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Abstract

Background: DNA methylation alteration extensively associates with smoking and is a plausible link between smoking
and adverse health. We examined the association between epigenome-wide DNA methylation and serum cotinine
levels as a proxy of nicotine exposure and smoking quantity, assessed the role of SNPs in these associations,
and evaluated molecular mediation by methylation in a sample of biochemically verified current smokers (N = 310).

Results: DNA methylation at 50 CpG sites was associated (FDR < 0.05) with cotinine levels, 17 of which are
novel associations. As cotinine levels are influenced not only by nicotine intake but also by CYP2A6-mediated
nicotine metabolism rate, we performed secondary analyses adjusting for genetic risk score of nicotine metabolism
rate and identified five additional novel associations. We further assessed the potential role of genetic variants in the
detected association between methylation and cotinine levels observing 124 cis and 3898 trans methylation
quantitative trait loci (meQTLs). Nineteen of these SNPs were also associated with cotinine levels (FDR < 0.05).
Further, at seven CpG sites, we observed a trend (P < 0.05) that altered DNA methylation mediates the effect
of SNPs on nicotine exposure rather than a direct consequence of smoking. Finally, we performed replication
of our findings in two independent cohorts of biochemically verified smokers (N = 450 and N = 79).

Conclusions: Using cotinine, a biomarker of nicotine exposure, we replicated and extended identification of
novel epigenetic associations in smoking-related genes. We also demonstrated that DNA methylation in some
of the identified loci is driven by the underlying genotype and may mediate the causal effect of genotype
on cotinine levels.

Keywords: Epigenome-wide association study, Smoking, Cotinine, Genetic risk score, Nicotine metabolism,
meQTL, Causal inference, Molecular mediation

Background
Smoking remains a major preventable cause of morbidity
and mortality worldwide and has been shown to associate
extensively with DNA methylation changes across the
genome as evidenced by several epigenome-wide associ-
ation studies (EWAS) [1]. Almost all EWAS so far, includ-
ing a recent large meta-analysis (N = 15,907) [2], assessed
the association between DNA methylation and self-re-
ported smoking status or smoking quantity [3–23].

Self-reported smoking status and quantity, however, are
prone to inaccuracies due to reporting bias (usually under
reporting or recall bias) [24]. Cotinine, the primary metab-
olite of nicotine, is a reliable measure of nicotine exposure
among current smokers [25] and provides higher statis-
tical power compared to self-reported smoking quantity,
as shown by Ware et al. [26] in a genome-wide association
study (GWAS) meta-analysis of cotinine levels.
The cotinine GWAS meta-analysis [26] identified a

locus on chromosome 4, within UDP glucuronosyltrans-
ferase family 2 member B10 (UGT2B10) gene, a key
enzyme in nicotine and cotinine metabolism [27]. How-
ever, genetic variants in this gene did not associate with
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self-reported smoking quantity suggesting that cotinine
may capture more than mere nicotine exposure [26].
Cotinine level is not only dependent on nicotine intake,
but is also affected by the rate of formation from
nicotine and the rate of cotinine metabolism to
3-hydroxycotinine, both are mediated by one highly gen-
etically polymorphic enzyme, CYP2A6 [28]. The rate of
nicotine metabolism also influences smoking behavior;
for instance, fast metabolizers tend to smoke more ciga-
rettes per day and more intensely than slow metaboli-
zers, likely due to the longer retention of nicotine
among slow metabolizers from a given intake [29, 30].
Nicotine metabolite ratio (NMR; 3-hydroxycotinine/co-
tinine) is a reliable proxy for CYP2A6-mediated nicotine
and cotinine metabolism [29]. NMR is highly heritable
with just three independent SNPs accounting for ~ 30%
of variance in NMR in Finnish population [31].
In this study, we performed an EWAS to examine the

association of serum cotinine levels with DNA methyla-
tion in a sample of current (daily) smokers from the
Finnish Twin Cohort (N = 310). To reduce the impact of
variation in cotinine levels due to CYP2A6-mediated me-
tabolism, we utilized the genetic risk score (GRS) of
NMR. As many of the genes identified in our EWAS had
genetic variants that were linked to smoking-related
traits previously, we further investigated the effects of
genetic variants on methylation (methylation quantita-
tive trait loci (meQTLs)) and cotinine levels. Finally, at
loci where the genetic variants were associated with both

methylation and cotinine levels, we examined whether
altered methylation maybe a molecular mediator in the
association observed between the genotype (single nu-
cleotide polymorphism; SNP) and cotinine levels rather
than being altered directly as a consequence of smoking.

Results
The overall study design and summary of our main find-
ings is shown in Fig. 1.

Epigenome-wide association study
We examined the association of nicotine exposure,
assessed by serum cotinine levels, with DNA methylation
in a sample of current smokers (N = 310, serum cotinine
> 4.85 ng/ml). In our discovery EWAS, we identified 50
CpG sites (in 35 genes) showing significant association
(FDR < 0.05) with serum cotinine levels (Table 1). Among
the 50 highlighted CpG sites, 17 (in 17 genes) were novel
associations while 33 (in 18 genes) have previously been
reported to associate with smoking in EWAS. Consistent
with previous studies, cg05575921 in AHRR was the most
significant CpG site (FDR = 1.1 × 10− 12), with seven add-
itional previously reported CpG associations identified
within AHRR. Other notable replicated hits include six
CpG sites in ALPPL2 (min FDR = 2.0 × 10− 10 for
cg05951221) and cg03636183 in F2RL3 (FDR = 8.7 × 10−
07). For a great majority (84%, 42/50) of the highlighted
CpG sites, higher cotinine levels were associated with
lower methylation with small effect sizes. For instance, a

Fig. 1 Study design and summary of results
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Table 1 Results from the discovery and secondary epigenome-wide association analyses of serum cotinine levels in current
smokers

CpG Chr Nearest gene Discovery analysis Secondary analysis References

Beta SE P value P FDR Beta SE P value P FDR

cg25189904 1 GNG12 − 0.000135 0.000026 5.6E−07 9.0E−03 − 0.000134 0.000028 1.8E−06 3.1E−02 [2–13, 52]

cg21033965 1 CLEC20A − 0.000096 0.000020 4.0E−06 3.7E−02 ** [2]

cg26687670 1 OPN3 − 0.000025 0.000005 6.5E−06 4.4E−02 ** Novel

cg27241845 2 ALPP − 0.000083 0.000016 3.3E−07 6.2E−03 − 0.000082 0.000016 8.8E−07 1.7E−02 [2–10]

cg03329539 2 ALPPL2 − 0.000070 0.000012 2.7E−08 6.6E−04 − 0.000069 0.000013 1.3E−07 3.0E−03 [2–10, 12, 52]

cg06644428 2 ALPPL2 − 0.000054 0.000012 5.5E−06 4.3E−02 ** [2–11, 19, 52]

cg05951221 2 ALPPL2 − 0.000178 0.000021 1.9E−15 2.0E−10 − 0.000171 0.000022 1.4E−13 1.5E−08 [2–13, 19, 20, 52]

cg21566642 2 ALPPL2 − 0.000210 0.000026 1.1E−14 8.8E−10 − 0.000205 0.000027 4.2E−13 3.4E−08 [2–12, 19, 20, 52]

cg01940273 2 ALPPL2 − 0.000134 0.000017 9.8E−14 6.3E−09 − 0.000129 0.000018 3.4E−12 2.2E−07 [2–13, 20, 52]

cg13193840 2 ALPPL2 − 0.000045 0.000010 3.6E−06 3.4E−02 − 0.000048 0.000010 2.5E−06 3.3E−02 [2–7, 9, 10]

cg02306995 3 SEMA5B * 0.000047 0.000010 4.4E−06 4.8E−02 Novel ***

cg04776445 4 MSX1 * 0.000085 0.000018 4.3E−06 4.8E−02 Novel ***

cg13740236 4 LSM6 − 0.000053 0.000009 2.9E−08 6.7E−04 − 0.000057 0.000010 1.0E−08 3.0E−04 Novel

cg11902777 5 AHRR − 0.000071 0.000011 1.1E−09 3.2E−05 − 0.000068 0.000012 2.1E−08 5.6E−04 [3–7, 9]

cg01899089 5 AHRR − 0.000063 0.000014 6.1E−06 4.4E−02 ** [2–8]

cg05575921 5 AHRR − 0.000359 0.000039 3.3E−18 1.1E−12 − 0.000351 0.000041 4.4E−16 1.1E−10 [2–13, 16, 18–20, 51, 52]

cg26703534 5 AHRR − 0.000086 0.000013 5.8E−10 1.9E−05 − 0.000084 0.000014 6.2E−09 2.0E−04 [2–8, 12, 18, 51, 52]

cg14817490 5 AHRR − 0.000099 0.000021 2.4E−06 2.9E−02 ** [2–10, 12, 13, 18, 52]

cg25648203 5 AHRR − 0.000091 0.000015 4.3E−09 1.1E−04 − 0.000086 0.000016 1.1E−07 2.8E−03 [2–13, 52]

cg21161138 5 AHRR − 0.000142 0.000016 1.8E−17 2.9E−12 − 0.000141 0.000017 6.6E−16 1.1E−10 [2–12, 18, 51, 52]

cg24090911 5 AHRR − 0.000076 0.000015 4.3E−07 7.4E−03 − 0.000074 0.000015 2.5E−06 3.3E−02 [2–7, 10]

cg10961758 5 EDIL3 * − 0.000069 0.000014 2.5E−06 3.3E−02 Novel***

cg16179182 5 VTRNA1–1 0.000048 0.000010 5.7E−06 4.3E−02 ** Novel

cg14580211 5 SMIM3 − 0.000062 0.000013 1.7E−06 2.2E−02 ** [2–9, 52]

cg06126421 6 IER3 − 0.000132 0.000020 1.1E−10 4.3E−06 − 0.000132 0.000021 6.9E−10 2.8E−05 [2–12, 20, 52]

cg14753356 6 IER3 − 0.000072 0.000015 3.1E−06 3.4E−02 ** [2–9]

cg22856972 6 TBPL1 0.000066 0.000014 3.0E−06 3.4E−02 0.000073 0.000014 9.1E−07 1.7E−02 Novel

cg05469934 7 PDGFA 0.000038 0.000008 3.6E−06 3.4E−02 ** Novel

cg09022230 7 TNRC18 − 0.000079 0.000014 4.1E−08 8.8E−04 − 0.000070 0.000014 2.4E−06 3.3E−02 [2–6, 8]

cg21322436 7 CNTNAP2 − 0.000055 0.000012 5.6E−06 4.3E−02 ** [2–7, 9]

cg25949550 7 CNTNAP2 − 0.000045 0.000009 1.4E−06 1.9E−02 ** [2–9, 11, 52]

cg09267815 8 YTHDF3 − 0.000080 0.000016 7.2E−07 1.1E−02 ** Novel

cg22288066 8 NOV 0.000033 0.000007 6.8E−06 4.4E−02 ** Novel

cg24838345 8 MTSS1 − 0.000088 0.000017 2.6E−07 5.3E−03 − 0.000084 0.000017 2.3E−06 3.3E−02 [2–6, 8, 9]

cg25305703 8 CASC8 − 0.000088 0.000018 1.7E−06 2.2E−02 ** [2–7]

cg01692968 9 SLC44A1 − 0.000075 0.000016 3.3E−06 3.4E−02 − 0.000079 0.000017 2.7E−06 3.3E−02 [2–9]

cg14120703 9 NOTCH1 − 0.000043 0.000009 4.3E−06 3.8E−02 − 0.000045 0.000010 4.3E−06 4.8E−02 [2, 4]

cg05992400 10 CYP2C18 − 0.000050 0.000011 4.9E−06 4.1E−02 ** Novel

cg16421726 10 ZRANB1 0.000056 0.000012 2.7E−06 3.1E−02 ** Novel

cg05335388 11 ABTB2 * 0.000035 0.000007 1.6E−06 2.9E−02 Novel***

cg19254163 11 PTGDR2 − 0.000042 0.000009 6.4E−06 4.4E−02 ** [2–7]

cg21611682 11 LRP5 − 0.000071 0.000010 1.2E−12 6.7E−08 − 0.000067 0.000010 8.2E−11 3.8E−06 [2–11, 52]
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100 ng/ml increase of cotinine was associated with
approximately 3.6% lower methylation at cg05575921 in
AHRR. Novel CpG associations in smoking-related genes
include cg13740236 in LSM6 (FDR = 6.7 × 10− 04) and
cg26589665 in THSD4 (FDR = 6.9 × 10− 03) (full list in
Table 1). Manhattan and quantile-quantile (QQ) plots for
the discovery analysis are presented in Fig. 2.
As cotinine levels are influenced not only by nico-

tine intake but also by nicotine and cotinine clearance
rate (both mediated by CYP2A6), we performed a sec-
ondary analysis, wherein we included the GRS for
NMR as an additional covariate in the model. In this
secondary EWAS, altogether 30 CpG sites (in 20

genes) were significantly (FDR < 0.05) associated with
cotinine levels. Five (in five genes) of these 30 CpG
sites were novel and not genome-wide significant in
the discovery EWAS (cg04776445 in MSX1, cg05
335388 in ABTB2, cg10961758 in EDIL3, cg12817959
in SSTR3, and cg02306995 in SEMA5B), and the
remaining 25 CpG sites (in 15 genes) overlapped
with the discovery results. Half of the discovery
EWAS hits (25 CpG sites) were no longer signifi-
cant after controlling for nicotine and cotinine
clearance rate. Manhattan and QQ plots for the
secondary analysis are presented in Additional file 1:
Figure S1.

Table 1 Results from the discovery and secondary epigenome-wide association analyses of serum cotinine levels in current
smokers (Continued)

CpG Chr Nearest gene Discovery analysis Secondary analysis References

Beta SE P value P FDR Beta SE P value P FDR

cg14624207 11 LRP5 − 0.000063 0.000010 2.6E−10 9.2E−06 − 0.000063 0.000010 1.4E−09 5.1E−05 [2–7, 9]

cg10788371 11 LRRC32 − 0.000064 0.000013 1.3E−06 1.8E−02 − 0.000067 0.000013 8.6E−07 1.7E−02 [2–6]

cg11491407 12 CACNA2D4 − 0.000095 0.000020 5.7E−06 4.3E−02 ** Novel

cg18443392 12 LRP1 0.000027 0.000006 4.2E−06 3.8E−02 ** Novel

cg04524475 13 RNY1P5 − 0.000053 0.000012 6.2E−06 4.4E−02 ** Novel

cg26589665 15 THSD4 − 0.000042 0.000008 3.8E−07 6.9E−03 − 0.000041 0.000008 2.1E−06 3.3E−02 Novel

cg05361530 16 GNG13 0.000044 0.000009 4.8E−06 4.1E−02 ** Novel

cg07991586 16 ADCY7 − 0.000042 0.000009 6.6E−06 4.4E−02 ** Novel

cg05460226 17 PIK3R5 − 0.000072 0.000015 3.4E−06 3.4E−02 ** [2–4]

cg05396243 17 TMEM220-AS1 − 0.000036 0.000007 1.0E−06 1.5E−02 ** Novel

cg07658936 17 ARHGAP44 0.000029 0.000006 6.8E−06 4.4E−02 ** Novel

cg03636183 19 F2RL3 − 0.000151 0.000022 1.9E−11 8.7E−07 − 0.000155 0.000022 2.8E−11 1.5E−06 [2–15, 17, 18, 20–22, 52]

cg12817959 22 SSTR3 * 0.000034 0.000007 4.3E−06 4.8E−02 Novel***

*CpG not genome-wide significant in discovery analysis
**CpG not genome-wide significant in secondary analysis
***Novel hits identified in secondary analysis

Fig. 2 Manhattan and QQ plots showing epigenome-wide associations from discovery analysis. a QQ plot showing observed versus expected −
log10(P) for association at all loci. b Manhattan plot showing chromosomal locations of − log10(P) for association at each locus. All CpG sites with
FDR < 0.05 are highlighted in green and the top gene for each of the highlighted loci is labeled
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Altogether, 55 unique CpG sites in 40 genes (22 of
which were novel in 22 genes) were identified in our dis-
covery and secondary EWAS analyses.

Pathway analyses
We performed gene-level pathway analyses for the 40
genes identified in our EWAS (discovery and second-
ary) and observed an enrichment of 31 specific gene
networks and pathways (FDR < 0.05) (Additional file 2:
Table S1). The top ones were colorectal cancer me-
tastasis signaling, thrombin signaling, and purigenic
receptor signaling. We also performed CpG-level gene
ontology adjusting for non-uniform distribution of
probes per gene on the methylation array (450 k) and
observed no enrichment (FDR > 0.05) of biological
processes (Additional file 2: Table S1).

Genetic association analysis
To assess the potential genetic influence on cotinine
levels, we tested the association between cotinine levels
and 46,780 polymorphic SNPs in all highlighted genes
and observed 20 SNPs (in 9 genes) significantly associ-
ated (FDR < 0.05) with cotinine levels (Additional file 3:
Table S2; QQ plot in Additional file 4: Figure S2). The
strongest association was observed for rs187669467 in
ARHGAP44 (FDR = 2.6 × 10−02) explaining 7% of vari-
ance in cotinine levels. We also tested the association of
375 genome-wide significant SNPs identified in the co-
tinine GWAS meta-analysis [26] in our discovery sample
and observed 152 SNPs to be nominally associated (P
< 0.05) with cotinine levels. The 20 SNPs highlighted in
the current study were not genome-wide significant in
the Ware et al. study [26].

Methylation quantitative trait loci analysis
We further assessed the influence of genotypes on
methylation levels of the highlighted CpG sites. We per-
formed meQTL analysis for 46,780 polymorphic SNPs
within the 40 genes (with 50 kb flanking regions) identi-
fied in our discovery and secondary EWAS and identi-
fied 124 cis meQTLs (Additional file 5: Table S3) and
3898 trans meQTLs (Additional file 6: Table S4) (FDR <
0.05). Cis meQTLs were observed for 22 CpG sites
(average 5 SNPs per CpG, range 1–23) and 73 SNPs
(average 2 CpG sites per SNP, range 1–7) in 15 genes,
while trans meQTLs were observed for all 55 CpGs (40
genes; average 70 SNPs per CpG, range 2–198) and 321
SNPs (31 genes; average 12 CpG sites per SNP, range 1–
51). Figure 3 illustrates the ample cis and trans meQTLs
identified with a circos plot (Circos.ca [32]).

Mediation analysis
At loci where genotype was associated with both methyla-
tion (meQTL) as well as cotinine levels (19 SNPs overlap),

we performed mediation analysis implemented with causal
inference test (CIT) to investigate the role of DNA methy-
lation as a molecular mediator in the observed association
between genotype and cotinine levels (Additional file 7:
Figure S3). CIT is a widely used approach to infer causal
indirect effects of a genetic variant on an outcome using a
series of statistical tests (see the “Methods” section and
Additional file 7: Figure S3) evaluating conditional inde-
pendencies between covariates in order to distinguish a
mediated effect of the genetic variant (G) on an outcome
(cotinine; C) through an intermediate (methylation, M)
from a reverse cause and a common cause (pleiotropic)
effect [33, 34].
Mediation analysis of 19 SNPs that associated with both

cotinine levels and methylation revealed a trend (P < 0.05)
for methylation at seven CpG sites (in LSM6, TNRC18,
MTSS1, CASC8, PTGDR2, THSD4, and TMEM220-AS1)
being a molecular mediator between the effects of SNPs
(in GNG12, CNTNAP2, CYP2C18, ABTB2, and THSD4)
and cotinine levels (Additional file 8: Table S5). With a cis
effect observed between rs532712997 and cg26589665 in
THSD4, the remaining six CpG sites showed mediating ef-
fects with multiple SNPs in trans. These results indicate
that alteration of methylation at these CpG sites may be a
mediator in the causal pathway between genotype and ob-
served cotinine levels, rather than a direct consequence of
nicotine exposure/smoking. These seven CpG sites (Add-
itional file 8: Table S5) bind multiple transcription factors
(TF), include DNase I hypersensitive site (DHS), and over-
lap with enhancers (Additional file 9: Table S6 and Add-
itional file 10: Table S7).

Replication
To replicate our findings, we assessed the association be-
tween serum cotinine levels and methylation at the 55
CpG sites identified in our discovery and secondary
EWAS in a Dutch population-based sample from the
Netherlands Twin Register (NTR) as well as in an inde-
pendent Finnish population cohort DIetary, Lifestyle,
and Genetic determinants of Obesity and Metabolic syn-
drome (DILGOM). Among the 55 CpGs identified in
our EWAS, 23 CpG sites were nominally associated (P <
0.05) with cotinine levels in NTR (N = 450) and 11 CpG
sites in DILGOM (N = 79) with consistent direction of
association, i.e., higher methylation associated with lower
cotinine levels (Additional file 10: Table S7).
To replicate the trend observed in mediation analysis,

we followed the same procedure as in FTC. For the 11
CpG sites where methylation levels were nominally asso-
ciated (P < 0.05) with cotinine levels in the DILGOM
sample (Additional file 10: Table S7), we performed gen-
etic association and meQTL analysis. Altogether, eight
SNPs were observed as meQTLs and were also nomin-
ally associated with cotinine levels (P < 0.05) in the
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DILGOM sample. We employed CIT to assess medi-
ation between these eight SNPs and 11 CpG sites and
observed a trend (P < 0.05) for mediation at seven CpG
sites in AHRR, SLC44A1, NOTCH1, F2RL3, and CASC8
(Additional file 11: Table S8) with cg25305703 in CASC8
consistent with the mediation trend observed in FTC.

Discussion
Smoking has a major influence on methylation changes
across the genome, as evidenced by numerous EWAS
conducted in last few years and extensively elaborated in
previous reviews [1, 35]. Cotinine is a reliable measure
of recent nicotine exposure compared to self-reported
smoking status or smoking quantity that are prone to
reporting bias [24, 25]. In this study, we assessed the as-
sociation of serum cotinine level with genome-wide
DNA methylation in a sample of biochemically verified
current smokers (serum cotinine > 4.85 ng/ml) from the
Finnish Twin Cohort. With a half-life of 15–20 h, cotin-
ine is a reliable indicator of recent nicotine exposure
[25]. In our relatively small sample (N = 310), we repli-
cated several previously reported findings (33 CpG sites),
many of which were originally identified in studies

utilizing self-reported smoking measures in much larger
samples (N ~ 1000 or more) [2–4], thus showing that a
biomarker with biological proximity to the phenotype
provides high statistical power.
Aside from the consistently reported association with

CpG sites in AHRR, F2RL3, ALPPL2, IER3, and MTSS1,
which have previously been discussed extensively in the
context of smoking [3, 9, 10, 22], we identified novel loci
pointing to smoking-related genes such as THSD4,
LSM6, CACNA2D4, and CYP2C18. An interesting novel
candidate identified in our EWAS is THSD4 (thrombos-
pondin type 1 domain containing 4). Genetic variants in
this gene have been associated with several smoking-re-
lated phenotypes including nicotine dependence [36],
smoking cessation success in clinical trials [37], and lung
function affected by smoking [38]. Other genes
highlighted in our EWAS with genetic variants associ-
ated with smoking-related phenotypes include LSM6
and CNTNAP2 associated with nicotine dependence
[36] and CACNA2D4 with pack years (indicator of life-
long accumulated smoking exposure) [39]. In our data,
SNPs in CNTNAP2 and THSD4 genes were significantly
associated with cotinine levels, in line with these

Fig. 3 Circos plot showing the presence of methylation quantitative trait loci among the 55 highlighted CpG sites and SNPs in 40 highlighted genes
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previous findings. Some of the pathways highlighted
among the genes identified in our EWAS have been im-
plicated in smoking-associated aberration in cancer
pathogenesis [40, 41] and pulmonary disorders [42–44],
highlighting the clinical significance of our findings.
The level of cotinine is influenced not only by intake

(such as smoking pattern and smoking quantity) but also
by the rate of clearance of cotinine [28]. Therefore, we uti-
lized a GRS for NMR (a proxy for nicotine and cotinine
clearance rate) to account for the impact of this in our
secondary analysis and identified five additional novel loci
but also observed that half of the associations from our
discovery EWAS were no longer significant. A plausible
explanation for this observation could be that adding the
GRS adjusts for the genetic variation of nicotine metabol-
ism rate (normal vs faster metabolizers) among the indi-
viduals analyzed. Associations which disappear when the
NMR GRS is added to the model may be related to the
impact of nicotine metabolism rate on nicotine intake or
nicotine/cotinine metabolism. Among such associations
(no longer genome-wide significant after adjusting for the
NMR GRS) are CpG sites in genes AHRR and CYP2C18,
members of the metabolic pathways involved in nicotine
and bupropion (prescription medication for smoking ces-
sation [45]) degradation and xenobiotic metabolism [46].
CYP2C18, a member of the cytochrome P450 (CYP) fam-
ily, and AHRR, a regulator of CYP genes, are both in-
volved in xenobiotic (which includes components of
cigarette smoke) metabolism. Altered expression of
CYP2C18 in the context of smoking has been reported
previously [47]; however, the role of methylation as a
plausible regulator in such observed alterations warrants
further experimental investigation. It should be noted that
although just three SNPs used in the NMR GRS account
for a relatively high proportion (~ 30%) of variance in
NMR, a large portion of variance remains unaccounted
for and this is a major limitation of our study. The three
independent SNPs constituting the GRS were identified in
the Finnish population sample and may not capture the
same effects across other populations (as we observed
with the NTR replication sample).
As some of the CpGs identified in our EWAS were an-

notated to genes that have previously been linked to
smoking-related phenotypes (36–39), we examined the
role of genetic variants in the genes identified in our
EWAS. It is noteworthy that a plethora of associations
between the methylation levels of highlighted CpG sites
and SNPs were observed in both cis and trans. We can
speculate a cross-genome interplay between nicotine
exposure-associated DNA methylation and genetic vari-
ation in the highlighted genes [48, 49]. Some of the cis
meQTLs also act in trans with other CpG sites. Most of
the CpG sites bind multiple TFs, overlapping enhancers
or DHS sites hinting at global-directed networks at play

[48, 50]; however, these may be independent effects oc-
curring simultaneously. It should also be noted that we
tested meQTLs only among genes highlighted in our
analysis potentially missing other cis and trans meQTLs
in the whole genome. Interestingly, for the 19 meQTLs
that were also associated with cotinine levels, we ob-
served a trend of molecular mediation by methylation at
seven CpG sites. These results suggest that alterations in
methylation of these nicotine exposure-associated CpG
sites might not always be a consequence of smoking as
commonly suggested, but rather methylation at such
CpG sites may act as a causal mediator (molecular
mechanism) in regulating the effect of genetic variation
(in genes that modulate nicotine intake and/or nicotine
and cotinine metabolism rate) on cotinine levels or
smoking behavior. We observed support for these find-
ings in an independent replication sample (DILGOM).
These findings are particularly interesting as these SNPs
do not overlap SNPs in the probes. We observed cis me-
diation between CpG sites and SNPs in THSD4 (FTC)
and AHRR (DILGOM) both involved in smoking [36–
38, 51], while trans mediation in CpG sites that bind
multiple TFs or overlap DHS sites and enhancers provid-
ing plausible action mechanism for molecular mediation.
These findings are crucial and provide caution to inter-
pretation of smoking-related EWAS but require further
experimental evidence.
Cotinine, even though a reliable measure of nicotine ex-

posure, is not specific to tobacco smoking. Other potential
sources of nicotine, such as smokeless tobacco (e.g., snus),
e-cigarettes, and/or nicotine replacement therapy, could
also contribute to cotinine levels; however, the likelihood
of such alternative sources in our sample was low (see the
“Methods” section). There have been only a few EWAS so
far using cotinine as a continuous phenotype [51, 52],
both of which were performed in samples including
smokers and non-smokers. When considering replication
of prior findings, it should be noted that all the previous
EWAS we used to assess the novelty of our findings (see
“Methods”) were conducted in samples including both
smokers and non-smokers. We cannot rule out that our
novel findings might be specific to current or heavy smok-
ing as we limited our analyses to self-reported current
smokers with elevated cotinine levels only. Having in-
cluded only current smokers, the range of variability is
limited (in contrast to studies including both smokers and
non-smokers) resulting in smaller effect sizes observed.
Similar results (small effects) were noted by Zhang et al.
[52] and Su et al. [22] when restricting analysis to current
smokers only. Although we observed a great overlap with
previous findings, non-overlapping associations could be
due to differences in study design and sample (smokers
and non-smokers in previous publications versus current
smokers only in our study), population specificity of
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methylation levels [12], and precision of cotinine measure-
ment technique (mass spectrometry versus immunoassay)
[53]. The lack of replication of the novel associations iden-
tified in our EWAS in the NTR and DILGOM samples
may be due to several aforementioned factors including
population specificity, differences in precision of cotinine
measurement (mass spectrometry (FTC and DILGOM)
and immunoassay (NTR)) and small sample size (DIL-
GOM N = 79), or small and inconsistent effects of novel
associations. Even though we replicated several prior asso-
ciations between smoking and methylation, the novel
associations identified in our study, while biologically
meaningful, would require replication in other larger
samples.

Conclusions
In conclusion, we examined the epigenetic signature of
nicotine exposure in a sample of biochemically verified
current smokers and identified several novel loci, includ-
ing genes involved in nicotine degradation and metabol-
ism. Our study is the first cotinine EWAS in which the
rate of nicotine clearance is accounted for, allowing us
to discover smoking-pertinent novel associations which
may be specific to regular/heavy smoking. We further
expose genetic influences on methylation and provide
suggestive evidence for the role of methylation as a mo-
lecular mediator between genetic variation and cotinine
levels, as opposed to a direct consequence of nicotine
exposure in some of the genes.

Methods
Study sample
The study sample of cotinine verified current smokers
comes from the Finnish Twin Cohort (FTC) [54], a
population-based longitudinal study designed to exam-
ine genetic and environmental determinants of health-
related behaviors. A total of 310 individuals (51 full
monozygotic pairs, 44 full dizygotic pairs, and 120 twin
individuals without a co-twin) were included in our dis-
covery analysis. Genome-wide DNA methylation was
assessed with Infinium HumanMethylation450 BeadChip
in peripheral blood using standard protocols [55]. The
average age in the sample was 29.5 years (SD 14.2, range
21–69), and 52% were females. Genotype data imputed
to 1000Genomes phase 3 (processing and imputation of
the genotype data has been described in detail previously
[31]) was available for 304 of these individuals, which
were consequently included in the secondary analysis.

Phenotype data
Current smokers were selected based on the threshold
of serum cotinine above 4.85 ng/ml, as suggested by
Benowitz et al. [56]. Selecting current smokers with a
threshold of cotinine > 4.85 ng/ml instead of 10 ng/ml

was done to maximize sample size available for discovery
analysis, and sensitivity analysis (results not shown) was
performed to ensure that using a higher threshold did
not affect the results and subsequent inference. Cotinine
was measured from frozen serum samples using
high-precision LC-MS/MS at University of Toronto,
Canada (N = 242) [57] and at the Metabolomics Unit, In-
stitute for Molecular Medicine Finland (FIMM), Univer-
sity of Helsinki, Finland (N = 68). The protocols and
instrument parameters have been described previously
[31, 58, 59]. Average cotinine in our discovery sample
(N = 310) was 192.7 ng/ml (median = 178.8, SD = 148.4,
range = 5.1–820.5). In our discovery sample, two individ-
uals (with cotinine levels above 100 ng/ml) reported
using nicotine replacement therapy and none declared
use of smokeless tobacco. E-cigarette use was non-exist-
ent in Finland at the time of data collection.

Replication samples
DILGOM
To replicate our findings, we utilized a Finnish popula-
tion cohort DILGOM (DIetary, Lifestyle, and Genetic
determinants of Obesity and Metabolic syndrome) [60,
61]. Briefly, DILGOM originates from the population-
based national FINRISK 2007 study and includes a total
of 631 unrelated Finnish individuals aged 25–74 years
from the Helsinki area. A total of N = 79 individuals with
methylation data from the peripheral blood, genome-
wide genotype data imputed to 1000Genome phase I,
and serum cotinine > 4.85 ng/ml (current smokers) were
analyzed. The average age of the sample was 51 years
(SD 13.5, range 25–72), and 44% were females. Cotinine
was measured with gas chromatograph mass spectrom-
etry at the Laboratory of Analytical Biochemistry at the
Institute of Health and Welfare, Helsinki, Finland, as de-
scribed earlier [57]. All 79 individuals were self-reported
current smokers. Average cotinine levels were 134.2 ng/
ml (median = 129.6, SD = 98.0, range 5.0–408.8).

Netherlands twin registry
The subjects participated in longitudinal survey studies
from the Netherlands Twin Register (NTR) [62] and in
the NTR biobank project [63]. Data from 450 samples
from 446 individuals (58% females) were analyzed. For
four individuals, two longitudinal blood samples were in-
cluded. The blood sampling procedure [63], Illumina
450 k methylation data [64], and nicotine measurements
have been described in detail previously [65]. A standard
threshold of plasma cotinine> 50 ng/ml (for immuno-
assay measurements) was used to select current smokers
[66]. Average cotinine levels were 309.6 ng/ml (median
= 229.0, SD = 300.5, range = 50.0–2329.0).
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DNA methylation data processing and analysis
DNA methylation data was preprocessed and normalized
using the pipeline suggested by Lehne et al. [67] imple-
mented using R packages “minfi” [68] and “limma” [69].
We modified the pipeline to accommodate the related-
ness in our sample. Altogether the quality control in-
volved exclusion of probes with detection P > 1 × 10− 16,
bead count < 3 (estimated with “wateRmelon” R package
[70]) and call rate < 98%. Samples with sample call rate
< 98% and sex mismatch were further excluded. After
quality control, 418,302 probes and N = 310 samples
remained (FTC data). Quantile normalization stratified
on probe type, color channel, and probe subtypes was
performed to obtain a methylation beta matrix. The first
30 principal components (PCs) from the control probes
were calculated to adjust for technical bias. White blood
cell subtypes (CD8T, CD4T, Natural Killer cells, B cell,
monocyte, and granulocyte) were estimated using “Flow-
Sorted.Blood.450 k” [71] within the “minfi” R package
based on a modified version of the Houseman algorithm
[72] and included in the regression model. Intermediary
residuals were estimated by regressing the methylation
beta values on age, sex, body mass index (BMI), 30 con-
trol probe PCs, and white blood cell types. PCs from
these intermediary residuals were further included in the
final regression model to adjust for any unaccounted
global covariation. To analyze the association between
methylation (dependent variable) at each CpG site and
serum cotinine levels (explanatory variable), we used lin-
ear mixed effects model with “lmer” function imple-
mented in “lme4” R package [73]. Age, sex, BMI, batch
variable (site of cotinine measurement), 30 control probe
PCs, and 10 intermediary residual PCs were included as
covariates (fixed effects), while family identifier and zy-
gosity were included as random effects to account for
the relatedness in our sample. To avoid spurious associa-
tions, we further applied ad hoc exclusion of probes re-
ported by Zhou et al. [74] to affect beta methylation at
the CpG (probes with non-unique mapping, inconsistent
extension base, SNP in the extension base, and overlap
with any known SNPs with global minor allele frequency
(MAF) and MAF in a Finnish population > 1%).
We applied false discovery rate (FDR) adjustment to

the p values for multiple testing correction and con-
sidered FDR-adjusted P < 0.05 as statistically signifi-
cant. Manhattan and QQ plots were produced using
the R package “qqman” [75]. Lambda value estimates
for the QQ plot were calculated using the “estlambda”
function in R package “GenABEL” [76]. For replication
of our results, analysis pipeline was identical for the
replication sample NTR. For the DILGOM sample,
analysis was identical except that instead of a mixed
effects model, a linear model was used as all individ-
uals were unrelated.

Secondary analysis
To account for the individual rate of nicotine metabol-
ism, we included the GRS for NMR in the regression
model (described above) as an additional covariate.
We extracted the genotypes for the three independent
SNPs (rs56113850, rs113288603, and rs12461964) and
calculated the weighted mean of minor allele counts
to calculate the GRS, as described previously [31].
One of the top variants (indel esv2663194) identified
in the NMR GWAS meta-analysis [31] was not avail-
able in our samples (discovery and replication). GRS
calculation and analysis pipeline was identical for the
replication samples.

Literature search
We used the same literature search strategy as Joehanes
et al. [2]. Briefly, PubMed literature database was quer-
ied using medical subject heading (MeSH) terms of
DNA methylation and smoking. To limit duplication of
efforts, we used the supplementary data on literature
search used by Joehanes et al. which included articles
until 2015 and applied additional filter on year (starting
2015) along with a filter for species (human). We
reviewed the abstracts to determine if the studies were
as follows: (1) performed in healthy adult human popu-
lations (also excluding maternal smoking), (2) sample
type analyzed was peripheral blood, (3) studies assessed
genome-wide methylation only, and (4) public reporting
of P values and gene annotations for the CpGs identified
was available. A total of 24 publications met all the in-
clusion criteria and are listed in the Additional file 12:
Table S9. A compiled list of CpGs (19,208 CpG sites)
and associated gene names (8582 genes) from all 24
studies were utilized to assess novelty of our findings.

Annotation and pathway analysis
All statistically significant CpG sites were annotated
using the data aggregated by Zhou et al. [74]. For the
probes that did not have a gene name listed, the name of
the nearest gene was fetched from Ensembl [77]. This
gene list was analyzed with the Ingenuity Pathway Analysis
software (IPA; Ingenuity® Systems, https://www.qiagen
bioinformatics.com/) to identify gene networks at play. We
applied multiple testing correction and an enrichment
for genes functioning in signaling and metabolic path-
ways [78] was considered significant when FDR < 0.05.
A total of 38 of the 40 highlighted genes were recog-
nized by IPA. We also performed pathway analysis
(Gene Ontology) to assess enrichment of biological
processes among the top 55 CpG sites while taking into
account the non-uniform CpG probe distribution per
gene [79] on the 450 k array with R package “mis-
sMethyl” [80] and corrected for multiple testing and
considered FDR < 0.05 significant.
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Association of cotinine with genetic variants
As the genes identified in our EWAS harbor genetic vari-
ants associated with smoking behavior phenotypes, such as
nicotine dependence [36], we examined whether SNPs in
the genes identified in our EWAS analysis associate with
cotinine levels. We performed association analysis using
mixed effects model implemented as “lmer” function in
“lme4” R package. Cotinine levels were treated as depen
dent variable, while genotype dosage (coded as 0, 1 or 2 for
copies of effect allele), age, sex, and BMI were included as
fixed effects in the model. Family and zygosity were in-
cluded as random effects to account for the relatedness in
our sample. Only polymorphic SNPs (N = 46,780) were
tested for association with cotinine levels. Analysis was
otherwise identical for the DILGOM sample except that
linear model was used instead of mixed effects model, as all
individuals were unrelated. To estimate proportion of vari-
ance explained by individual SNPs, we subtracted the R2 of
the model including only covariates (age, sex, BMI) from
the R2 of the model also including the SNP.

Methylation quantitative trait loci analysis
To examine the association between methylation and
SNPs within the 40 genes (with 50 kb flanking regions;
gene boundaries are available in Additional file 13: Table
S10), we used R package “MatrixEQTL” [81]. Only poly-
morphic SNPs (N = 46,780) were tested using linear
model setting with a cis distance of 2.5 Mb. The longest
gene was approximately 2.4Mb (Additional file 13: Table
S10); thus, a cis distance of 2.5 Mb was chosen to ensure
that all possible combinations of SNPs, and the CpG
within a gene are tested. All association tests between
remaining SNP and CpGs were considered trans. Geno-
types were coded as copies of effect allele (0, 1, or 2)
and methylation data was extracted for the 55 probes
from the CPACOR normalized data set used in the
EWAS. We included, age, sex, BMI, white blood cell
counts, control probe PCs, and cotinine as covariates in
the model. In addition, owing to the relatedness in our
sample, we included a covariance matrix based on CpG
sites being tested in the model. Results of meQTL ana-
lysis were visualized using R package “RCircos” [82].

Mediation analysis
For the SNPs that were significantly associated with both
cotinine levels and methylation, we investigated the poten-
tial of methylation (M) being a mediator between the
effects of genetic variant (G) on outcome cotinine levels
(C) using causal inference test (CIT) [83]. In CIT, four con-
ditions are tested to assess consistent causal mediation as
described by Millstein et al. [83]. Conditions for CIT are (1)
G is associated with C, (2) G is associated with M condi-
tional on C, (3) M is associated with C conditional on G,
and (4) G is independent of C conditional on M. We

implemented CIT analysis with R package “cit” and
function “cit.cp” with 50 permutations for conditional ana-
lysis and included, age, sex, BMI, family, and zygosity as
covariates. We report the overall p value (omnibus p value)
based on collective conditional analysis and considered P <
0.05 as nominally significant.

Additional files

Additional file 1: Figure S1. Manhattan and QQ plots showing
epigenome-wide association results from secondary analysis when
accounting for the rate of nicotine metabolism using a GRS. (A) QQ
plot showing observed versus expected − log10(P) for association at
all loci. (B) Manhattan plot showing chromosomal locations of −
log10(P) for association at each locus. All CpG sites with FDR < 0.05
are highlighted in green and the top gene for each of the highlighted loci
is labeled. (PDF 171 kb)

Additional file 2: Table S1. Gene network (IPA) and pathway analysis
(Gene Ontology) of EWAS results. (XLS 3125 kb)

Additional file 3: Table S2. SNPs in the 40 top genes significantly
associated (FDR p < 0.05) with cotinine levels. (XLS 14 kb)

Additional file 4: Figure S2. QQ plot for genetic association analysis of
cotinine levels and 46,780 SNPs in 40 genes. (PDF 17 kb)

Additional file 5: Table S3. Cis acting methylation quantitative trait loci
in the 40 genes highlighted in the EWAS. (XLS 31 kb)

Additional file 6: Table S4. Trans acting methylation quantitative trait
loci in the 40 genes highlighted in the EWAS. (XLS 687 kb)

Additional file 7: Figure S3. Mediation analysis to assess whether DNA
methylation is a causal mediator to the observed association between
genetic variants and cotinine levels. (PDF 588 kb)

Additional file 8: Table S5. Mediation analysis omnibus P values for the
19 meQTLs associated with serum cotinine levels. (XLS 33 kb)

Additional file 9: Table S6. Transcription factor binding site information
for 55 highlighted CpG sites based on ENCODE data. (XLS 96 kb)

Additional file 10: Table S7. CpG sites showing significant (FDR p < 0.05)
association with cotinine levels in regular smokers in FTC and replication
results for top 55 CpG sites in NTR and DILGOM. (XLS 42 kb)

Additional file 11: Table S8. Results for CIT performed on DILGOM
sample replicated CpG sites and SNPs associated with their methylation
levels as well as cotinine levels. (XLS 10 kb)

Additional file 12: Table S9. Literature search results for smoking
EWAS. (XLS 9 kb)

Additional file 13: Table S10. Gene boundaries, based on Ensembl
transcripts for the 40 genes highlighted in the EWAS. (XLS 10 kb)
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