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Abstract

Background: There are some limitations of standard chemotherapy for acute leukemia. Vincristine and doxorubicin
are commonly used for acute leukemia, but they may induce serious side effects such as cardiomyopathy and
neurotoxicity. Furthermore, chemotherapy resistance occurs more and more frequently. Therefore, effective
treatment strategies are needed. Histone deacetylase 6 inhibition is considered as a potential therapeutic
strategy for acute leukemia, since it is observed that HDAC6 is overexpressed in acute leukemia and regulates
tumor survival. Combination therapy for cancer is used to minimize adverse drug effects, reduce drug dosage,
enhance efficacy, and prevent drug resistance. In order to improve efficacy of chemotherapy agents of acute
leukemia, this study will investigate the effects of combination MPT0G211, a novel histone deacetylase 6 inhibitor, with
doxorubicin or vincristine on human acute leukemia cells.

Results: MPTOG211 combined with doxorubicin induces DNA damage response on human acute myeloid leukemia
cells. MPTOG211 can additionally increase Ku70 acetylation and release BAX to mitochondria. Ectopic expression of
HDAC6 successively reversed the apoptosis triggered by the combined treatment. Moreover, co-treatment of
MPTOG211 and vincristine may alter microtubule dynamics, triggering acute lymphoblastic leukemia cells arrest
in mitotic phase followed by induction of the apoptotic pathway. Finally, MPTOG211 plus doxorubicin or vincristine can
significantly improve the tumor growth delay in a tumor xenograft model.

Conclusions: Collectively, our data highlighted that MPTOG211 in combination with chemotherapy drugs has
significant anticancer activity, suggesting a novel strategy for the treatment of acute leukemia.
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Background

Leukemia is a hematologic malignancy caused by the rapid
proliferation of abnormal blood cells. This disease may be
acute or chronic. In the former type, most cancer cells re-
main in a more immature and frequently dividing “blast”
form, which leads to a range of complications and is fatal
without proper treatment [1].
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Acute leukemia can be further divided in two subtypes
by lineage. Of these, acute lymphocytic leukemia (ALL),
which is characterized by the abnormal proliferation of
lymphocytes (e.g., B cells and T cells), is the most com-
mon type of pediatric cancer. Acute myeloid leukemia
(AML) involves the abnormal proliferation of immature
myeloid progenitors (e.g., granulocytes, monocytes, red
blood cells, and platelets). Both subtypes can progress
quickly but differ considerably in terms of survival (5
year survival: 67.5% and 25.9% for ALL and AML,
respectively) [2].
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Currently, the chemotherapeutic agents vincristine
(VCR) and doxorubicin (DOXO) are often used to treat
acute leukemia. However, the clinical use of these drugs is
often limited by the risk of side effects such as cardiomy-
opathy [3] and neurotoxicity [4]. Accordingly, safer, effect-
ive treatment strategies for acute leukemia are needed.

Histone deacetylases (HDACs) enzymatically regu-
late DNA expression by removing acetyl groups from
histones. As a result, DNA can more tightly wind
around histones, thereby decreasing gene expression
[5]. Mammals harbor four classes of HDACs, which
can be distinguished by structure, enzymatic function,
subcellular localization, and expression pattern [6].
Notably, HDAC overexpression has been identified in
many types of cancer, indicating that HDACs’ activity
may be a promising therapeutic target for cancer
management [7]. To date, the US Food and Drug
Administration has approved four pan-HDAC inhibi-
tors for the treatment of various cancers, especially
hematological malignancies such as cutaneous T cell
lymphoma [8], peripheral T cell lymphoma [9], and
multiple myeloma [10]. Although pan-HDAC inhibi-
tors differ in terms of chemical structure, they are
similarly cardiotoxic, and therefore, their clinical
utility is limited [11]. Emerging evidence shows a po-
tential association of pan-HDAC inhibitor-induced
cardiotoxicity with specific HDAC isoforms, leading
to an interest in isoform selectivity in the field of
drug development [12].

The HDAC family member HDACG6 resides mainly in
the cytoplasm, where it plays a unique role in regulating
non-histone proteins without affecting gene expression
[13]. Many types of cancers express high levels of HDAC6
[14-16], and this overexpression can be exploited for
treatment purposes. For example, the synergistic effects of
HDACS6 inhibition and bortezomib induced apoptotic cell
death in ovarian cancer cells [17], whereas HDAC6 knock-
down markedly reduced the migration and invasion activ-
ity of hepatocellular carcinoma cells [18]. Another recent
study identified HDAC6 as an important regulator of the
cytoskeleton, which is a required component for invasive
activity in breast cancer cells [19].

In the present study, we evaluated the effects of a
novel, selective HDAC6 inhibitor, MPT0G211, in acute
leukemia cells when administered alone or in combin-
ation with chemotherapy drugs. We found that in AML
cells, MPT0G211 potentiated the cytotoxic effects of
DOXO by impairing DNA repair machinery and activat-
ing Bcl-2-associated X protein (BCL-XL)-dependent cell
apoptosis. Additionally, when combined with VCR,
MPTO0G211 disrupted microtubule dynamics to induce
mitotic arrest in ALL cells. These data suggest that
HDACS6 inhibition represents a novel opportunity in the
treatment of acute leukemia.
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Materials and methods

Cell lines

The human acute myeloid leukemia cell line, HL-60, hu-
man acute lymphoblastic leukemia cell line, MOLT-4,
and human umbilical vein endothelial cells (HUVEC)
were obtained from Bioresource Collection and Research
Center (Taiwan). Cells were maintained in RPMI-1640
medium supplemented with 10% (v/v) fetal bovine
serum (Gibco, Carlsbad, CA, USA) and 1% of a mixture
of penicillin-streptomycin-amphotericin B (Kibbutz Beit
Haemek, Israel). For HDAC6 overexpressed cells, HL-60
cells were transfected with HDAC6-FLAG (Plasmid
#13823, Addgene Inc., Cambridge, MA, USA) by using
Turbofect (Thermo Fisher Scientific, Rockford, IL,
USA). All cells were cultured at 37 °C in a humidified at-
mosphere with 5% CO2.

Chemicals and antibodies

MPTO0G211, tubastatin A (TBA), and SAHA were synthe-
sized by Dr. Jing-Ping Liou’s Lab. (School of Pharmacy,
College of Pharmacy, Taipei Medical University, Taiwan),
and the purity are more than 98%. Doxorubicin (DOXO),
cyclophosphamide (CTX), and vincristine (VCR) was ob-
tained from Cayman Chemical (Ann Arbor, MI, USA).
Antibodies against BCL-2, BCL-XL, cleaved caspase 3,
caspase 8, caspase 9, acetyl-a-tubulin, acetyl-histone 3,
histone 3, HDACS6, survivin, p-ATM, p-ATR, p-CHK1,
CHK]1, cyclin Bl, aurora B, p-PLK1, p-H3S10, p-CDC2
(Y15), and p-CDC2 (T161) were purchased from Cell sig-
naling (Danvers, MA, USA). a-Tubulin, y-H2AX, ATM,
ATR, BAX, cytochrome ¢, and COX IV were from Gene-
tex (Irvine, CA, USA). PARP and CDC2 were from Santa
Cruz Biotechnology (Dallas, TX, USA).

Cell viability assay

Cells were seeded in a 24-well plate at a density of
1x10° cells/well and then treated with various con-
centrations of MPT0G211, TBA, DOXO, VCR or
CTX alone or in combination treatment for 48h.
MTT solution (final concentration 0.5mg/ml) was
then added to the 24-well plate in the dark, and the
plate was incubated at 37 °C for 2h. For HL-60 cells,
10% SDS were added in the wells to dissolved the
crysta, and for HUVEC cells, MTT-containing
medium were removed and DMSO were added to
each well to lyse cells; the absorbance was spectro-
photometrically analyzed at 570 nm.

Protein extraction and Western blot

Cells were treated with indicated condition and then
lysed in lysis buffer (10 mmol/L Tris-HCl (pH 7.4), 150
mmol/L NaCl, 1mmol/L EGTA, 1mmol/L. PMSEF,
10 pg/mL aprotinin, 10 pg/mL leupeptin, 1 mM sodium
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orthovandate, 1 mM NaF, and 1% Triton X-100) for 30
min and centrifuged at 13,000 rpm. The supernatants
were quantified by BCA Protein Assay Kit (Thermo
Fisher Scientific, Rockford, IL, USA). Equal amounts of
protein were separated by SDS-PAGE and then trans-
ferred to PVDF membranes. The membranes were blot-
ted with different antibodies overnight at 4°C and
conjugated with appropriate secondary antibodies.

Immunoprecipitation

After treated with MPT0G211, TBA, or DOXO, cells were
lysed in lysis buffer containing Halt™ protease and phos-
phatase inhibitor (Thermo Fisher Scientific, Rockford, IL,
USA). Meanwhile, Protein A Magnetic Beads (Bio-Rad,
Hercules, CA, USA) were incubated with capture anti-
bodies and rotated 10 min at room temperature. The mix-
ture was rinsed with PBST three times to remove
unbounded antibodies and incubated with cell lysate for 1
h. The complexes captured by magnetic rack were then
washed three times using PBST to remove unbound pro-
teins. All immunoprecipitation samples were suspended
in Laemmli sample buffer and boiled for 10 min. The
complex proteins were then analyzed by Western blotting.

Flow cytometry

After the treatment of vehicle (0.1% DMSO), MPT0G211,
TBA, or chemotherapy agents for the indicated time
courses, the cells were fixed with 75% (v/v) alcohol at 4. °C
overnight. After centrifugation, cells were incubated in
DNA extraction buffer (0.2 M NaHPO,—0.1 M citric acid)
for 20 min at room temperature. Then, the cells were cen-
trifuged and resuspended with 0.5mL PI solution (1%
Triton X-100, 100 pg/mL RNAase A and 80 pg/mL propi-
dium iodide). Evolution of the cell cycle histogram was an-
alyzed with the FACScan and CellQuest software (Becton
Dickinson).

Cellular dissection method
Nuclear/Cytosol Fractionation Kit (Biovision, Inc., Milpi-
tas, CA, USA) was used to separate cytosol and nuclear.
Briefly, cells were collected and centrifuged at 600g for 5
min, supernatants were removed, and lysate were resus-
pended in Cytosol Extraction Buffer-A, vortex vigorously
for 15s and placed on ice for 10 min. Cytosol Extraction
Buffer-B were then added to the mixture, vortex for 5s,
incubated on ice for 1 min, and centrifuged at 14,500 rpm
to acquire cytosolic fraction. The remaining pallets were
resuspended in nuclear extraction buffer, vortex the sam-
ple for 155, and returned the sample to ice for 10 min.
After repeated for four times, samples were centrifuged at
14,500 rpm to acquire nuclear extraction.

Cytochrome ¢ Releasing Apoptosis Assay Kit (Biovi-
sion, Inc., Milpitas, CA, USA) was used to separate
mitochondria and cytosol. Briefly, cells were centrifuged
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at 600g for 5 min, supernatant was removed, and cytosol
extraction buffer was added for 10 min. Cells were ho-
mogenized in an ice-cold Dounce tissue grinder and
transferred homogenate to a new tube. The mixture was
centrifuged at 700g for 10 min, supernatant was col-
lected into a fresh tube and centrifuged at 10,000g for
30 min to acquire cytosolic fraction. The pellet was re-
suspended in mitochondrial extraction buffer and vortex
10 s to obtain mitochondria fraction.

Immunofluorescence

To observe microtubule distribution, cells were treated
with MPT0G211, TBA alone, or in combination with vin-
cristine for 24 h. The cells were fixed with 4% paraformal-
dehyde for 15 min then permeabilized with 0.1% Tritin
X-100 for 10 min. After washing with PBST for several
times, 4% BSA were used to block non-specific proteins
for 1 h then washed with PBST again and incubated with
primary antibody a-tubulin for 2h. FITC-conjugated
anti-mouse IgG antibody were then used for another 2 h.
Finally, cover slides were recovered to the slides with
mounting gel containing DAPI stain. Images were de-
tected and captured with the ZEISS confocal microscope.

Tumor xenograft model

Seven-week-old male severe combined immunodefi-
ciency mice were fed ad libitum water and Pico-Lab Ro-
dent Diet. All procedures were performed in accordance
with the NIH guidelines on laboratory animal welfare
approved by the Animal Use and Management Commit-
tee of Taipei Medical University (IACUC No. LAC-
2015-0163). HL-60 or MOLT-4 cells (1 x 107 cells in 0.2
ml PBS) were subcutaneously injected into the flanks of
the mice. When tumor sizes reached 200 mm?®, mice
were randomized into four groups with an indicated
dosage of DOXO, VCR, and MPT0G211 alone or in
combination treatment. All mouse tumors were allowed
to reach an endpoint volume of 1200 mm?.

Statistical analysis

All data were expressed as mean values + SEM. and
were done independently three times. The significance
of differences between the experimental groups and con-
trols was assessed by Student’s ¢ test. P <0.05 was con-
sidered statistically significant (*p < 0.05; **p <0.01; ***p
< 0.001; compared with the respective control group).

Results

MPT0G211 induces apoptosis in acute leukemia cells

In our previous study, we showed that MPT0G211 is a se-
lective HDACS6 inhibitor with more potent activity than
the currently available HDAC6 inhibitor ACY-1215 [20].
In this study, we examined the inhibitory effects of
MPTO0G211 on HDACS6 activity in acute leukemia cells.
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As shown in Fig. 1a, MPT0G211 more strongly induced
a-tubulin acetylation when compared with tubastatin A
(TBA) without affecting histone 3 acetylation in both
HL-60 human acute myeloid leukemia cells and MOLT-4
human acute lymphoblastic leukemia cells. Furthermore,
MPTO0G211 inhibited HDAC6 enzyme activity without
significantly affecting the HDACS6 protein levels.
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We additionally used an MTT assay to evaluate the ef-
fects of HDAC6 inhibitors on the viability of acute
leukemia cells (Fig. 1b). Notably, MPT0G211 more effect-
ively induced HL-60 and MOLT-4 cell death (IC5y =5.06
+0.12 and 3.79 £ 0.36 uM, respectively), compared with
TBA (IC50> 10 uM for both cell types), but had no cyto-
toxic effect on normal human umbilical vein endothelial
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cells (HUVECs) (ICs5¢ > 90 uM). Subsequently, we used a
flow cytometric assay to investigate the effect of
MPTO0G211 on cell cycle distribution in cells that had
been treated with MPT0G211 and TBA for 24 and 48 h.
Compared with TBA, treatment with 10 and 3 pM
MPTO0G211 increased the proportions of HL-60 and
MOLT-4 cells, respectively, and in the sub-G1 phase at
both 24 and 48h, the effect in the latter cell type was
slight but statistically significant (Fig. 1c, d). These data
suggest that MPT0G211 is a potent and selective HDAC6
inhibitor that specifically targets malignant cancer cells.

MPT0G211 sensitizes HL-60 cells to doxorubicin-induced
cell death
Combination therapy regimens are usually used to in-
crease the efficacies of chemotherapy drugs, prevent
drug resistance, and reduce unwanted side effects during
the treatment of acute leukemia. In this study, we sub-
jected HL-60 cells to combined treatment regimens of
MPTO0G211 with three chemotherapy drugs currently
used for acute leukemia: DOXO, VCR, and cyclophos-
phamide (CTX). The combination index (CI) was used
to evaluate the effects of these two-drug combinations,
with CI values of 1, > 1, and < 1 indicating addiction, an-
tagonism, and synergism, respectively [21]. As shown in
Fig. 2a, MPT0G211 (0.3, 1, or 3 uM) acted synergistically
with DOXO and VCR against HL-60 cells, whereas no
obvious synergistic effect was observed with CTX.
Anthracycline drugs such as DOXO are considered
standard treatment options for AML. Therefore, we evalu-
ated the effect of a combination of MPT0G211 and DOXO
in HL-60 cells. Flow cytometry revealed that this combin-
ation significantly induced cell cycle arrest in the G2/M
phase, with the subsequent accumulation of cells in the
sub-G1 phase (Fig. 2b). Similar effect was also noted in the
other AML cell line, MV4-11 (Additional file 1). Moreover,
the levels of the apoptotic proteins caspases 3, 8, and 9 and
poly-ADP ribose polymerase (PARP) were also increased in
these cells following combination treatment (Fig. 2c). TBA
was then used to confirm that the synergistic effects of
MPTO0G211 were mediated through HDAC6 inhib-
ition. In that experiment, TBA also increased the pro-
portion of sub-G1 phase cells when administered in
combination with DOXO, although its effects were
less potent than those of MPT0G211 (Fig. 2d).

MPT0G211 acetylates Ku70 and regulates Ku70-Bax
binding to impair the DNA repair machinery initiated

by doxorubicin

To elucidate the mechanism by which combination ther-
apy induces apoptotic cell death, we examined the levels
of the pro-survival proteins BCL-2, BCL-XL, and survi-
vin but observed no changes after treatment with
MPTO0G211, TBA, DOXO, or a combination treatment
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(Fig. 3a). Therefore, we considered the DNA damage re-
sponse, a process which is centrally regulated by proteins
such as ATM and ATR, which cause cell cycle arrest
[22] and recruit DNA repair proteins such as Ku70 [23].
Notably, DOXO treatment induced significant phos-
phorylation of ATM, ATR, and CHKI1, which was fur-
ther enhanced by the combination of MPT0G211 and
DOXO; in other words, MPT0G211 can potentiate the
DOXO-induced DNA damage response (Fig. 3b).

Furthermore, combined MPT0G211 and TBA treat-
ment induced the acetylation of Ku70 (Fig. 3c), which
remained sequestered in the cytosol; accordingly, Ku70
could not sufficiently bind to double-strand break sites
to promote DNA repair (Fig. 3d) [24]. In a previous
study, acetylation of Ku70 was found to disrupt its bonds
with BAX; consequently, free BAX translocates into the
mitochondria to induce apoptotic cell death [25]. In this
study, we showed that MPT0G211 significantly reduced
the binding of Ku70 to BAX (Fig. 3e). We used cell frac-
tionation to further confirm that MPT0G211 facilitates
the release of cytochrome c to the cytoplasm (Fig. 3f) to
induce caspase-mediated cell apoptosis. To evaluate that
the synergistic effect of DOXO and MPT0G211 can be
clinically relevant, we performed this co-treatment in
established HL-60 tumor xenograft. Once tumors were
palpable (approximately 200 mm?®), mice were random-
ized into control (vehicle) and treatment groups. As
shown in Fig. 3g, combination treatment significantly
potentiated the antitumor activity of DOXO. The mice
tolerated all of the treatments without overt signs of tox-
icity (Fig. 3h). Taken together, these data indicated that
co-treatment of DOXO and MPT0G211 markedly sup-
pressed tumor growth both in vitro and in vivo.

HDACG6 overexpression reverses the synergistic effects of
MPT0G211 and doxorubicin

To validate that the synergistic effect of MPT0G211 and
DOXO is truly mediated by the inhibition of HDACS,
we examined whether HDAC6 overexpression could res-
cue cells from apoptosis triggered by the combined
treatment (Fig. 4a). Here, ectopic expression of HDAC6
effectively reduced the expression of caspase 3, PARP,
and the DNA damage marker y-H2AX (Fig. 4b) while
decreasing the proportion of cells in the sub-G1 phase
of cell cycle (Fig. 4c, d). Together, these data suggest that
the synergistic effects of MPT0G211 and DOXO are me-
diated through HDACS6 inhibition.

MPT0G211 potentiates vincristine-induced cell arrest on
MOLT-4 cells

We also tested the combined effects of MPT0G211 plus
DOXO, VCR, or CTX on MOLT-4 cells (ALL). As
shown in Fig. 5a, MPT0G211 (0.3, 1, or 3 pM) and vari-
ous concentrations of VCR exhibited synergistic effects
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on the viability of MOLT-4 cells. MPT0G211 induced an
increase of cells in the sub-G1 phase at 48h in a
concentration-dependent manner (Fig. 5b) and induced
cell apoptosis via caspase pathway activation and PARP
cleavage when combined with VCR (Fig. 5¢). And this

synergistic effect can also be confirmed in other ALL cell
line, CCRF-CEM (Additional file 1). Although TBA also
increased the proportion of cells in the sub-G1 phase
when used in combination with VCR, this drug had less
potent effects than did MPT0G211 (Fig. 5d).
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Fig. 3 MPTOG211 potentiates doxorubicin-induced cytotoxicity by increasing apoptosis and decreasing DNA repair machinery in HL-60 cells. a
The levels of the apoptotic proteins caspase 3 and poly-ADP ribose polymerase (PARP) and the pro-survival proteins BCL-XL, BCL-2, and survivin
were determined in cells treated with MPTOG211 (3 uM) or tubastatin A (TBA) (3 uM) in combination with doxorubicin (DOXO) (0.1 uM) for 24 h. b
Co-treatment of MPTOG211 or TBA with DOXO increased the phosphorylation of ATM, ATR, and CHK1 proteins. ¢ The cells were incubated with
MPTOG211 or TBA plus DOXO for 24 h, after which total cell lysates were immunoprecipitated with an anti-acetyl-lysine antibody and immunoblotted
for Ku70. d Nuclear Ku70 protein levels were measured in cells treated with MPTOG211 or TBA in combination with DOXO. e Cells were incubated with
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Combined effects of MPT0G211 and vincristine on
microtubule dynamics

VCR exerts its action by binding to tubulin to inhibit
mitosis during metaphase and cause cell apoptosis [26].
We found that MPT0G211 and VCR synergistically led
to an increase in cells in the G2/M phase after 24h
(Fig. 6a), although treatment with these drugs alone or
in combination did not affect the levels of the
pro-survival proteins BCL-2, BCL-XL, and survivin

(Fig. 6b). However, the drug combination increased the
expression of the M phase-regulating proteins MPM2,
polo-like kinase (PLK), aurora B, and cyclin B1; addition-
ally, it enhanced the phosphorylation of CDC2 at
Thr161 but suppressed phosphorylation at Tyrl5
(Fig. 6c). Finally, immunofluorescence images revealed
that the combination of VCR and MPT0G211 more
strongly altered microtubule polymerization, compared
with VCR alone (Fig. 6d). We further evaluate whether
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MPT0G211 could enhance antitumor effect of VCR in
mice bearing MOLT-4 xenograft. As shown in Fig. 6e,
co-treatment of VCR and MPT0G211 exhibited significant
antitumor activity in MOLT-4 tumor xenograft. No signifi-
cant body weight difference or other adverse side effect was
observed (Fig. 6f). Together, these results indicated that
concomitant VCR and MPT0G211 can potentiate VCR- in-
duced cell death both in vitro and in vivo.

Discussion

Although pan-HDAC inhibitors have been approved for
the treatment of cancers, currently, they can only be
administered to subset of patients with selected
hematological malignancies. The use of these drugs is
further limited by the frequent clinical observation of
negative side effects such as electrocardiographic
changes, characterized by T-wave flattening, ST segment
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depression, and QT interval prolongation [11]. In con-
trast to other HDACs, HDACG6 regulates the acetylation
of non-histone proteins such as a-tubulin [27], B-catenin
[28], cortactin [29], and heat shock protein 90 [30] and
participates in cancer development and progression [13].
The finding that HDAC6-deficient mice is effectively
normal, unlike mice deficient in other HDAC isoforms,

suggests that HDAC6 inhibition will cause few adverse
effects [31]. Therefore, our finding that HDAC6 inhib-
ition by MPT0G211 or TBA did not cause cytotoxic ef-
fects on HUVECs is consistent with previous reports.
Specifically, we found that although a-tubulin acetyl-
ation was observed even at low doses (0.1uM) of
MPTO0G211, high concentrations were required to
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observe the antitumor effects of this drug (ICso=5.06
and 3.79 uM in HL-60 and MOLT-4 cells, respectively;
Fig. 1). Our findings and previous studies in which
HDACS6 inhibitors were shown to act synergistically with
chemotherapy drugs [32] suggest that such combination
therapies may be a rational strategy for the use of
HDACS inhibitors in cancer treatment.

DOXO, a topoisomerase II inhibitor that induces
DNA breakage via intercalation, was reported to induce
an increase in the proportion of HL-60 cells in the G2/
M phase of cell cycle [33]. Consistent with that report,
we observed that although MPT0G211 itself had no ef-
fect on cell cycle distribution at concentrations below
the ICs, value, it potentiated DOXO-induced G2/M ar-
rest (Fig. 2b). This phenomenon might be due to activa-
tion of the ATR-CHK1 pathway [34], as additional
research has shown that HDAC6 depletion increases
cisplatin-induced cytotoxicity by activating the ATR/
CHK1 pathway in non-small cell lung cancer [35].
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Hence, we suggest that MPT0G211 enhances the ability
of DOXO to induce ATM, ATR, and CHK1 activation
and, consequently, G2/M arrest (Fig. 3b).

The DNA repair process is an important mediator of re-
sistance to DNA targeting drugs [36]. Ku70, a DNA repair
protein that binds to the double-strand break ends caused
by DOXO, has been reported as a target of HDAC6 [37]. In
our study, MPT0G211 induced Ku70 acetylation. This led
to the sequestration of Ku70 in the cytosol, which blocked
its binding to double-strand breaks (Fig. 3c, d) and there-
fore impaired DOXO-induced DNA repair. Furthermore,
acetyl-Ku70 promoted the dissociation of Ku-70 from BAX,
thus promoting BAX-dependent cell apoptosis (Fig. 3e, f).
Together, these findings demonstrate the multifaceted abil-
ity of MPT0G211 to potentiate the cytotoxic effects of
DOXO. We further proved that this ability of MPT0G211
is dependent on the inhibition of HDACS6, as the observed
synergistic effects could be reversed by the ectopic expres-
sion of HDAC6 protein (Fig. 4).
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Fig. 7 Schematic mechanisms mediated by MPTOG211 in combination with doxorubicin or vincristine in acute leukemia cell lines. When
combined with doxorubicin (DOXO), MPTOG211 induces Ku70 acetylation and impairs DNA repair machinery. Moreover, acetylated Ku70 releases
BAX, thus promoting BAX-mediated apoptotic cell death. MPTOG211 also synergizes with vincristine (VCR) to disrupt microtubule dynamics
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Currently, microtubule-destabilizing agents such as
VCR are also considered important for the treatment
of ALL. At high concentrations, VCR binds to
low-affinity binding sites on microtubule to induce
disorganization, whereas at lower concentrations, it
interferes with microtubule dynamics without altering
polymer levels, leading to mitotic spindle disruption
[38]. A previous study demonstrated an increased fre-
quency of multipolar spindle formation in cells
co-treated with paclitaxel and the HDACS6 inhibitor,
ACY-241 [39]; in other words, the combination of an
HDACS6 inhibitor and VCR may also yield therapeutic
benefits. Indeed, we found that MPT0G211 potenti-
ated the mitotic arrest induced by VCR (Fig. 5). We
further observed that co-treatment with these two
drugs altered the phosphorylation pattern of CDC2,
which binds to cyclin Bl and promotes the G2/M
transition [40]. Specifically, this combination sup-
pressed the inhibitory phosphorylation of Tyrl5 on
CDC2 while enhancing the phosphorylation of
Thr161 and cyclin B1, which suggests a synergistic ef-
fect of these drugs on M phase arrest.

During mitosis, the proteins aurora B and Polo-like
kinase 1 are involved in centrosome maturation and
mitotic spindle formation [41]. In this study, we dem-
onstrated that co-treatment with MPT0G211 and
VCR activated these proteins. Using immunofluores-
cence images, we also demonstrated that treatment
with MPT0G211 or TBA alone had no effect on
microtubule distribution, whereas combined treatment
with MPT0G211 and VCR led to significant increases
in abnormal long astral microtubule formation and
chromosome distribution (Fig. 6¢). These results were
consistent with a previous study in which a combin-
ation of the non-selective HDAC inhibitor vorinostat
and VCR induced changes in microtubule dynamics
[42]. Previously, the HDAC6 inhibitor tubacin was
shown to slow microtubule growth by promoting the
interaction of HDAC6 with tubulin in a tubulin
acetylation-independent manner [43]. Therefore, MPT
0G211 and VCR likely disrupt microtubule dynamics
via different mechanisms but act synergistically in
combination. We also provide compelling evidence
that combined treatment of VCR with MPT0G211
synergistically inhibits the growth of human acute
lymphoblastic leukemia cells in animal xenograft.

Conclusion

In conclusion, our data suggest that compared with
TBA, MPTO0G211 is a more potent and selective
HDACS6 inhibitor than current TBA. Furthermore, the
combination of MPT0G211 and DOXO markedly
inhibited HL-60 cell survival via apoptosis and inter-
ference with DNA repair machinery. Moreover, the
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combination of MPT0G211 and VCR significantly dis-
rupted microtubule dynamics and induced M stage arrest
in MOLT-4 cells (Fig. 7). As HDACS6 inhibitors are at an
early stage of clinical development, our findings may pro-
vide a novel therapeutic strategy and future applications
for cancer therapy.

Additional file

Additional file 1: Figure S1. The combination effect of MPT0G211 and
chemotherapeutic agent on acute leukemia cell lines. (A) The viability of
cells treated with MPTOG211 and different doses of doxorubicin (DOXO)
or vincristine (VCR) for 48 h was tested on CCRF-CEM and MV4-11 cell
lines. The synergistic effects of these drugs were evaluated using the
combination index (Cl), with values of > 1.0, 1.0, and < 1.0 indicating an
antagonistic, additive, or synergistic interaction, respectively. (B) Cell cycle
distribution was determined in cells treated with various concentrations
of MPTOG211 and DOXO for 48 h on MV4-11 cells. (DOCX 197 kb)
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