow Goodness-of-Fit test (p > 0.05). The number of
included covariates (or interaction terms) was based on
the rule of ≥ 10 events per variable [60] for all of the
models tested. The final models were compared using the
likelihood-ratio test.

Table 5 Nomenclature of PCA groups

Abbreviated
name of PCA
group

Extended name Variables included

Comet C Total comet body
without treatment

Comet area, comet
length, comet DNA
(pixels and percent)

Comet T5 Total comet body
with 5% H2O2

Comet T10 Total comet body
with 10% H2O2

Head C Comet head
without treatment

Head area, head DNA,
head intensity, head length

Head T5 Comet head
with 5% H2O2

Head T10 Comet head
with 10% H2O2

Tail C Comet tail
without treatment

Tail moment, tail length,
tail area, tail DNA (pixels
and percent)

Tail T5 Comet tail
with 5% H2O2

Tail T10 Comet tail
with 10% H2O2

Comet C-T5-
T10

Combined scores
of total comet body
with and without treatment

Comet intensity

Head C-T5-
T10

Combined scores of
comet head with and
without treatment

Head intensity

Tail C-T5-T10 Combined scores of
comet tail with and
without treatment

Tail intensity
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