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Abstract

Background: ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay,
intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin
regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation
patterns that could be used in the molecular diagnosis of ADNP syndrome.

Results: We identified two distinct and partially opposing genomic DNA methylation episignatures in the
peripheral blood samples from 22 patients with ADNP syndrome. The “epi-ADNP-1” episignature included ~ 6000
mostly hypomethylated CpGs, and the “epi-ADNP-2” episignature included ~ 1000 predominantly hypermethylated
CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the
N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures
were enriched for genes involved in neuronal system development and function. A classifier trained on these
profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying
this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of
uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When
applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three
additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever
available, identified pathogenic mutations within the gene domains predicted by the model.

Conclusions: We describe the first Mendelian condition with two distinct episignatures caused by mutations in a
single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and
genetic variant classifications in ADNP syndrome.
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Background
ADNP syndrome (Helsmoortel-van der Aa syndrome;
OMIM# 615873) is caused by dominant negative truncat-
ing variants in ADNP [1]. This disorder is among the most
common causes of syndromic autism spectrum disorder
(ASD) and intellectual disability (ID) and frequently tops
the list of genes mutated in large-scale neurodevelopmental
disorder sequencing cohorts [2, 3]. As a group, neurodeve-
lopmental disorders are difficult to diagnose clinically, and
ADNP syndrome exemplifies the challenges faced in this
area. The major clinical features of ADNP syndrome in-
clude global developmental delay, ID, and ASD. These are
often accompanied by additional comorbid features with
variable expressivity (i.e., hypotonia, gastrointestinal, behav-
ioral and sleep problems) [4]. In order to advance our abil-
ity to diagnose and eventually treat ADNP syndrome and
similar conditions, additional biomarkers will be useful for
variant classification, cohort screening, and functional ana-
lysis. Whole genome methylation analysis offers significant
promise to realize these goals.
The ADNP gene encodes activity-dependent neuropro-

tective protein (ADNP), which is ubiquitously expressed
and involved in chromatin remodeling and gene expres-
sion. ADNP is important for brain development and may
be linked to cognitive ability [5, 6]. The sequence motifs
of the ADNP protein include nine zinc-fingers, a nuclear
localization signal, a DNA-binding homeobox motif, and
an HP1-binding motif. In most cell types, ADNP is local-
ized in the nucleus and recruited to histone H3K9me3
marked heterochromatin by HP1 [7]. ADNP directly inter-
acts with members of the BRG1/Brm-associated factor
(BAF) complex including ARID1A, SMARCA4, and
SMARCC2 [1, 8]. The BAF complex (SWI/SNF in yeast
and Brahma in Drosophila) is a 15-subunit protein com-
plex that modifies the placement of nucleosomes along
the length of DNA molecules by hydrolyzing ATP. The
BAF family of chromatin remodelers regulates gene ex-
pression, thereby influencing cell differentiation, neural
development, and learning and memory [9].
The identification of human neurodevelopmental disor-

ders caused by genes involved in chromatin regulation is
increasing and now includes more than 28 genes encoding
chromatin regulators [10]. Eight of the 15 subunits of the
BAF complex have been implicated in neurodevelopmen-
tal disorders [10]. Pathogenic variants in these genes cause
Coffin-Siris syndrome and Nicolaides-Baraitser syndrome;
both have considerable phenotypic overlap with ADNP
syndrome including global developmental delay, hypo-
tonia, intellectual disability, gastrointestinal complications,
and behavioral problems. Recently, defects in BAF com-
plex members and several other chromatin remodeling
genes have been shown to have syndrome-specific
genome-wide DNA methylation signatures, the so-called
episignatures [11–17]. These studies have shown that

changing histone marks leads to alternative methylation of
genomic DNA, and this phenomenon can be leveraged to
diagnose disease.
Here, we demonstrate that ADNP syndrome co-occurs

with unique genomic DNA methylation changes in the
peripheral blood. Uniquely, defects in ADNP produce
two episignatures with partially contrasting methylation
patterns which correlate with the location of the muta-
tions. We describe in details the overlap and dissimilar-
ities of the two episignatures and demonstrate the
enrichment of the harboring genes in neuronal system
pathways. We show that these changes are specific to
ADNP syndrome and do not occur in other neurodeve-
lopmental conditions. By computational modeling of the
two episignatures, we show that they can be successfully
applied to resolve ambiguous clinical/molecular cases,
provide new diagnosis when the initial clinical assump-
tion is not correct, and identify novel ADNP cases
through screening of a large cohort of undiagnosed sub-
jects presenting with intellectual disability.

Results
Clinical description of patients with ADNP syndrome
This study included 22 subjects with confirmed clinical
and molecular diagnoses of ADNP syndrome (Table 1).
Nine of the individuals provided detailed clinical pheno-
type information, which was consistent with that re-
ported in other studies [1, 4]. Briefly, intellectual
disability, developmental delay, hypotonia, and ASD
were the only consistent features. Comorbidities were di-
verse and sporadic. Early developmental delays were
mild, and the average age at diagnosis was 5 years (range
1 year 3 months to 11 years 8 months). Facial dysmorph-
ism is subtle in ADNP syndrome, and no consistent pat-
terns were appreciated in our cohort. All 22 patients
with definitive ADNP syndrome were diagnosed by gene
panels or whole exome sequencing. All had premature
termination variants, and were determined to be de novo
by Sanger sequencing of the (self-reporting) parents or
trio exome analysis. The most common ADNP nonsense
variant described (p.Tyr719*) occurred in six patients
resulting from c.2157C>A or c.2157C>G. Phenotypic
features observed in patients with this mutation were
representative of the entire cohort. This study includes
the first patient reported with a truncating N-terminal
mutation in the first coding exon (exon 3; c.103dupA;
p.Ile35Asnfs*5; phenotype described in Additional file 1:
Figure S1). This novel mutation broadens the mutational
spectrum of ADNP syndrome.

Mutations in ADNP cause two distinct episignatures with
partially opposite DNA methylation profiles
Genome-wide DNA methylation analysis was performed
on peripheral blood DNA from the 22 subjects with
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confirmed clinical and molecular diagnoses of ADNP syn-
drome using Illumina Infinium EPIC arrays. Following
normalization and quality controls, 770,508 CpG sites
(probes) were retained for analysis. A comparison was per-
formed between these patients and 88 age- and
sex-matched controls. The analysis identified 1320 probes
with a minimum of 10% methylation difference between
the two groups and a multiple-testing corrected p value <
0.01 (limma multivariable regression modeling), adjusted
for blood cell type compositions. Hierarchical clustering
and multiple dimensional scaling demonstrated that the
selected probes separated the patients from controls.
However, the ADNP cases clustered in two distinct groups
with a greater distance from each other than from con-
trols (Fig. 1). We determined that the groups did not cor-
relate with differences in age, sex, or technical batch
structure of the methylation experiment. The epigenetic
clustering was shown to correlate with the positions of the
mutations within ADNP. Samples with 5′ ADNP muta-
tions (upstream of cDNA nucleotide c.1300) clustered
with one sample with a 3′ deletion (c.2419_2423del). For

this group, the episignature was defined as the ADNP-1
episignature and the sub-cohort defined as the
epi-ADNP-1 cohort (n = 11). The remaining samples, with
mutations occurring between c.2000 and c.2340, gener-
ated the second cluster (the ADNP-2 episignature,
epi-ADNP-2 cohort, n = 11, Fig. 1).
We split the cohort based on the two episignatures and

conducted a separate analysis for each according to the
same criteria described above. Comparison of the
epi-ADNP-1 cohort (n = 11) with 44 matched controls
identified 5987 differentially methylated probes—most
were hypomethylated in the patients (Additional file 2:
Table S1). Analysis of the 11 patients from the
epi-ADNP-2 cohort matched with 44 controls identified
1374 CpG sites (Additional file 2: Table S2). Each of these
two probe-sets alone was capable of distinguishing be-
tween the subjects with epi-ADNP-1, epi-ADNP-2, and
controls as demonstrated using clustering analyses (Fig. 2).
The ADNP-2 episignature had a smaller effect size and
harbored a probe count equal to a quarter of that in the
ADNP-1 episignature. Almost half the probes contributing

Table 1 Twenty-two subjects with a confirmed clinical/molecular diagnosis of ADNP syndrome

ID Age at blood draw Sex ADNP variant Variant effect Subtype Dataset

ADNP_03a 11 M c.103dupA (p.Ile35Asnfs*5) Frame-shift ADNP-1 Training

ADNP_17 12 F c.190dupA (p.Thr64Asnfs*35) Frame-shift ADNP-1 Training

ADNP_16 4 M c.539_542delTTAG (p.Val180Glyfs*17) Frame-shift ADNP-1 Testing

ADNP_25 5 M c.819delC (p.Lys274Asnfs*31) Frame-shift ADNP-1 Training

ADNP_29 3 M c.859_862dup (p.Gly288Aspfs*27) Frame-shift ADNP-1 Training

ADNP_23 10 M c.1046_1047delTG (p.Leu349Argfs*49) Frame-shift ADNP-1 Testing

ADNP_08 2 M c.1102C>T (p.Gln368*) Nonsense ADNP-1 Training

ADNP_05a 2 M c.1106_1108delTACinsCTGT (p.Leu369Serfs*30) Frame-shift ADNP-1 Training

ADNP_12 4 F c.1222_1223delAA (p.Lys408Valfs*31) Frame-shift ADNP-1 Training

ADNP_20 9 F c.1287dupT (p.Ala430Cysfs*10) Frame-shift ADNP-1 Training

ADNP_15 12 F c.2156_2157insA (p.Tyr719*) Nonsense ADNP-2 Training

ADNP_07 5 F c.2157C>A (p.Tyr719*) Nonsense ADNP-2 Testing

ADNP_10 5 F c.2157C>A (p.Tyr719*) Nonsense ADNP-2 Training

ADNP_14 5 M c.2157C>A (p.Tyr719*) Nonsense ADNP-2 Training

ADNP_04 12 F c.2157C>G (p.Tyr719*) Nonsense ADNP-2 Training

ADNP_11 4 F c.2157C>G (p.Tyr719*) Nonsense ADNP-2 Testing

ADNP_21 4 M c.2188C>T (p.Arg730*) Nonsense ADNP-2 Testing

ADNP_13 3 M c.2268dup (p.Lys757Glnfs*4) Frame-shift ADNP-2 Training

ADNP_24 10 M c.2287delT (p.Ser763Profs*9) Frame-shift ADNP-2 Training

ADNP_22 3 M c.2287dupT (p.Ser763Phefs*3) Frame-shift ADNP-2 Training

ADNP_02a 8 M c.2340T>G (p.Tyr780*) Nonsense ADNP-2 Training

ADNP_09 12 M c.2419_2423delAAAAG (p.Lys807Glufs*6) Frame-shift ADNP-1 Testing
aThe DNA methylation profiles of these three subjects were examined from blood samples collected years apart to evaluate the changes in the ADNP episignature
over time (Additional file 1: Figure S1). Individuals are listed in ascending order according to the cDNA nomenclature. Mean ± standard deviation of all patients’
age 6.8 ± 3.8 (36% females), matched controls 7.9 ± 5.7 (37% females); epi-ADNP-1 subtype 7.2 ± 4.2 (25% females), matched controls 7.3 ± 4.2 (28% females); epi-
ADNP-2 subtype age 6.3 ± 3.6 (32% females), matched controls 5.6 ± 3.6 (35% females); ADNP transcript NM_015339.2; Photographs of some of these subjects are
provided in Additional file 1: Figure S1
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to the ADNP-2 episignature (n = 541) were found to be
differentially methylated in the ADNP-1 episignature.
However, the methylation differences of this shared com-
ponent were mostly in opposite directions. Within the
ADNP-1 episignature, CpGs were mostly hypomethylated
whereas they were predominantly hypermethylated in the
ADNP-2 episignature (Fig. 2). In all the analyses above, a
subject with a mutation in the most 3′ end of the
epi-ADNP-2 cohort region (c.2340T>G; p.Tyr780*)
showed the mildest ADNP-2 episignature methylation
pattern, intermediate between samples from the

epi-ADNP-2 cohort and controls (Fig. 2). DNA methyla-
tion analysis of whole blood specimens collected 6–9 years
apart from three subjects with ADNP syndrome con-
firmed that the observed patterns do not change over time
(Additional file 1: Figure S2).

The two ADNP episignatures have limited overlap and
differ in methylation properties
We compared the methylation profiles of the two ADNP
episignatures by aligning the coordinates of the differen-
tially methylated regions (DMRs) and assessing the

A B

C

D

Fig. 1 Correlation between the genetic coordinates of the ADNP mutations and two ADNP episignatures. Comparison of patients with ADNP
syndrome and controls identified 1320 differentially methylated CpG sites. a Illustration of the top two dimensions of the multiple dimensional
scaling of the patients (purple) and controls (green) using these probes reveals that while patients are separated from controls, they are clustered
in two groups (indicated with dashed circles) with greater distances from each other than from controls. b A hierarchical clustering generates a
similar pattern in which 11 ADNP cases generate one distinct cluster mainly representing hypomethylation events (epi-ADNP-1, blue-dashed
rectangle), and the other 11 subjects generate a cluster different from both controls and the first cluster (epi-ADNP-2, red-dashed rectangle),
showing a slightly hypermethylated pattern relative to controls. Notably, methylation changes in epi-ADNP-1 are more prominant than those in
epi-ADNP-2. The top pane in the heatmap indicates the phenotype. Green, controls; purple, epi-ADNP syndrome. The heatmap color scale from
blue to red represents the range of the methylation levels (beta values) between 0 and 1. c Evaluation of the genetic coordinates of the
mutations reveals that, with the exception of one, all epi-ADNP-1 subjects have a mutation upstream c.1300, and all epi-ADNP-2 cases have
mutations occurring between c.2000 and c.2340. The only exception is found for one epi-ADNP-1 patient having a mutation after c.2400. d A
schematic representation of the mutations across the ADNP protein is presented in the bottom of the figure. Blue and red indicate the protein
coordinates of the mutations related with ADNP-1 and ADNP-2 episignatures, respectively. Domains outside these two had no mutations in
our cohort
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direction of methylation changes. Using the DMRcate al-
gorithm [18], we prioritized a total of 308 DMRs for the
ADNP-1 episignature and 57 DMRs for the ADNP-2
episignature based on the following criteria: three or
more probes less than 1 kb apart, > 10% average regional
methylation change, and a false discovery rate (FDR) of
< 0.01, adjusted for blood cell type compositions (Add-
itional file 2: Tables S3–S4). The vast majority of the
DMRs identified in the ADNP-1 episignature involved
hypomethylation events (n = 293, 95%), whereas hyper-
methylation predominated in the ADNP-2 episignature
(n = 30, 53%).
For every region identified, we examined the methylation

status in the other ADNP episignature (Additional file 2:

Tables S3-S4). From the 308 DMRs in the ADNP-1 epi-
signature, 174 (56%) were not differentially methylated in
the ADNP-2 episignature. The most prominent DMRs in
this category include 38% hypomethylation at
chr11:133445802–133446415 (intergenic), 31% hypomethy-
lation in chr11:13508769–13509032 (10 kb upstream PTH),
and 29% hypomethylation in chr13:20392406–20392981 (8
kb upstream ZMYM5) (Fig. 3 and Additional file 1: Figure
S3–S13). Among the ADNP-1 episignature DMRs, 108
(35%) showed an opposite direction, and 26 (9%) showed
the same direction of methylation change in the
epi-ADNP-2 cohort (Additional file 1: Figures S14–S15).
Most of these changes had a smaller effect size in the
epi-ADNP-2 cohort than in epi-ADNP-1 and, in many

A B

C D

E F

Fig. 2 Two distinct and partially contrasting episignatures in ADNP syndrome. Separate analyses for the two identified clusters in ADNP-1 and
ADNP-2 episignatures identified a larger number of probes for each group, indicating that the primary analysis had concealed the full spectrum
of the methylation profiles of ADNP syndrome. Blue, red, and green (in points and panes) represent epi-ADNP-1, epi-ADNP-2, and control
subjects, respectively. Using multiple dimensional scaling and hierarchical clustering analyses, it is shown that epi-ADNP-1 is associated with a
mainly hypomethylated episignature (a, b). Probes associated with ADNP-1 episignature also separate epi-ADNP-2 subjects from controls, but
with a milder opposite pattern of DNA methylation change (a, b). Similar observations are noted for epi-ADNP-2 specific probes (c, d), as well as
the intersection of the two episignatures (e, f). The shared component (e, f) generates the most contrasting pattern between the two subtypes.
Among the epi-ADNP-2 samples, a subject with a mutation in the most extreme end of the ADNP-2 region (c.2340T>G) shows the mildest
changes of all (black arrows)
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cases, did not meet the strict cut offs applied in DMR map-
ping. These statistics were slightly different for the ADNP-2
episignature DMRs: 15 (26%) were found to be unaffected,
33 (58%) showed a contrasting pattern, and 9 (15%) had a
change in the same direction in epi-ADNP-1.
Almost all the DMR coordinates shared between the

two episignatures (~ 91%) represented changes in opposite
directions (i.e., hypomethylation vs. hypermethylation),
and the number of changes in the same direction was low
and restricted to DMRs with low effect sizes. Within this
latter category (~ 9%), despite a shared direction of
change, the extent of methylation difference was not simi-
lar 60% of the time, with the epi-ADNP-2 cohort most
often showing an intermediate methylation level between
the epi-ADNP-1 cohort and controls. The main DMRs in
this category include a change in chr16:29703339–
29703480 (3 probes), mapping to the gene bodies of
BOLA2 and QPRT (27% and 17% hypomethylation in
epi-ADNP-1 and epi-ADNP-2), and another in
chr6:34498714–34500043 (8 probes), encompassing a

hypomethylation event in exon 9 of PACSIN1 in
epi-ADNP-1 (17%) and epi-ADNP-2 (11%, Fig. 3). These
analyses indicated that the episignatures of epi-ADNP-1
and epi-ADNP-2 cohorts are two distinct and partially
contrasting entities with a very small shared component.

Genes involved in neuronal function are enriched in the
ADNP-1 and ADNP-2 episignatures
To assess the functional significance of genes repre-
sented in the two methylation profiles, we performed
gene-set, pathway, and protein interaction analyses on
all of the genes annotating to a differentially methylated
CpG identified here. Gene-set analysis identified six gene
ontology (GO) terms enriched in the ADNP-1 episigna-
ture (FDR < 0.01) including cell communications, flavon-
oid metabolism, and synaptic signaling (Additional file 2:
Table S5). No GO terms identified in the ADNP-2 epi-
signature met the conservative FDR threshold of 0.01,
likely due to the small number of genes involved. The
most significant terms identified in this analysis,
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Fig. 3 Regions differentially methylated in epi-ADNP-1 and epi-ADNP-2. Approximately 56% of the differentially methylated regions (DMRs) in
epi-ADNP-1 and 26% of DMRs in epi-ADNP-2 are specific to the subtypes in which they are identified. Although the remaining DMRs are shared
across the two subtypes, in the majority of instances they show contrasting methylation patterns. The small number of regions showing the
same direction of change in epi-ADNP-1 and epi-ADNP-2 (< 10% of DMRs) tend to represent small levels of methylation change and do not
generate fully overlapping patterns in epi-ADNP-1 and epi-ADNP-2. a At the most differentially methylated region (intergenic) in epi-ADNP-1 (blue),
no methylation change is observed in the epi-ANDP-2 cases (red) relative to controls (green). b An intronic region in RBM26 is hemimethylated in
epi-ADNP-2 cases while showing a hypomethylated pattern in controls and ADNP-1. c A region in the gene body of HSPA12B represents an example
of a contrasting DNA methylation change in epi-ADNP-1 and epi-ADNP-2, being hypo- and hypermethylated in each, respectively. d A region in the
terminal end of the PACSIN1 gene is among the very few DMRs showing a considerable methylation change in the same direction (hypomethylation)
in both episignatures. In this region, however, the two subtypes are still distinguishable from each other by epi-ADNP-2 showing an intermediate
pattern between epi-ADNP-1 and controls. X-axis, genomic coordinate; Y-axis, DNA methylation levels between 0 and 1; circles, DNA methylation level
for every individual at one CpG site, methylation patterns in all DMRs are provided in Additional file 1: Figures S2–S14
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however, included extracellular matrix organization and
central nervous system development. Additional file 2:
Tables S5–S6 show all GO terms with a p value < 0.01 in
ADNP-1 and ADNP-2 episignatures. Analysis of the
combination of CpGs from the two profiles detected the
same GO terms identified for ADNP-1 as the most sig-
nificant biological processes (FDR < 0.01, Additional file
2: Table S7).
Pathway analysis of the ADNP-1 episignature identi-

fied 14 pathways (FDR < 0.01), the most prominent of
which were neuronal system followed by extracellular
matrix organization (Additional file 2: Table S8). No
pathway was enriched in the ADNP-2 episignature,
again, likely due to the small number of genes. Analysis
of the combination of ADNP-1 and ADNP-2 episigna-
tures retained neuronal system and extracellular matrix
organization as the most significant pathways but add-
itionally prioritized neuronal transmission across chem-
ical synapses (Additional file 2: Table S9, Fig. 4 and
Additional file 1: Figure S16). The genes involved in the
neuronal system, were two-fold more likely to occur in
the ADNP episignatures compared with the total num-
ber of genes tested in the EPIC array (p value = 7.79E−
09, FDR = 8.82E− 06).

We conducted interaction analysis of the proteins pro-
duced by genes with differentially methylated promoters
using the EpiMod algorithm [34]. This analysis identified a
total of nine protein–protein interaction network hotspots
containing a minimum of 10 interacting partners and an
FDR < 0.01 for the ADNP-1 episignature (Additional file 2:
Table S10). The most active of these hotspots centered on
the SFN protein. SFN had the greatest modularity index for
the ADNP-1 episignature (6.98 compared to < 2.5 in all
others) and was the only hotspot to meet the specified cri-
teria in the ADNP-2 episignature. However, the predicted
direction of change in gene expression for the interacting
members was opposite between ADNP-1 and ADNP-2 epi-
signatures (Additional file 2: Table S11). SFN is located at
the center of an interaction network of proteins including
HYAL2, NBEA, NBR1, AURKAIP1, RALGPS2, and
SLC1A2, some of which have known involvement in brain
function and neurological disease.

Development of a classification model for ADNP
syndrome
The presence of two distinct methylation profiles in pa-
tients with ADNP syndrome suggested that DNA methy-
lation data could be used to develop a classification model
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Fig. 4 Pathways enriched in the genes in ADNP signatures. The color intensity from blue to red represents the degree of significance (p value).
The size of each circle indicates the number of genes from each pathway that are present in the ADNP episignatures. The thickness of the
connecting lines corresponds to the level of interactions and relatedness between the pathways. Neuronal system is the most significant
pathway in this analysis and with the greatest number of genes (X-axis of the box on top right). Extracellular matrix organization and transmission
across chemical synapses are the next most significant pathways. An interactive map of the genes from ADNP episignatures involved in these
pathways is shown in Additional file 1: Figure S15
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for detection of ADNP cases and differentiation between
ADNP-1 and ADNP-2 episignatures. All 22 affected pa-
tients were randomly divided into two cohorts of training
(75% subset, n = 16) and testing (25% subset, n = 6). The
two episignatures were equally represented in both train-
ing and testing subsets (Table 1). A sample of 64 controls
was matched to the training subset for feature selection
and model training. We limited the analysis to probes
shared by both EPIC and 450k platforms (n = 399,092).
Probes were filtered to those with a minimum of 10%
methylation difference from controls (ADNP-1 episigna-
ture, n = 3876; ADNP-2 episignature, n = 1358). The
probes differentially methylated in both ADNP-1 and
ADNP-2 episignatures were expected to maximally distin-
guish the two groups; therefore, only shared probes were
retained for feature selection (n = 461). From these, probes
that provided the greatest separation between all three
groups (ADNP-1, ADNP-2, and controls) were selected

using the pairwise measurement of the area under the re-
ceiver operating characteristic curve (AUC; n = 163, Add-
itional file 2: Table S12). This final probe list was used to
train a multi-class support vector machine (SVM) with
linear kernel on the training cohort. The model was set to
generate three scores ranging from zero to one for any
given subject, representing the confidence in predicting
whether the subject has a DNA methylation profile resem-
bling that in the epi-ADNP-1, epi-ADNP-2, or controls.
The class obtaining the greatest score determined the epi-
signature classification. Ten-fold cross-validation during
the training process resulted in an average accuracy of
100% (model details in Additional file 2: Table S12).
A series of tests were performed to challenge the reli-

ability of the model. First, the entire training cohort was
classified by the model. The correct classifications were
assigned to all subjects predicted to have an ADNP-1 or
ADNP-2 episignature, with scores significantly different

Suspected Undiagnosed

Healthy Other syndromes

epi-ADNP-1 epi-ADNP-2

None None

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8
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Fig. 5 Scores generated for different subjects by the ADNP classification model. A 3-class SVM classifier generates three scores (0–1) for every
subject as the probability of having a DNA methylation profile similar to what is observed in epi-ADNP-1, epi-ADNP-2, or none of these. The Y-
axis represents scores 0–1, generated for each of the three classes on the X-axis. Every point represents a single sample. Hollow points indicate
the training samples and filled points indicate the testing samples. By default, the SVM classifier defines a cutoff of 0.5 for assigning the class;
however, the vast majority of the tested individuals received a score < 0.2 or > 0.8. Therefore, to improve visualization, the points are jittered. The
first two top panels show trials performed for known cases of epi-ADNP-1 and epi-ADNP-2, all of which were classified into the correct
categories. The middle two panels illustrate trials performed on 2315 healthy individuals (left) and 780 patients with neurodevelopmental
syndromes other than ADNP (right), all of which are scored low for both episignatures, but have received very high scores for the non-ADNP
category. This latter group includes subjects diagnosed with imprinting defects (Angelman, Prader-Willi, Beckwith-Wiedemann, and Silver-Russell
syndromes), non-syndromic autism spectrum disorders, BAFopathies (Coffin-Siris, Nicolaides-Baraitser, and Chr6q25 microdeletion syndromes),
RASopathies, autosomal dominant cerebellar ataxia, deafness, and narcolepsy, ATRX, Coffin-Lowry, Cornelia de Lange, CHARGE, CHOPS, Claes-
Jensen, Coffin-Lowry, Down, Dup7, Floating-Harbor, Fragile X, Genitopatellar, Juberg-Marsidi, Kabuki, Rett, Saethre-Chotzen, Sotos, Weaver, and
Williams syndromes. The last two panels show trials performed for suspected and unresolved cases. Among the suspected cases (n = 7), who
based on clinical or molecular assessments are ADNP candidates, one is classified as epi-ADNP-1 and one other as epi-ADNP-2. Unresolved
subjects include 1150 undiagnosed patients with neurodevelopmental presentations, among which three have been classified as epi-ADNP-1
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from the other two classes (Fig. 5). Next, we confirmed
that the model is not sensitive to the experimental batch
structure by classifying novel control samples processed
on the same batch as patients. All were appropriately clas-
sified as controls. Additionally, we evaluated the extent to
which the model is sensitive to variations in blood cell
type composition. The model was used to classify methy-
lation array data derived from diverse sample types from
six healthy individuals, downloaded from the gene expres-
sion omnibus (GEO, GSE35069) [19]. The samples in-
cluded whole blood, peripheral blood mononuclear cells,
and granulocytes, as well as seven isolated cell populations
(CD4+ T, CD8+ T, CD56+ NK, CD19+ B, CD14+ mono-
cytes, neutrophils, and eosinophils) from six individuals.
All of these samples were classified as controls with scores
similar to those generated for the whole blood samples.
The average inter-cell type variability in the scores was <
5% (Additional file 2: Table S13).
To validate the model, it was applied to the methyla-

tion data from the testing cohort, composed of three in-
dividuals known to have an ADNP-1 episignature and
three with an ADNP-2 episignature. These data were
completely unfamiliar to the model and had not been
used for feature selection or training. All samples were
assigned the expected class with scores similar to those
of the training dataset, confirming that the model is ro-
bust in the classification of all three classes (Fig. 5). To
measure the specificity of the classifier, we tested whole
blood methylation data from 2315 healthy subjects of
various racial backgrounds (aged 0–94) obtained from
GEO (GSE42861, GSE85210, GSE87571, GSE87648, and
GSE99863) [20–23]. All subjects were classified as con-
trols (Fig. 5). Next, we tested whether the model could
differentiate individuals with ADNP syndrome from
those with other neurodevelopmental disorders. DNA
methylation profiles from 780 subjects with a confirmed
diagnosis of a syndromic condition, including trinucleo-
tide repeat expansion abnormalities, imprinting defect
disorders, RASopathies, BAFopathies, Mendelian disor-
ders of the epigenetic machinery, Down syndrome, as
well as 140 patients with non-syndromic autism
spectrum disorders (details in Fig. 5), were supplied to
the model for classification. All samples were classified
as controls, further confirming the specificity of this
classifier.

Classification of subjects with an uncertain diagnosis of
ADNP syndrome
We assessed the utility of this model for classifying sub-
jects with a clinical suspicion for ADNP syndrome
(Table 2, Fig. 5). First, we studied a sample from an indi-
vidual with a clinical diagnosis of ADNP syndrome, but
for whom genetic information was not available. This
sample was classified as having the ADNP-2 episignature

(ADNP-1 0.04, ADNP-2 0.90, and control 0.06), predict-
ing that a pathogenic variant must exist between c.2000
and c.2340 in ADNP. Subsequent sequencing identified a
nonsense variant in the expected region (c.2156dupA;
p.Tyr719*; Fig. 5).
Missense variants in ADNP have been associated with

disease in the literature [24–26]. However, this evidence
may be insufficient to establish missense variation as a
mechanism for disease [1, 4]. With this uncertainty, clin-
ical labs frequently report rare missense variants in ADNP
as uncertain significance (VUS), affecting a significant por-
tion of patients with non-specific developmental delay
(DD), ID, and/or ASD. Parental sequencing can provide
further information regarding clinical significance; how-
ever, until now there have been no functional assays to aid
variant interpretation. We recruited 6 subjects from our
clinic and from the ADNP Kids parent support group,
who had features of ADNP syndrome and a missense vari-
ant (Table 2, Fig. 5). All 6 subjects had been ascertained
by clinical whole exome sequencing and received diagnos-
tic reports listing ADNP variants as a potential cause of
their phenotype. Two individuals were fraternal twins
sharing the same missense VUS in ADNP (c.1855G>T;
p.Val619Phe). Only one variant was confirmed to be de
novo (c.201G>C; p.Gln67His). This variant affects the final
nucleotide of exon 4 and is predicted to alter splicing by
the online analysis tool, Human Splicing Finder [27]. The
c.201G>C variant was interpreted as likely pathogenic in
the exome report; all others were interpreted as VUS. All
but the c.201G>C variant were present in the gnomAD
database with minor allele frequencies < 0.01% [28].
Genome-wide methylation analysis classified five of the
six subjects as non-ADNP. The patient with the c.201G>C
variant was classified as having the ADNP-1 episignature.
Separate assessments using hierarchical clustering and
multiple dimensional scaling were also consistent with
these findings (Fig. 6).

Screening of unresolved DD/ID patients for ADNP
syndrome
Children with DD/ID frequently go undiagnosed for a
long time despite extensive diagnostic evaluation. We
asked whether epigenetic analysis could identify patients
affected with ADNP syndrome from a large cohort of
undiagnosed patients. We screened 1150 patients in two
cohorts. The first was composed of 661 subjects with de-
velopmental and intellectual disabilities with previous
genetic testing but no clear molecular diagnosis. The
second cohort was obtained from GEO (GSE89353) [29]
and included 489 subjects with both CNV and exome se-
quencing assessments. These patients had various forms
of syndromic and nonsyndromic DD/ID. None were sus-
pected of having ADNP syndrome or had other con-
firmed genetic diagnoses. The analysis identified three
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subjects with ADNP-1 episignatures. Each scored > 0.75
for the ADNP-1 class (Fig. 5). Separate assessments
using hierarchical clustering and multiple dimensional
scaling revealed that all three cases have a DNA methy-
lation profile consistent with the ADNP-1 episignature
(Fig. 6). The first subject was initially assessed for
CHARGE syndrome with clinical presentations of

autism spectrum disorder together with iris and retinal
colobomas, and with a non-coding VUS having been
identified in the CHARGE-associated gene, CHD7
(NM_017780.3:c.5534+16T>C). Our previous methyla-
tion analysis for CHARGE syndrome had indicated that
this patient did not have a CHARGE-associated methyla-
tion profile [17]. Following the positive screen for ADNP

Table 2 Classification of uncertain cases suspected of having ADNP syndrome

ID ADNP variant In silico assessment d Population allele frequency (%)e Classification (score) Support for prediction

ADNP_18 a Not known N/A N/A ADNP-2 (0.90) f

ADNP_26 b c.201G>C (p.Gln67His) Deleterious 0 ADNP-1 (0.95) g

ADNP_01 b c.1039A>G (p.Met347Val) Tolerated 0.008 None (0.96) h

ADNP_06 b c.2963C>T (p.Thr988Ile) Conflicting 0.0004 None (0.97) h, i

ADNP_19 b c.356A>G (p.Lys119Arg) Conflicting 0.007 None (0.96) h

ADNP_27 b, c c.1855G>T (p.Val619Phe) Deleterious 0.003 None (0.95) h, j

ADNP_28 b, c c.1855G>T (p.Val619Phe) Deleterious 0.003 None (0.95) h, j

aThis patient was a confirmed case of ADNP syndrome, but the mutation was not known at the time of the study. bReason for assessment was reporting of a
variant of unknown clinical significance in ADNP. cSubjects ADNP_27 and ADNP_28 are fraternal twins sharing a missense change with an unknown mode
of inheritance. dIn Silico assessment for the suspected variant was performed using three tools: SIFT, PolyPhen, and MutationTaster. A “tolerated” or “deleterious”
decision was assigned only if all three tools were in agreement with regard to the variant. eAllele frequency was obtained from the gnomAD database (v2.1) and
represents the combined frequencies of different subpopulations; fADNP sequencing later identified a nonsense variant in the expected ADNP-2 region:
c.2156dupA (p.Tyr719*). gVariant is absent from the general population and was classified as likely pathogenic according to the ACMG guidelines. hPopulation
minor allele frequency is too high for a dominant condition. iVariant is inherited from an unaffected mother. jNo further data is available for assessment. N/A not
applicable. ADNP transcript, NM_015339.4. Photographs of some of these subjects are provided in Additional file 1: Figure S1

A B

C

Fig. 6 Separate evaluation of uncertain ADNP cases and those detected among unresolved patients. a, b Seven subjects with uncertain
diagnoses of ADNP syndrome (yellow) together with three subjects detected in the unresolved cohort (neon green) added to the clustering
analyses performed earlier in Fig. 2e and f. As expected, five of the uncertain cases are clustered with controls, one clustered with epi-ADNP-2,
and one other is clustered with epi-ADNP-2 subjects (similar to the classification by our classifier). The three unresolved cases, as expected, are
clustered with epi-ADNP-1 group. All of these cases show a DNA methylation pattern consistent with their respected predicted category. c The
updated list of causative variants detected in ADNP syndrome following the assessment of unresolved/suspected subjects is illustrated in the
ADNP protein
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syndrome, ADNP was sequenced and a pathogenic vari-
ant was detected (c.2491_2494del; p.Leu831Ilefs*82).
This was the second patient with an ADNP-1 episigna-
ture whose mutation occurred after c.2340, further sup-
porting the hypothesis that the ADNP-2 episignature is
only caused by mutations between c.2000 and c.2340,
and defects outside this region are associated with the
ADNP-1 pattern. The second subject was obtained from
GEO (GSE89353, patient ID: Proband156) for whom the
only reported clinical feature was ASD, consistent with
the major feature of ADNP syndrome. This subject and
the third patient were not available for further assess-
ments. These findings suggest that epigenomic profiling
can be used as a screening tool for identifying ADNP
syndrome cases among those with unresolved DD/ID.

Discussion
The past 5 years have seen a rise in the use of
genome-wide methylation arrays for identifying epigenetic
patterns associated with rare diseases. To date, 16 syn-
dromes have been described with epigenetic signatures
[11–17, 30–32]. These profiles serve as effective adjuncts
for genomic sequencing with utility in diagnosing patients,
screening large cohorts, and clarifying the clinical rele-
vance of variants of uncertain significance. In this study,
we identified two distinct episignatures associated with
ADNP syndrome. The classification model derived from
these data predicted true positives and negatives 100% of
the time, indicating specificity and sensitivity appropriate
for diagnostic use. Indeed, when the model was applied to
methylation data from individuals who had evaded diag-
nosis by traditional means, an ADNP syndrome diagnosis
was predicted in three cases. Furthermore, the results sup-
port refinement of the mutational spectrum of ADNP syn-
drome. (1) Variants in ADNP that result in single amino
acid substitution are unlikely to cause ADNP syndrome.
(2) Frame-shift variants in all coding exons are predicted
to cause ADNP syndrome. These findings have significant
implications for individuals and families who have re-
ceived uncertain diagnoses by genetic testing, particularly
those that involve missense or synonymous changes that
could affect splicing.
In addition to classifying individual samples and vari-

ants, epigenetic profiling is useful for guiding disease clas-
sification. Recently, epigenetic profiling of Coffin-Siris and
Nicolaides-Baraitser syndromes, supported the grouping
of these disorders into a single spectrum—the BAFopa-
thies [15]. In the current study, we provide the first de-
scription of two discrete DNA methylation signatures
arising from a single gene in a single clinical disorder.
While at the present time, a clear epigenotype/phenotype
correlation is not apparent, our data strongly suggest
unique cellular mechanisms for the two ADNP methyla-
tion episignatures. Reprocessing previously established

episignatures with larger cohorts might reveal other con-
ditions with discrete episignatures.
The two predominantly opposite methylation signatures

in ADNP syndrome (the ADNP-1 episignature is largely
hypomethylated; the ADNP-2 episignature is hypermethy-
lated) lead us to suspect that each mutation sub-group has
unique cellular consequences. This genotype-epigenotype
correlation is possibly a result of differences in ADNP pro-
tein fragment length or stability causing a disruption of
DNA methylation in two unique ways. Truncating muta-
tions scattered across the breadth of ADNP are associated
with the ADNP-1 episignature. In contrast, the ADNP-2
episignature appears to be defined by a genomic motif in-
cluding variants within the c.2156–2340 cDNA positions.
This region is downstream of the nuclear localization sig-
nal (NLS) and overlaps the DNA-binding homeobox do-
main. When mutant ADNP protein is expressed in
HEK293T cells, truncations in this region specifically dis-
rupt entry into the nucleus [33]. It is therefore possible
that the ADNP-2 episignature is a consequence of domin-
ant negative protein products that enter the nucleus but
are unable to bind DNA. However, the ADNP-1 episigna-
ture results are in conflict with other observations de-
scribed by Cappuyns et al., who found that ADNP protein
with exon-5 N-terminal mutations was degraded by the
proteasome [33]. Our data demonstrate that N-terminal
and C-terminal ADNP mutations affect DNA methylation
in similar ways, indicating a possibility that in both cases,
mutant protein reaches the nucleus.
One recent report associates ADNP with cognitive

abilities related to intelligence, autism, Alzheimer’s dis-
ease, and schizophrenia [6]. Correlating data from gene
expression studies with methylation patterns identified
here has the potential to advance research in many
areas. For instance, a hotspot linked to the protein SFN
is associated with both the ADNP-1 and ADNP-2 epi-
signatures. This correlation may help to explain the
mechanism by which ADNP controls the level of the
tumor suppressor protein, p53. SFN (Stratifin, also called
14–3-3σ) expression is influenced by the methylation of
the 5′ coding sequence resulting in gene silencing in
cancer [35]. SFN regulates the stability of p53 via deg-
radation of MDM2 [36]. In the absence of SFN, p53 is
targeted for degradation, promoting cell growth and pro-
liferation [37]. These suggest that ADNP might influence
p53 by modifying protein stability rather than activating
gene expression as originally proposed [38].
Our clinical evaluation of the phenotyped cohort did

not reveal that patients with the two episignatures of
ADNP syndrome are separable based on clinical features
(Additional file 1: Figure S1). This is undoubtedly due to
the limited size of our phenotyped cohort (epi-ADNP-1 n
= 3; epi-ADNP-2 n = 6). A previous study assessed geno-
type/phenotype correlation in a very large cohort of
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subjects with ADNP syndrome [4]. The authors identified
some possible islands of correlation, but they did not
match the coordinates defined by our two episignatures.
Establishing a correlation between phenotype and epigen-
otype may require a larger cohort and a more uniform dis-
tribution of variants. It is also important to consider that
the strongest determinants of episignature grouping—de-
fined in DNA isolated from blood—may not have import-
ant phenotypic relevance. This does not mean that
episignatures are unimportant, but rather that some “col-
lateral” genomic marks are definitive biomarkers even if
they are not causative of disease. Therefore in the case of
ADNP syndrome, it may be most useful to explore the
limited DMRs with shared epigenetic patterns between
ADNP-1 and ADNP-2 episignatures.
One such area occurs in PACSIN1, which showed hy-

pomethylation in all ADNP syndrome samples and has
a considerable overlap in cellular function with ADNP.
PACSIN1 is a neuron-specific member of the protein
kinase C and casein kinase 2 substrate family. It interacts
with dynamin and N-wasp to coordinate synaptic vesicle
endocytosis and actin polymerization [39, 40], which in
turn support neurogenesis and the maturation of den-
dritic spines [41]. PACSIN1 also interacts with tau pro-
teins in neurons to reduce elongation and branching by
facilitating microtubule instability [42]. Conversely,
ADNP is required for neurite outgrowth in cell culture
and the NAP peptide promotes outgrowth and branch-
ing [43]. Heterozygous ADNP knockout mice develop
tauopathies, possibly due to the fact that NAP interacts
with the neuronal microtubule network [44]. Given the
consistently hypomethylated region of PACSIN1 de-
tected in the ADNP cohort and the functional overlap of
these proteins, we believe that the relationship between
PACSIN1 and ADNP warrants further study.

Conclusions
This study describes the first evidence of a Mendelian
condition with two distinct peripheral blood episigna-
tures caused by mutations in a single gene. These results
suggest that two unique functional properties contribute
to ADNP syndrome. These highly sensitive and specific
DNA methylation episignatures in peripheral blood en-
able the diagnosis, screening, and classification of
ADNP-suspected patients with genetic VUSs, and pro-
vide novel avenues for implementation of this technol-
ogy in clinical diagnostic laboratories.

Methods
Patients and cohorts
Peripheral blood genomic DNA samples from patients
with ADNP syndrome were obtained from the following
sources: The Greenwood Genetic Center (Greenwood,
SC, USA), collaborations established through the

GeneMatcher exchange [45], and families in partnership
with the ADNP Kids parent support group (https://
www.adnpkids.com).
The first set of controls that were used for mapping of

the episignatures, feature selection, and model training
were collected from the Greenwood Genetic Center and
the reference cohort in LHSC laboratory. A larger set of
controls that were later used to measure the specificity
of the classification model developed later in the study
were compiled from five large databases of general
population samples with various age and racial back-
grounds (GSE42861, GSE85210, GSE87571, GSE87648,
and GSE99863) [20–23].
Samples, from patients with congenital syndromes

other than ADNP syndrome and those caused by muta-
tions in other regulators of the epigenomic machinery
that were only used for measuring the specificity of the
classification model, comprised data described in our
previous studies [11, 14–17, 46, 47] and included a large
group of patients with autosomal dominant cerebellar
ataxia with deafness and narcolepsy, ATRX syndrome,
Claes-Jensen syndrome, CHARGE syndrome, CHOPS
syndrome, Cornelia de Lange syndrome, Down syn-
drome, Fragile X syndrome, Floating-Harbor syndrome,
Genitopatellar syndrome, Juberg-Marsidi syndrome, Ka-
buki syndrome, Angelman syndrome, Prader-Willi syn-
drome, Beckwith-Wiedemann syndrome, Coffin-Lowry
syndrome, Rett syndrome, Saethre-Chotzen syndrome,
Sotos syndrome, autism spectrum disorders, BAFopa-
thies, and RASopathies. Added to this cohort were sam-
ples from patients with Silver-Russell syndrome, Weaver
syndrome, Williams syndrome, and chr7q11.23 duplica-
tion syndrome, which were downloaded from gene ex-
pression omnibus (GEO–GSE104451, GSE55491,
GSE74432, and GSE66552) [15, 48–50]. We supple-
mented the cohort of subjects with CHARGE syndrome,
Sotos syndrome, Kabuki syndrome, and Down syndrome
with publically available DNA methylation data from
GEO (GSE74432, GSE116300, GSE97362, GSE52588)
[13, 30, 51]. While all of these syndromes represent clin-
ical features overlapping with ADNP syndrome, i.e., in-
tellectual disability and facial dysmorphism, others are
associated with specific DNA methylation patterns
across the genome. We used this cohort to confirm that
the DNA methylation episignature of ADNP syndrome
does not overlap with other constitutional disorders.
Any subject used herein to represent a condition had a

confirmed clinical diagnosis of the aforementioned syn-
drome and was screened for mutations in the related
genes. The mutation report from every patient was
reviewed according to the American College of Medical
Genetics and Genomics (ACMG) guidelines for inter-
pretation of genomic sequence variants [52], and only
individuals confirmed to carry a pathogenic or likely

Bend et al. Clinical Epigenetics           (2019) 11:64 Page 12 of 17

https://www.adnpkids.com
https://www.adnpkids.com


pathogenic mutation together with the clinical diagnosis
were used to represent a syndrome.
Samples with uncertain diagnoses as well as unsolved

cases, which were used to assess the diagnostic poten-
tials of the ADNP DNA methylation episignatures, were
collected from all of the sources above over a period of
4 years. These samples were supplemented with publi-
cally available DNA methylation files from GEO for a
cohort of unsolved subjects with neurodevelopmental
disorders/congenital anomalies (GSE89353) [29].

Methylation array and quality control
Peripheral whole blood DNA was extracted using stand-
ard techniques. Following bisulfite conversion, DNA
methylation analysis of the samples was performed using
the Illumina Infinium methylation 450 k or EPIC bead
chip arrays (San Diego, CA), according to the manufac-
turer’s protocol. The resulting methylated and unmethy-
lated signal intensity data were imported into R 3.5.1 for
analysis. Normalization was performed using the Illu-
mina normalization method with background correction
using the minfi package [53]. Probes with detection p
value > 0.01, those located on chromosomes X and Y,
those known to contain SNPs at the CpG interrogation
or single nucleotide extension, and probes known to
cross-react with chromosomal locations other than their
target regions were removed. Arrays with more than 5%
failure probe rate were excluded from the analysis. Sex
of the subjects was predicted using the median signal in-
tensities of the probes on the X and Y chromosomes and
those samples discordant between the labeled and pre-
dicted sex were not used for analysis. All of the samples
were examined for genome-wide methylation density,
and those deviating from a bimodal distribution were ex-
cluded. Factor analysis using a principal component ana-
lysis (PCA) was performed to examine the batch effect
and identify the outliers.

Selection of matched controls for methylation profiling
Matched controls were randomly selected for methyla-
tion profiling or feature selection. All of the ADNP sam-
ples were assayed using the EPIC array. Therefore, only
controls assayed using the same platform were used for
the analysis. Matching was done by age and sex using
the MatchIt package. The control sample size was in-
creased until both the matching quality and sample size
were optimized and consistent across all analyses. This
led to the determination of a control sample size four
times larger than that of the cases in every analysis. In-
creasing the sample size beyond this value compromised
the matching quality. After every matching trial, a PCA
was performed to detect outliers and examine the data
structures. Outlier samples and those with aberrant data
structures were removed before a second matching trial

was conducted. The iteration was repeated until no out-
lier sample was detected in the first two components of
the PCA.

DNA methylation profiling of ADNP syndrome
The analysis was performed according to our previously
published protocol [15, 17, 54, 55]. The methylation
level for each probe was measured as a beta value, calcu-
lated from the ratio of the methylated signals vs. the
total sum of unmethylated and methylated signals, ran-
ging between zero (no methylation) and one (full methy-
lation). This value was used for biological interpretation
and visualization. For linear regression modeling, beta
values were logit transformed to M-values using the fol-
lowing equation: log2(beta/(1 − beta)). A linear regres-
sion modeling using the limma package [56] was used to
identify the differentially methylated probes. The analysis
was adjusted for blood cell type compositions, estimated
using the algorithm developed by Houseman et al. [57].
The estimated blood cell proportions were added to the
model matrix of the linear models as confounding vari-
ables. The generated p values were moderated using the
eBayes function in the limma package and were cor-
rected for multiple testing using the Benjamini and
Hochberg method. Probes with a corrected p value <
0.01 and a methylation difference greater than 10% were
considered significant. The effect size cutoff of 10% was
chosen to avoid reporting of probes with low effect size
and those influenced by technical or random variations
as conducted in our previous studies [15, 17].

Clustering and dimension reduction
Following every analysis, the selected probes were exam-
ined using a hierarchical clustering and a multiple di-
mensional scaling to examine the structure of the
identified episignature. Hierarchical clustering was per-
formed using Ward’s method on Euclidean distance by
the gplots package. Multiple dimensional scaling was
performed by scaling of the pair-wise Euclidean dis-
tances between the samples.

Identification of the differentially methylated regions
To identify genomic regions harboring methylation
changes (differentially methylated regions—DMRs), the
DMRcate algorithm was used [18]. First, the p values
were calculated for every probe using multivariable
limma regression modeling. Next, these values were ker-
nel smoothed to identify regions with a minimum of
three probes no more than 1 kb apart and an average re-
gional methylation difference > 10%. We selected regions
with a Stouffer transformed false-discovery rate (FDR) <
0.01 across the identified DMRs. The analysis was per-
formed on the same sets of cases and controls used for
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methylation profiling and was adjusted for blood cell
type compositions.

Gene-set and pathway enrichment analysis and
identification of differential methylation interaction
hotspots
Gene-set enrichment analysis was performed using the mis-
sMethyl package [58]. We identified Gene Ontology (GO)
terms overrepresented in the genes associated with differ-
entially methylated probes in ADNP syndrome, taking into
account the number of CpG sites per gene. All CpG sites
tested in the analysis were included as the background for
the enrichment analysis. The enriched GO terms with an
FDR < 0.01 were considered significant. Pathway enrich-
ment analysis was conducted using a hypergeometric
model implemented in the ReactomePA package [59].
Genes annotated to all of the probes passing quality con-
trols in the EPIC array were used as the background.
Enriched pathways with FDR < 0.01 were reported.
We used the EpiMod algorithm [34] to search for the

interactome hotspots of differential promoter methylation.
In this algorithm, protein expression changes are inferred
according to a model of inverse association between the
promoter methylation and gene expression. Among the
differentially expressed genes in an interactive network, a
hotspot (epigenetic module (EpiMods)) is a sub-network
with an exceptionally large average edge-weight density
(combined methylation statistics of the neighboring genes)
as compared to the rest of the network [34]. To assign a
statistical significance to the identified hotspots, 1000
Monte Carlo randomization of the molecular profiles was
conducted as suggested by the algorithm. Interactive net-
work hotspots composed of at least ten genes and FDR <
0.01 were reported.

Construction of a classification model for ADNP syndrome
To construct a classification model for ADNP syndrome,
subjects were divided into training (75%) and testing (25%)
cohorts, ensuring that the two ADNP subtypes later identi-
fied were equally represented in both of the training and
testing cohorts. For each of the subtypes in the training co-
hort, a matched group of controls with a sample size of
four times larger was selected. Given the majority of the
samples to be tested later were assayed using 450k array,
we limited the analysis to probes shared by both array
types. In order to avoid the use of probes with low effect
size and those susceptible to technical variation, we further
restricted the probes showing a minimum of 10% methyla-
tion difference between each ADNP subtype and controls.
The intersection of the two lists was used for feature selec-
tion. Using the filterVarImp function in the Caret package
[60], for each probe we measured pairwise area under the
receiver operating characteristic curve (AUC) between each
of the two subtypes and controls. Probes that obtained the

maximum AUC in all three pairwise iterations were se-
lected (all three variable importance measures = 1). This
final probe list was used to train a multi-class support vec-
tor machine (SVM) with linear kernel on the training co-
hort. Training was done using the e1071 R package. To
determine the best hyperparameter used in linear SVM
(cost—C), and to measure the accuracy of the model,
10-fold cross-validation was performed during the training.
In this process, the training set was randomly divided into
ten folds. Nine-fold was used for training the model and
one fold for testing. After 10-fold repeating of this iteration,
the mean accuracy was calculated, and the hyperparameters
with the most optimal performance were selected. For
every subject, the model was set to generate three scores
ranging 0–1, representing the confidence in predicting
whether the subject has a DNA methylation profile similar
to ADNP-1, ADNP-2, or controls. Conversion of SVM de-
cision values to these scores was done according to the
Platt’s scaling method [61]. The class obtaining the greatest
score determined the predicted phenotype. The final model
was applied to both training and testing datasets to ensure
the success of the training.

Validation of the classification model
We ensured that the model is not sensitive to the batch
structure of the methylation experiment by applying it
to all of the samples assayed on the same batch as the
patients used for training. To confirm that the classifier
is not sensitive to the blood cell type compositions, we
downloaded methylation data from isolated cell popula-
tions of healthy individuals from GEO (GSE35069) [19],
supplied them to the classification model for prediction,
and examined the degree to which the scores were var-
ied across different blood cell types. Next, the model
was applied to the testing cohort (25% subset of the pa-
tients not used for feature selection or training) to evalu-
ate the predictive ability of the model on affected
subjects. To determine the specificity of the model, we
supplied a large number of DNA methylation arrays
from healthy subjects to the model. To understand
whether this model was sensitive to other medical condi-
tions presenting with developmental delay and intellec-
tual disabilities, we tested a large number of subjects
with a confirmed clinical and molecular diagnosis of
such syndromes by the model.

Screening of undiagnosed and uncertain cases
The finally confirmed model was used to classify sub-
jects suspected of having ADNP syndrome including
those with no sequence variant or with variants of un-
known significance (VUS). In addition, we used the
model to screen a large group of individuals with various
forms of neurodevelopmental presentations but no
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established diagnosis despite routine clinical and mo-
lecular assessments. The subjects that were predicted to
have any of the ADNP subtypes were evaluated based on
both the clinical and molecular information. Wherever a
sequence variant was found, in silico assessment was
performed to provide support for the predictions using
SIFT, PolyPhen, and MutationTaster [62–64].

Additional files

Additional file 1: Figure S1. Facial features of individuals with the ADNP
syndrome. Figure S2. Methylation patterns of specimens collected years
apart in three subjects. Figure S3. DMRs differentially methylated in ADNP-1
(1–30). Figure S4. DMRs differentially methylated in ADNP-1 (31–60). Figure
S5. DMRs differentially methylated in ADNP-1 (61–90). Figure S6. DMRs dif-
ferentially methylated in ADNP-1 (91–120). Figure S7. DMRs differentially
methylated in ADNP-1 (121–150). Figure S8. DMRs differentially methylated
in ADNP-1 (151–180). Figure S9. DMRs differentially methylated in ADNP-1
(181–210). Figure S10. DMRs differentially methylated in ADNP-1 (211–240).
Figure S11. DMRs differentially methylated in ADNP-1 (241–270). Figure S12.
DMRs differentially methylated in ADNP-1 (271–300). Figure S13. DMRs
differentially methylated in ADNP-1 (301–308). Figure S14. DMRs
differentially methylated in ADNP-2 (1–30). Figure S15. DMRs differentially
methylated in ADNP-2 (31–57). Figure S16. Interactive networks of genes
from the ADNP episignatures. (DOCX 4248 kb)

Additional file 2: Table S1. CpG sites differentially methylated between
ADNP-1 and controls. Table S2. CpG sites differentially methylated between
ADNP-2 and controls. Table S3. Differentially methylated regions in ADNP-1.
Table S4. Differentially methylated regions in ADNP-2. Table S5. Gene ontol-
ogy (GO) terms in ADNP-1 (green: FDR < 0.01). Table S6. Gene ontology
(GO) terms in ADNP-2. Table S7. Gene ontology (GO) terms in ADNP-1
and ADNP-2. Table S8. Pathways enriched in ADNP-1 episignature. Table S9.
Pathways enriched in ADNP-1 and ADNP-2
episignatures. Table S10. EpiMods of DNA methylation protein-protein
interactions in ADNP-1. Table S11. EpiMods of DNA methylation protein-
protein interactions in ADNP-2. Table S12. Details of the SVM classifier.
Table S13 Scores generated for various blood cells. (XLSX 910 kb)

Abbreviations
ACMG: American College of Medical Genetics and Genomics; ADNP: Activity-
dependent neuroprotective protein; ASD: Autism spectrum disorder; AUC: Area
under the curve; BAF: BRG1/Brm-associated factor; DD: Developmental delay;
DMR: Differentially methylated region; FDR: False discovery rate; GEO: Gene
expression omnibus; GO: Gene ontology; ID: Intellectual disability; NLS: Nuclear
localization signal; PCA: Principal component analysis; SVM: Support vector
machine; VUS: Variant(s) of uncertain significance

Acknowledgments
We thank the staff, molecular geneticists, and other clinical geneticists at the
Greenwood Genetic Center for the identification, evaluation, and diagnosis of
the patients with neurodevelopmental conditions presented in this study. We
also thank the ADNP Kids parent support group for assisting us in recruiting
families and providing financial assistance. We are indebted to the families and
patients for sharing their samples and clinical information. E.A.-E. was supported
by Children’s Health Research Institute Epigenetics and Bioinformatics Trainee
Award, funded by the Children’s Health Foundation, London, ON, Canada.
Dedicated to the memory of Ethan Francis Schwartz, 1996-1998.

Funding
The study was supported in part by a grant from the South Carolina
Department of Disabilities and Special Needs (SCDDSN), as well as an Illumina
Medical Research Grant and a McMaster New Investigator Grant awarded to B.S.
Funding was also provided by the ADNP Research Foundation.

Availability of data and materials
In addition to the publically available data sources mentioned in the study,
which can be obtained from Gene Expression Omnibus (GEO), DNA

methylation microarray data from patients with Coffin-Siris and Nicolaides-
Baraitser syndromes have been deposited to GEO with accession number
GSE116992 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116992].
The remaining datasets cannot be made publically available due to institutional
ethics restrictions.

Authors’ contributions
EGB coordinated the recruitment of patients with ADNP syndrome, planned
the study, performed clinical and sequence variant assessments, and wrote
the Background and Discussion sections of the manuscript. EA-E performed
DNA methylation microarray experiments as well as statistics, machine learn-
ing, and bioinformatics analysis, wrote the Methods and Results sections of
the manuscript, and created images and tables. DBE, RCR, SC, EJP, ML, HD,
KC, KWG, DL, EB, EZ, PM, HH, LAD, MAL, JK, AS, DR, MJF, RES, and CES assisted
with data interpretation, specimen processing, patient recruitment, and
manuscript writing. BS, as the principal investigator, supervised and oversaw
all aspects of this study including patient recruitment, experimental design,
data analysis, and manuscript generation. All authors read and approved the
final manuscript.

Ethics approval and consent to participate
The study protocol has been approved by the Western University Research
Ethics Boards (REB ID 106302). All of the participants provided informed
consent prior to sample collection. All of the samples and records were de-
identified before any experimental or analytical procedures. The research was
conducted in accordance with all relevant ethical regulations.

Consent for publication
The legal guardians of all patients have provided consent for the publication
of the patients’ photographs.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Greenwood Genetic Center, 106 Gregor Mendel Cir, Greenwood, SC 29646,
USA. 2PreventionGenetics, Marshfield, WI, USA. 3Department of Pathology
and Laboratory Medicine, Western University, 800 Commissioner’s Road E,
London, ON N6A 5W9, Canada. 4Molecular Genetics Laboratory, Victoria
Hospital, London Health Sciences Centre, London, ON, Canada. 5Al DuPont
Hospital for Children, Wilmington, DE, USA. 6Center for Applied Genomics,
Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 7Division of Human
Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.
8Spectrum Health, Grand Rapids, MI, USA. 9Levine Children’s Hospital,
Carolinas Medical Center, Charlotte, NC, USA. 10Department of Pediatrics,
Biochemistry and Oncology, Western University, London, ON, Canada.

Received: 6 February 2019 Accepted: 27 March 2019

References
1. Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van

den Ende J, et al. A SWI/SNF-related autism syndrome caused by de novo
mutations in ADNP. Nat Genet. 2014;46(4):380–4.

2. O’Roak BJ, Stessman HA, Boyle EA, Witherspoon KT, Martin B, Lee C, et al.
Recurrent de novo mutations implicate novel genes underlying simplex
autism risk. Nat Commun. 2014;5:5595.

3. Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al.
Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes
with autism and developmental-disability biases. Nat Genet. 2017;49(4):515–26.

4. Van Dijck A, Vulto-van Silfhout AT, Cappuyns E, van der Werf IM, Mancini
GM, Tzschach A, et al. Clinical presentation of a complex
neurodevelopmental disorder caused by mutations in ADNP. Biol Psychiatry.
2018; Available from: https://www.sciencedirect.com/science/article/pii/
S0006322318313039. [cited 2018 Sep 12].

Bend et al. Clinical Epigenetics           (2019) 11:64 Page 15 of 17

https://doi.org/10.1186/s13148-019-0658-5
https://doi.org/10.1186/s13148-019-0658-5
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116992
https://www.sciencedirect.com/science/article/pii/S0006322318313039
https://www.sciencedirect.com/science/article/pii/S0006322318313039


5. Pinhasov A, Mandel S, Torchinsky A, Giladi E, Pittel Z, Goldsweig AM, et al.
Activity-dependent neuroprotective protein: a novel gene essential for brain
formation. Dev Brain Res. 2003;144(1):83–90.

6. Gozes I. ADNP regulates cognition: a multitasking protein. Front Neurosci.
2018;12 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6275198/. [cited 2019 Jan 13].

7. Mosch K, Franz H, Soeroes S, Singh PB, Fischle W. HP1 recruits activity-
dependent neuroprotective protein to H3K9me3 marked pericentromeric
heterochromatin for silencing of major satellite repeats. PLoS One. 2011;6(1):
e15894.

8. Mandel S, Gozes I. Activity-dependent neuroprotective protein constitutes a
novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem.
2007;282(47):34448–56.

9. Santen GW, Kriek M, van Attikum H. SWI/SNF complex in disorder: SWItching
from malignancies to intellectual disability. Epigenetics. 2012;7:1219–24.

10. Ronan JL, Wu W, Crabtree GR. From neural development to cognition:
unexpected roles for chromatin. Nat Rev Genet. 2013;14(5):347–59.

11. Aref-Eshghi E, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, et al. The
defining DNA methylation signature of Kabuki syndrome enables functional
assessment of genetic variants of unknown clinical significance. Epigenetics.
2017;12(11):923–33.

12. Sadikovic B, Aref-Eshghi E, Levy MA, Rodenhiser D. DNA methylation
signatures in mendelian developmental disorders as a diagnostic bridge
between genotype and phenotype. Epigenomics. 2019. https://doi.org/10.
2217/epi-2018-0192.

13. Butcher DT, Cytrynbaum C, Turinsky AL, Siu MT, Inbar-Feigenberg M,
Mendoza-Londono R, et al. CHARGE and kabuki syndromes: gene-specific
DNA methylation signatures identify epigenetic mechanisms linking these
clinically overlapping conditions. Am J Hum Genet. 2017;100(5):773–88.

14. Schenkel LC, Kernohan KD, McBride A, Reina D, Hodge A, Ainsworth PJ, et
al. Identification of epigenetic signature associated with alpha thalassemia/
mental retardation X-linked syndrome. Epigenetics Chromatin. 2017;10(1):10.

15. Aref-Eshghi E, Bend EG, Hood RL, Schenkel LC, Carere DA, Chakrabarti R, et
al. BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic
utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser
syndromes. Nat Commun. 2018;9(1):4885.

16. Schenkel LC, Aref-Eshghi E, Skinner C, Ainsworth P, Lin H, Paré G, et al.
Peripheral blood epi-signature of Claes-Jensen syndrome enables sensitive
and specific identification of patients and healthy carriers with pathogenic
mutations in KDM5C. Clin Epigenetics. 2018;10:21.

17. Aref-Eshghi E, Rodenhiser DI, Schenkel LC, Lin H, Skinner C, Ainsworth P, et
al. Genomic DNA methylation signatures enable concurrent diagnosis and
clinical genetic variant classification in neurodevelopmental syndromes. Am
J Hum Genet. 2018;102(1):156–74.

18. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, et al. De
novo identification of differentially methylated regions in the human
genome. Epigenetics Chromatin. 2015;8(1):6.

19. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al.
Differential DNA methylation in purified human blood cells: implications for
cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7):e41361.

20. Johansson Å, Enroth S, Gyllensten U. Continuous aging of the human DNA
methylome throughout the human lifespan. PLoS One. 2013;8(6):e67378.

21. Ventham NT, Kennedy NA, Adams AT, Kalla R, Heath S, O’leary KR,
Drummond H, Lauc G, Campbell H, McGovern DP, Annese V. Integrative
epigenome-wide analysis demonstrates that DNA methylation may mediate
genetic risk in inflammatory bowel disease. Nat Commun. 2016;7:13507.

22. Kular L, Liu Y, Ruhrmann S, Zheleznyakova G, Marabita F, Gomez-Cabrero D,
et al. DNA methylation as a mediator of HLA-DRB1*15 : 01 and a protective
variant in multiple sclerosis. Nat Commun. 2018;9(1):2397.

23. Su D, Wang X, Campbell MR, Porter DK, Pittman GS, Bennett BD, et al.
Distinct epigenetic effects of tobacco smoking in whole blood and among
leukocyte subtypes. PLoS One. 2016;11(12):e0166486.

24. Alvarez-Mora MI, Calvo Escalona R, Puig Navarro O, Madrigal I, Quintela I,
Amigo J, et al. Comprehensive molecular testing in patients with high
functioning autism spectrum disorder. Mutat Res Mol Mech Mutagen. 2016;
784–785:46–52.

25. D’Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, A-TN L, et al. Targeted
DNA sequencing from autism spectrum disorder brains implicates multiple
genetic mechanisms. Neuron. 2015;88(5):910–7.

26. Wang T, Guo H, Xiong B, Stessman HAF, Wu H, Coe BP, et al. De novo genic
mutations among a Chinese autism spectrum disorder cohort. Nat

Commun [Internet]. 2016;7(1) Available from: https://www.nature.com/
articles/ncomms13316. [cited 2018 Dec 13].

27. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud
C. Human splicing finder: an online bioinformatics tool to predict splicing
signals. Nucleic Acids Res. 2009;37(9):e67.

28. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al.
Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;
536(7616):285–91.

29. Barbosa M, Joshi RS, Garg P, Martin-Trujillo A, Patel N, Jadhav B, et al.
Identification of rare de novo epigenetic variations in congenital disorders.
Nat Commun. 2018;9(1):2064.

30. Sobreira N, Brucato M, Zhang L, Ladd-Acosta C, Ongaco C, Romm J, et al.
Patients with a Kabuki syndrome phenotype demonstrate DNA methylation
abnormalities. Eur J Hum Genet. 2017;25(12):1335.

31. Aref-Eshghi E, Schenkel LC, Carere DA, Rodenhiser DI, Sadikovic B. Chapter
27 - epigenomic mechanisms of human developmental disorders. In:
Tollefsbol TO, editor. Epigenetics in human disease, vol. 6. 2nd ed:
Academic Press; 2018. p. 837–59. (Translational Epigenetics;). Available from:
https://www.sciencedirect.com/science/article/pii/B9780128122150000273.
[cited 2018 Dec 20].

32. Hood RL, Schenkel LC, Nikkel SM, Ainsworth PJ, Pare G, Boycott KM, et al.
The defining DNA methylation signature of Floating-Harbor syndrome. Sci
Rep. 2016;6:38803.

33. Cappuyns E, Huyghebaert J, Vandeweyer G, Kooy RF. Mutations in ADNP
affect expression and subcellular localization of the protein. Cell Cycle. 2018;
17(9):1068–75.

34. Jiao Y, Widschwendter M, Teschendorff AE. A systems-level integrative
framework for genome-wide DNA methylation and gene expression data
identifies differential gene expression modules under epigenetic control.
Bioinformatics. 2014;30(16):2360–6.

35. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, et al.
High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene
silencing in breast cancer. Proc Natl Acad Sci U S A. 2000;97(11):6049–54.

36. Yang H-Y, Wen Y-Y, Lin Y–., Pham L, Su C-H, Yang H, et al. Roles for
negative cell regulator 14-3-3σ in control of MDM2 activities. Oncogene.
2007;26(52):7355–7362.

37. Yang W, Dicker DT, Chen J, El-Deiry WS. CARPs enhance p53 turnover by
degrading 14-3-3&sigma; and stabilizing MDM2. Cell Cycle. 2008;7(5):670–82.

38. Zamostiano R, Pinhasov A, Gelber E, Steingart RA, Seroussi E, Giladi E, et al.
Cloning and characterization of the human activity-dependent
neuroprotective protein. J Biol Chem. 2001;276(1):708–14.

39. Qualmann B, Roos J, DiGregorio PJ, Kelly RB, Pfeffer SR. Syndapin I, a
synaptic dynamin-binding protein that associates with the neural Wiskott-
Aldrich syndrome protein. Mol Biol Cell. 1999;10(2):501–13.

40. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M. All three PACSIN
isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci. 2000;
113(24):4511–21.

41. Schael S, Nüchel J, Müller S, Petermann P, Kormann J, Pérez-Otaño I, et al.
Casein kinase 2 phosphorylation of protein kinase C and casein kinase 2
substrate in neurons (PACSIN) 1 protein regulates neuronal spine formation.
J Biol Chem. 2013;288(13):9303–12.

42. Liu Y, Lv K, Li Z, Yu AC, Chen J, Teng J. Pacsin1, a tau-interacting protein,
regulates axonal elongation and branching by facilitating microtubule
instability. J Biol Chem. 2012. https://doi.org/10.1074/jbc.M112.403451.

43. Smith-Swintosky VL, Gozes I, Brenneman DE, D’Andrea MR, Plata-Salaman
CR. Activity-dependent neurotrophic factor-9 and NAP promote neurite
outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci. 2005;
25(3):225–38.

44. Oz S, Ivashko-Pachima Y, Gozes I. The ADNP derived peptide, NAP
modulates the tubulin pool: implication for neurotrophic and
neuroprotective activities. Bush AI., editor. PLoS One. 2012;7(12):e51458.

45. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching
tool for connecting investigators with an interest in the same gene. Hum
Mutat. 2015;36(10):928–30.

46. Kernohan KD, Cigana Schenkel L, Huang L, Smith A, Pare G, Ainsworth
P, et al. Identification of a methylation profile for DNMT1-associated
autosomal dominant cerebellar ataxia, deafness, and narcolepsy. Clin
Epigenetics. 2016;8:91.

47. Aref-Eshghi E, Schenkel LC, Lin H, Skinner C, Ainsworth P, Paré G, et al.
Clinical validation of a genome-wide DNA methylation assay for molecular
diagnosis of imprinting disorders. J Mol Diagn. 2017;19(6):848–56.

Bend et al. Clinical Epigenetics           (2019) 11:64 Page 16 of 17

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275198/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275198/
https://doi.org/10.2217/epi-2018-0192
https://doi.org/10.2217/epi-2018-0192
https://www.nature.com/articles/ncomms13316
https://www.nature.com/articles/ncomms13316
https://www.sciencedirect.com/science/article/pii/B9780128122150000273
https://doi.org/10.1074/jbc.M112.403451


48. Muurinen M, Hannula-Jouppi K, Reinius LE, Söderhäll C, Merid SK, Bergström
A, et al. Hypomethylation of HOXA4 promoter is common in Silver-Russell
syndrome and growth restriction and associates with stature in healthy
children. Sci Rep. 2017;7(1):15693.

49. Prickett AR, Ishida M, Böhm S, Frost JM, Puszyk W, Abu-Amero S, et al.
Genome-wide methylation analysis in Silver–Russell syndrome patients.
Hum Genet. 2015;134(3):317–32.

50. Strong E, Butcher DT, Singhania R, Mervis CB, Morris CA, De Carvalho D, et al.
Symmetrical dose-dependent DNA-methylation profiles in children with
deletion or duplication of 7q11.23. Am J Hum Genet. 2015;97(2):216–27.

51. Bacalini MG, Gentilini D, Boattini A, Giampieri E, Pirazzini C, Giuliani C, et al.
Identification of a DNA methylation signature in blood cells from persons
with Down syndrome. Aging. 2015;7(2):82–96.

52. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and
guidelines for the interpretation of sequence variants: a joint consensus
recommendation of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology. Genet Med. 2015;
17(5):405–23.

53. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen
KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the
analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;
30(10):1363–9.

54. Aref-Eshghi E, Schenkel LC, Ainsworth P, Lin H, Rodenhiser DI, Cutz J-C, et al.
Genomic DNA methylation-derived algorithm enables accurate detection of
malignant prostate tissues. Front Oncol. 2018;8:100.

55. Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M,
Brick L, Brady L, Carere DA, Levy MA, Kerkhof J, Stuart A, Saleh M, Beaudet
AL, Li C, Kozenko M, Karp N, Prasad C, Siu VM, Tarnopolsky MA, Ainsworth
PJ, Lin H, Rodenhiser DI, Krantz ID, Deardorff M, Schwartz CE, Sadikovic B.
Diagnostic utility of genome-wide DNA methylation testing in genetically
unsolved individuals with suspected hereditary conditions. Am J Hum
Genet. 2019;104:685–700.

56. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43(7):e47.

57. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformatics. 2012;13(1):86.

58. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing
data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;
32(2):286–8.

59. Yu G, He Q-Y. ReactomePA: an R/Bioconductor package for reactome
pathway analysis and visualization. Mol BioSyst. 2016;12(2):477–9.

60. Kuhn M. Building predictive models in R using the caret package. J Stat
Softw. 2008;028(i05) Available from: https://econpapers.repec.org/article/
jssjstsof/v_3a028_3ai05.htm. [cited 2018 Dec 13].

61. Smola AJ, Bartlett PJ, Schuurmans D, Schölkopf B. Advances in large margin
classifiers, vol. 438. Cambridge: MIT Press; 2000.

62. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human
missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;76(1):7.
20.1–7.20.41.

63. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein
function. Nucleic Acids Res. 2003;31(13):3812–4.

64. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation
prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.

Bend et al. Clinical Epigenetics           (2019) 11:64 Page 17 of 17

https://econpapers.repec.org/article/jssjstsof/v_3a028_3ai05.htm
https://econpapers.repec.org/article/jssjstsof/v_3a028_3ai05.htm

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Clinical description of patients with ADNP syndrome
	Mutations in ADNP cause two distinct episignatures with partially opposite DNA methylation profiles
	The two ADNP episignatures have limited overlap and differ in methylation properties
	Genes involved in neuronal function are enriched in the ADNP-1 and ADNP-2 episignatures
	Development of a classification model for ADNP syndrome
	Classification of subjects with an uncertain diagnosis of ADNP syndrome
	Screening of unresolved DD/ID patients for ADNP syndrome

	Discussion
	Conclusions
	Methods
	Patients and cohorts
	Methylation array and quality control
	Selection of matched controls for methylation profiling
	DNA methylation profiling of ADNP syndrome
	Clustering and dimension reduction
	Identification of the differentially methylated regions
	Gene-set and pathway enrichment analysis and identification of differential methylation interaction hotspots
	Construction of a classification model for ADNP syndrome
	Validation of the classification model
	Screening of undiagnosed and uncertain cases

	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

